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Multipole modes of excitation in tetrahedrally deformed neutron-rich Zr isotopes
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The multipole modes of excitation for tetrahedrally deformed neutron-rich Zr isotopes are investigated using
the quasiparticle finite amplitude method based on covariant density functional theories. By employing the
density-dependent point-coupling covariant density functional theory with the parameter set DD-PC1 in the
particle-hole channel and a separable pairing interaction of finite range, it is observed that a distinct peak emerges
at ω = 9.0–10.0 MeV in the isoscalar quadrupole K = 0 strength when β32 distortion is considered for 110,112Zr.
This peak is absent when the deformation is limited to axially symmetric octuple or spherical cases. It also does
not appear in neighboring axially quadrupole or octupole deformed nuclei, thus can be viewed as an indicator
for the tetrahedral shape.
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Introduction. The occurrence of tetrahedral symmetry is
common in nature. Many quantum objects governed by elec-
tromagnetic interactions such as certain molecules, metal
clusters, fullerines, quantum whirlpools, and quantum dots
can exhibit a tetrahedral shape. The possibility that atomic
nuclei, which are governed by strong interactions may have
a ground or isometric sate with tetrahedral shape, has also
been discussed, but still not confirmed experimentally. A nu-
cleus with a tetrahedral shape is characterized by a pure β32

deformation (βλμ = 0 if λ �= 3 or μ �= 2). The corresponding
single-particle Hamiltonian has the symmetry group of T D

d ,
and the single-particle levels split into multiplets with de-
generacies equal to the irreducible representations of the T D

d
group. Due to the fourfold degeneracy in the single-particle
levels, the predicted shell gaps at specific proton or neutron
numbers are comparable or even stronger than those at spher-
ical shapes [1–6]. Thus, there may be a static tetrahedral
shape or strong tetrahedral correlations for a nucleus with such
proton or neutron numbers.

Many theoretical approaches are used to investigate the
possible tetrahedrally deformed nuclei, for example the
macroscopic-microscopic model [2,3,7–12], the nonrelativis-
tic [3,7,8,13–18] and relativistic [19–21] density functional
theories, the algebraic cluster model [22], the reflection asym-
metric shell model [23,24], and the ab initio lattice calculation
in the framework of nuclear lattice effective field theory
[25]. The rotational properties of tetrahedral nuclei have
also been explored theoretically [22–24,26–29]. A nucleus
with tetrahedral shape is characterized by the occurrence
of negative-parity bands. Due to the vanishing quadrupole
moments, the rotational bands based on such shapes are antic-
ipated to have very weak, or vanishing, in-band E2 transitions
[8,30,31]. Several experiments have been conducted to iden-
tify the tetrahedral shape of nuclei based on these criteria.
For instance, the negative-parity bands in 160Yb and 154,156Gd
[30–32], 230,232U [33], and 156Dy [34] have been analyzed

experimentally, but providing evidence against tetrahedral
symmetry.

Further theoretical investigations suggest that nuclei with
tetrahedral symmetry still can generate sizable quadrupole
transitions due to quadrupole vibrations around the equi-
librium of pure tetrahedral symmetry [35]. Microscopic
investigations based on the generator coordinate method even
suggest that a clear identification of tetrahedral deformations
is unlikely due to strong mixing with the axial octupole
mode [15].

It is well known that the collective modes exhibited in
responses to nuclei can provide crucial insights into their
shapes. For instance, the isoscalar giant monopole resonance
(ISGMR) splits into two peaks in prolately deformed nu-
clei. The lower peak is associated with the mixing between
the ISGMR and the Kπ = 0+ component of the isoscalar
giant quadrupole resonance (ISGQR), where K denotes the
z component of the angular momentum [36–41]. The effect
of triaxiality on the multipole excitation of 86Ge [42] and
110Ru, 190Pt [43] has also been studied. Recent analysis of the
ISGMR in 100Mo reveals that the appearance of a third peak
between the two existing peaks can be viewed as an indicator
for static triaxial deformation [44,45].

