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Effects of different effective nucleon-nucleon interactions on a-decay
half-life and extracted «-cluster preformation probability
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Systematical calculations are performed to study the effects of different effective nucleon-nucleon (NN)
interactions on «-decay half-life and extracted «-cluster preformation probability. Within the double-folding
model, both the nonrelativistic M3 Y-type and the relativistic R3Y-type NN interactions are involved and different
methods to include the medium effect into the interactions are also introduced. The differences of the effective
NN interactions as well as their corresponding nuclear potentials and total «-core potentials are analyzed
in detail, and then their impacts on the «-decay half-lives are discussed. By fitting the experimental decay
half-lives of « emitters throughout the nuclide chart, three kinds of common «-cluster preformation probability
for even-even, odd-A, and odd-odd parent nuclei are extracted within two usual strategies. The obtained values
are consistent with previous results and the medium effect on the «-cluster preformation probability is further

discussed. Under the extracted preformation probability, the theoretical «-decay half-lives are in good agreement

with the experimental data.
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I. INTRODUCTION

o decay is an important decay mode of unstable nuclei,
which can provide abundant nuclear structure information,
such as the properties of nuclear ground state, the energy level
structure, the valence nucleon interactions, the charge radius,
the shell effect, and so on. In 1928, Gamow [1] and indepen-
dently Gurney and Condon [2] explained the mechanism of «
decay by employing the quantum tunneling theory for the first
time. Following these pioneering works, different theoretical
models were subsequently developed to study the properties
of o decay, such as shell model [3,4], generalized liquid drop
mode [5], cluster model [6-8], fissionlike model [9,10], a mix-
ture of shell and cluster model [11], and so on. The «-decay
process is usually described as the penetration of « cluster
preformed in the parent nucleus through the Coulomb barrier
of the total interaction between the « cluster and the daughter
nucleus. The a-decay width is linked to both the a-cluster pre-
formation probability and the penetration probability through
the potential barrier. The former is usually assumed to be
unity or extracted from experimental «-decay half-lives, be-
cause its fully microscopic calculation involves a complicated
many-body system, which is difficult to handle at the present
stage. Under certain approximations in the microscopic cal-
culations, the preformation probability can be calculated from
the quartetting wave function approach [12] and from the
experimental binding energies within the cluster formation
model [13,14]. The a-cluster penetration probability is usu-
ally calculated by the well-known Wentzel-Kramer-Brillouin
(WKB) semiclassical approximation [15-17], and different
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a-decay models among the market can well reproduce the
orders of magnitude for the experimental «-decay half-lives.
Despite the remarkable theoretical effort, the total interac-
tion between the « cluster and the daughter nucleus remains
a large uncertainty, especially for the nuclear potential part.
Different nuclear parts of the total a-core potentials have
been proposed, such as the phenomenological Woods-Saxon
potential [18], the Cosh potential [19], the proximity poten-
tial [20-22], the semimicroscopic potential calculated from
energy density functional [23,24], the microscopic potential
computed from the effective nucleon-nucleon (NN) interac-
tions under the double-folding model (DFM) [25], and so
on. Within the DFM by folding the density distributions of
both the o cluster and the daughter nucleus to obtain the
nuclear potential, there have been many types of effective NN
interactions, such as the popular Michigan-3-Yukawa (M3Y)
NN interaction [25-30]. The M3Y interaction is developed
to fit the G-matrix elements and has been successfully used to
study « decay, cluster radioactivity, nucleus-nucleus collision,
fusion dynamics, and so on. Based on the M3Y interaction, the
density-dependent versions are further constructed to include
the medium effect for the involved two-body system with
different density-dependent forms, such as BDM3Y, DDM3Y,
and CDM3Y [31-33]. The parameters in the density depen-
dence are determined by simulating the equation of state
of nuclear matter. These density-dependent NN interactions
have also been extensively employed to study the elastic and
inelastic collisions for light nuclei as well as o decays.
Besides of the popular M3Y-type NN interactions, the
relativistic NN interaction R3Y [34-38] derived from the
famous relativistic mean-field theory has been recently
used to study the cluster radioactivity [39-41] and fu-
sion reactions [42—44] within the DFM. The corresponding
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density-dependent version DDR3Y obtained from the rela-
tivistic Hartree-Bogoliubov model is also further developed
to successfully investigate the medium effect on the fusion
reactions [45-47].