In Ref. [19], we investigated the potential energy curves
of even-even neutron-rich Zr isotopes within the mul-
tidimensionally constrained relativistic Hartree-Bogoliubov
(MDC-RHB) model, predicting that the ground state shape of
110,112Zr is tetrahedral. In this Letter, I utilize the RHB plus
quasiparticle random phase approximation (QRPA) model to
explore how tetrahedrally deformed neutron-rich Zr isotopes
respond to external multipole perturbations. I explore the fi-
nite amplitude method (FAM) [46,47] to derive the response
function. My analysis demonstrates that an additional peak
appears at ω = 9.0–10.0 MeV in the isoscalar quadrupole
(ISQ) K = 0 strength due to β32 distortion. This characteristic
is unique to the consideration of tetrahedral deformation and
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markedly different from neighboring axially quadrupole or
octupole deformed nuclei.

Model. The constrained RHB calculations are preformed
with the extend MDC-RHB model [20], where the RHB
equation (

hD − λ �

−�∗ −hD + λ

)(
Uk

Vk

)
= Ek

(
Uk

Vk

)
(1)

is solved by expanding the Dirac spinors in simplex-y har-
monic oscillator (HO) basis. Ek is the quasiparticle energy,
(Uk, Vk )T is the quasiparticle wave function, λ is the chemical
potential, and hD is the single-particle Dirac Hamiltonian, � is
the pairing potential. My calculations are carried out with the
covariant density functional DD-PC1 [48]. In the pp channel,
one use a separable pairing force of finite range [49–51].
Calculations have been performed in a basis with 20 oscillator
shells. The deformation parameter βλμ is obtained from the
corresponding multipole moment using

βτ
λμ = 4π

3Nτ Rλ
Qτ

λμ, (2)

where R = 1.2 × A1/3 fm and Nτ is the number of proton,
neutron, or nucleons.

The evolution of the nucleonic density subject to a time-
dependent external perturbation F̂ (t ) is determined by the
time-dependent RHB equation. For a weak harmonic exter-
nal field, the density undergoes small-amplitude oscillations
around the equilibrium. In the small-amplitude limit, one ob-
tain the FAM equations

(Eμ + Eν − ω)Xμν (ω) + δH20
μν (ω) = −F 20

μν ,
(3)

(Eμ + Eν + ω)Yμν (ω) + δH02
μν (ω) = −F 02

μν ,

where X and Y are FAM amplitudes at a given frequency
ω. δH20 (δH02) and F 20 (F 02) are two-quasiparticle ma-
trix elements of an induced Hamiltonian and an external
field, respectively. One solve the FAM equations iteratively
in simplex-y HO basis with 20 oscillator shells, same as the
case of solving the static RHB equation (1). The imaginary
part of the frequency ω has been introduced as ω → ω + iγ
with γ = 1.0 MeV. The spacing in discretized ω is taken to
be 0.5 MeV to compute strength functions dB( f , ω)/dω. The
transition density for each particular frequency ω is defined as

δρtr (r) = − 1

π
Imδρ(r). (4)

The isoscalar and isovector multipole operators are defined as

f IS
JK =

A∑
i=1

f (+)
JK (ri ), f IV

JK =
∑

τ

Nτ∑
i=1

(−τ ) f (+)
JK (ri ), (5)

where one define f (+)
JK = [ fJK + (−1)K fJ−K ]/

√
2 + 2δK0

with fJK (r) = rJYJK (θ, ϕ) for J �= 0 and f00(r) = r2. τ = +1
(−1) refers to neutron (proton). For the isovector dipole exci-
tation (Dk = rY1k , k = 0,±1), I adopt the definition [52]

Dk = e
NZ

A

[
1

Z

Z∑
i=1

Dk (ri ) − 1

N

N∑
i=1

Dk (ri )

]
. (6)

FIG. 1. Isoscalar monopole (a), isoscalar (b), (d), (f), and isovec-
tor (c), (e), (g) quadrupole strength as a function of ω for 110Zr. The
dash-dotted (dotted) line denotes the results obtained at the point
with spherical (pear) shape. The results obtained at the ground state
minimum with tetrahedral shape are represented by solid line.

The translational spurious modes are removed following the
prescription proposed in Ref. [46]. For the details of the
formulas of the relativistic QFAM, one refers the readers to
Ref. [52]. The discrete QRPA transition strength |〈i|F̂ |0〉|2
and the eigenfrequencies �i can be extracted from the QFAM
calculation via the contour integration in the complex plane
[53]. The closed contour Ci in the complex energy plane
encloses the ith positive pole �i. In principle, one can select
any closed simple loop Ci, here, I choose a circle ω(ϕ) =
ω0 + ωReiϕ , and the center ω0 and the radius ωR is estimated
from the response function profile in order that the contour
encircles the desired pole �i. One sets ωR = 0.05 MeV and 80
quadrature points are used to evaluate the integral numerically.

Results and discussions. In Ref. [19], we presented the
potential energy curve of 110Zr. Imposing axial and reflec-
tion symmetry predicts the ground state shape to be oblate
with β20 ≈ −0.2. Additionally, two additional minima are
observed at β20 ≈ 0 and 0.5. However, the spherical mini-
mum is unstable with respect to octupole deformations. The
inclusion of both β30 and β32 can lower its energy with the
effect being much stronger for β32 than for β30. Consequently,
the ground state shape of 110Zr is predicted to be tetrahedral
with β32 = 0.18, and a pear-shaped minimum (β30 = 0.20)
with energy approximately 1 MeV above the tetrahedrally
deformed ground state minimum can also be observed.

To investigate the response of the tetrahedrally deformed
nucleus 110Zr to isoscalar and isovector multipole perturba-
tions, one computed the monopole and quadrupole transition
strengths using FAM. The results are depicted in Fig. 1 (solid
line). For comparison, results calculated at the spherical shape
and at the pear-shaped minimum are also presented with
dash-dotted and dotted lines, respectively. In Fig. 1(a), the
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isoscalar monopole (ISM) strength is displayed. Generally, the
ISM strength calculated at these three deformation points is
similar. A giant resonance peak appears at ω ≈ 17.5 MeV in
all cases with only slight differences around ω ≈ 4.5, 9.5, and
12.5 MeV. The obtained isovector quadrupole (IVQ) K =
0, 1, 2 strengths are shown in Figs. 1(c), 1(e), and 1(g), re-
spectively. The IVQ strength for different K calculated at the
spherical shape agrees with each other, with the dominant
peak located at ω ≈ 27 MeV. A small peak at ω ≈ 2.5 MeV is
also observed in this case. When calculating the IVQ strength
at the pear-shaped minimum, this lowest peak disappears,
while the other parts remain similar to those calculated at
the spherical shape. The main structure of the IVQ strength
obtained at the tetrahedrally deformed ground state minimum
resembles that calculated at the pear-shaped minimum.

In Figs. 1(b), 1(d), and 1(f), I present the ISQ K = 0, 1, 2
strengths calculated at the spherical shape, and at the pear and
tetrahedral shaped minima. Due to spherical symmetry, the
ISQ strengths calculated at the spherical deformation point
are identical for different K and exhibit a two-peak struc-
ture. The smaller peak is located at ω ≈ 2.0 MeV, while the
dominant peak is located at ω ≈ 15.0 MeV. When calculating
the ISQ strengths at the pear-shaped minimum, the position
of the smaller peak shifts to ω ≈ 3.0 MeV, and its magni-
tude decreases significantly. For K = 0, a shoulder appears
around ω ≈ 9.0 MeV, and a very small peak is observed
at this position for K = 1. Similarly, when calculating the
ISQ strengths at the ground state minimum with tetrahedral
shape, for K = 0, in addition to the giant resonance peak at
ω ≈ 15.0 MeV and the small peak at ω ≈ 3.0 MeV, another
significant peak emerges at ω ≈ 9.0 MeV. The structure of
the ISQ strengths for K = 1 and 2 remains similar with only
the dominant peak at ω ≈ 15.0 MeV and the small peak at
ω ≈ 3.0 MeV observed. Thus, the appearance of the peak at
ω ≈ 9.0 MeV is unique to the ISQ K = 0 strength.

Let us focus on the ISQ K = 0 strength. As depicted
in Fig. 1(b), the peak at ω ≈ 9.0 MeV only emerges when
including β32 deformation. To gain further insight into the
origin of this peak, I utilize the method based on contour
integration in the complex plane [53] to extract the QRPA
transition matrix elements and eigenfrequencies from the
QFAM calculation. Initially, I run the QFAM calculations with
γ = 0.05 MeV, obtaining a response profile dB( f , ω)/dω that
provides a reasonable estimate for the location of the QRPA
poles �i with significant transition probabilities |〈i|F̂ |0〉|2,
as illustrated in Fig. 2. For the spherical case, no significant
peaks appear in the range ω = 8.5–9.5 MeV. When calculated
at the pear-shaped minimum, three small peaks are observed
around ω ≈ 8.55, 8.79, and 9.04 MeV. Similarly, at the tetra-
hedrally deformed ground state minimum, in addition to the
three peaks around ω ≈ 8.59, 8.75, and 9.03 MeV similar to
those at the pear-shaped minimum, two additional peaks are
observed around ω ≈ 9.22 and 9.42 MeV. Next, a contour
integration is performed to calculate the discrete QRPA tran-
sition strength and the eigenfrequencies. At the pear-shaped
minimum, the QRPA transition strengths for �i = 8.55, 8.79,
and 9.04 MeV are 58, 76, and 44 fm4, respectively. For
the tetrahedrally deformed ground state minimum, the QRPA
transition strengths for �i = 8.59, 8.75, 9.03, 9.22, and

FIG. 2. Isoscalar quadrupole K = 0 strength at ω = 8.5–9.5
MeV for 110Zr calculated with γ = 0.05 MeV. The dash-dotted
(dotted) line denotes the results obtained at the point with spherical
(pear) shape. The results obtained at the ground state minimum
with tetrahedral shape are represented by solid line. The bars denote
the QRPA eigenfrequencies obtained via the method based on the
contour integration in the complex plane, and the corresponding
numbers denote the discrete QRPA transition strength (in fm4). The
red (black) ones denote the results calculated at the minimum with
pear shape (tetrahedral shape).

9.43 MeV are 36, 86, 72, 346, and 80 fm4, respectively.
Clearly, the state with �i = 9.22 MeV, which only appears at
the tetrahedrally deformed minimum, has the largest transition
strength, contributing the most to the strong peak observed in
the ISQ K = 0 strength at ω ≈ 9.0 MeV. To gain a deeper
understanding of the spatial structure of the induced transition
density, I plotted the radial part of the projected transition
density [54] at ω ≈ 9.0 MeV:

δρJK
tr (r) =

∫
d�δρtr (r,�)YJK (�), (7)

as shown in Fig. 3. Figures 3(a)–3(c) display the transition
density obtained at the spherical deformation point, the pear-
shaped minimum, and the ground state with tetrahedral shape,
respectively. The corresponding three-dimensional (3D) plots
of the induced transition densities are also shown in the inset.
Given that the predicted radius of 110Zr is about 4.7 fm,
the radial densities are concentrated on the nucleus’ surface,
with minimal compensating density change at smaller radii.
At the spherical deformation point [see inset of Fig. 3(a)],
the transition density is axial and reflection symmetric with
only the δρ20

tr (r) component visible. When including axial
octupole deformation β30 [Fig. 3(b)], the transition density
remains axially symmetric, but reflection symmetry is bro-
ken. In addition to the dominant δρ20

tr (r) component, many
other components including δρ00

tr (r), δρ10
tr (r), δρ30

tr (r), and
δρ40

tr (r) become visible. At the ground state minimum with
tetrahedral shape [inset of Fig. 3(c)], the transition densities
break both axial and reflection symmetry. While the dominant
component remains δρ20

tr (r), the δρ10
tr (r), and δρ30

tr (r) compo-
nents are exactly zero. Additionally, the δρ00

tr (r) and δρ32
tr (r)
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FIG. 3. Radial parts of the angular-momentum-projected transi-
tion densities correspond to the ISQ K = 0 strength at ω = 9 MeV
for 110Zr at the point with spherical shape (a), at the pear-shaped
minimum (b), and at the tetrahedrally deformed ground state mini-
mum (c). The corresponding three dimensional transition densities
with |δρtr| � 3 × 10−3 fm−3 (a), |δρtr| � 1.4 × 10−2 fm−3 (b), and
|δρtr| � 2 × 10−2 fm−3 (c) are shown in the inset.

components are negligible. Instead, the δρ40
tr (r), δρ44

tr (r) and
δρ52

tr (r) components are significant, with the δρ44
tr (r) and

δρ52
tr (r) components appearing only when considering β32

deformation.
Accordingly, I calculated the isoscalar triacontadipole

(IST) K = 2 strength. The obtained results are shown in
Fig. 4. In general, the structure of the IST K = 2 strengths
calculated at the pear-shaped and tetrahedral-shaped minima
are similar. Several peaks can be observed, located at ω ≈
3.0, 6.5, 10.0, 15.0, 19.0, 21.5, and 26.0 MeV. The dominant
peak is located at ω ≈ 15.0 MeV, and the second dominant

FIG. 4. Isoscalar triacontadipole strength (in 5 ×
106 fm10 MeV−1) as a function of ω for 110Zr. The dash-dotted
(dashed) line denotes the results obtained at the point with pear
(tetrahedral) shape. The isoscalar quadrupole K = 0 strength (in
102 fm4 MeV−1) obtained at the ground state minimum with
tetrahedral shape is also shown for comparison (solid line).

FIG. 5. Isoscalar quadrupole K = 0 strength as a function of ω

for 106–114Zr calculated at the corresponding ground state minimum.

one is located at ω ≈ 10.0 MeV. Note that the position of this
peak is very close to the one observed at ω ≈ 9.0 MeV for the
ISQ K = 0 strength obtained at the tetrahedral minimum. This
indicates that when β32 distortion is included, the emergence
of the peak at ω ≈ 9.0 MeV for the ISQ K = 0 strength may
be due to the coupling with the K = 2 component of the IST
mode.

In Fig. 5, I illustrate the ISQ K = 0 strengths for even-even
neutron-rich isotopes 106–114Zr, calculated at their respective
ground state minima. For 106Zr, the ground state shape is
predicted to be oblate with β20 = −0.23, depicted by the red
dotted line. The ISQ K = 0 strength exhibits a giant resonance
peak around 15 MeV, alongside a lower peak at approximately
ω ≈ 1.5 MeV. Similarly, the ground state shape of 108Zr also
features an oblate configuration with β20 = −0.23, resulting
in an ISQ K = 0 strength (dashed line) similar to that of
106Zr, as shown in Fig. 5. In contrast, 112Zr is predicted to
possess a tetrahedral shape with β32 = 0.15. The correspond-
ing ISQ K = 0 strength (dash-dotted line) in Fig. 5 exhibits a
similar structure to that of 110Zr obtained at the ground state
minimum with a tetrahedral shape (solid line), featuring a sig-
nificant peak at ω ≈ 10.0 MeV, alongside the lowest peak at
ω ≈ 2.0 MeV and the giant resonance peak at ω ≈ 15.0 MeV.
Lastly, for 114Zr, the ground state is predicted to have a pear
shape with β30 = 0.15, resulting in an ISQ K = 0 strength
(dash-dot-dotted line) with a two-peak structure, similar to
the cases of 106,108Zr, with peaks located at ω ≈ 1.5 and 15
MeV, respectively. These results suggest that the intermedi-
ate peak observed at ω ≈ 9.0–10.0 MeV in the ISQ K = 0
strength is specific to 110,112Zr, serving as an indicator for
tetrahedral shape.

Summary. In summary, I investigated the multipole modes
of excitation for tetrahedrally deformed neutron-rich Zr iso-
topes using the quasiparticle finite amplitude method based
on the covariant density functional DD-PC1 and a separa-
ble pairing force. The inclusion of β32 distortion led to the
emergence of a distinctive peak at ω ≈ 9.0 MeV in the ISQ
K = 0 strength for 110Zr. Notably, this peak was absent in
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cases where the system was restricted to axially symmet-
ric or spherical configurations. A detailed analysis of the
discrete QRPA modes within the range ω = 8.5–9.5 MeV re-
vealed significant insights. Specifically, when compared with
the case of the pear-shaped minimum, two additional dis-
crete eigenfrequencies, �i = 9.22 and 9.43 MeV, appeared
at the tetrahedrally deformed ground state minimum. Re-
markably, the state with �i = 9.22 MeV exhibited the largest

transition strength, thereby contributing most to the pro-
nounced peak observed at ω ≈ 9.0 MeV. This unique peak
serves as a distinctive feature of the ground states of 110,112Zr
with tetrahedral shapes and is not observed in neighboring
axially quadrupole or octupole deformed nuclei.
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