Considering the diverse types of the effective NN interac-
tions, it is interesting to compare their different impacts on
the double-folding nuclear potential as well as the «-decay
half-lives within the DFM. In particular, the relativistic R3Y
and DDR3Y NN interactions are rarely employed to study
the properties of o decays. In addition, the medium effect
within the different effective NN interactions on the a-decay
half-lives and the extracted «-cluster preformation probability
will also be discussed. This paper is organized as follows. In
Sec. II, the details of the theoretical formalism adopted in
the present work and the different effective NN interactions
are introduced. The corresponding «-decay half-lives and the
extracted a-cluster preformation probability are given and
discussed in Sec. III. Finally, a summary is given in Sec. IV.

II. THEORETICAL FORMALISM

A. Density-dependent cluster model

The «-decay process is studied within the density-
dependent cluster model (DDCM), where the total interaction
V(R) between the « cluster and the daughter nucleus can be
written as

V(R) = Vy(R) + Vc(R) + Vi(R), ey

where R is the separation distance between the centers of mass
of the « particle and the daughter nucleus, Vy (R) is the nuclear
potential, and V¢ (R) is the repulsive Coulomb potential. The

centrifugal term V;(R) is defined as V;(R) = % aﬁ;{l), where
£ is the angular momentum carried by the « particle and p is
the reduced mass of the o particle and the daughter nucleus.
Within the DFM, the nuclear potential Vy(R) and Coulomb
potential V-(R) can be obtained from the double-folding in-
tegral with the density distributions of the « particle and the

daughter nucleus [25-27]

VN(R) =A /f P1(r1)p2(r2)Vesrdrdrs, 2)
2
Ve(R) = / / 2 (r2) 3)

where the quantity [s|(s = R +r, —ry) is the distance be-
tween a nucleon in the o particle and a nucleon in the daughter
nucleus. p;(ry) and p;(r;) are the matter density distributions
of « particle and daughter nucleus, while p;,(r;) and p;,(r>)
are their proton density distributions, respectively. The density
distribution of « particle is usually taken as the Gaussian
form [25-27]

p1(r1) = 0.4229 exp (— 0.702417), &)

and the density distribution of the daughter nucleus is taken as
the standard two-parameter Fermi form

£0
1 4 exp (u) ’

a

p2(r2) = &)

where the half-radius ¢ = 1.07 A:i/ ? fm and the diffuseness
parameter a = 0.54 fm are taken from Refs. [25-27]. The
value of pp is determined by integrating the matter density
distribution equivalent to the mass number A, of the daughter
nucleus.

The parameter A in Eq. (2) is a renormalization factor for
the nuclear potential Vy(R), which can be obtained by the
Bohr-Sommerfeld (BS) quantization condition [48-50]

R, 2
/ JEO-VRIr =G -+ D2, (6)
R /] 2

where R; and R, as well as the following Rj3 are the three
classical turning points, which can be obtained by numerical
solutions of V (R) = Q with Q being the a-decay energy. The
value of the first turning point R; is very close to zero since
the repulsion from the centrifugal term V,;(R) with € # 0 is
relatively small. Hence for £ = 0 case with no centrifugal
repulsion, it is usually set as R; = 0, as shown in the following
Fig. 1(c) for the o decay *'*Po — 2%®Pb +«. The explicit form
for the global quantum number G is usually taken as [50]

22 N > 126,
G=120 82<N <126, 7
18 N < 82.

Within the two-potential approach [51,52], the a-decay width
I" can be calculated by

F—PFh—zex —2fR3,/2—“|Q—V(R)|dR 8)
— Ly 4/~L P X hz )

where P, is the preformation probability of the « particle in
the parent nucleus. The normalization factor F' is obtained
by [51,52]

R 1
F/ ————dR = 1. ®
R 2,/ —V(R)|

The «-decay half-life is then related to the width by the
famous relation Ti, = /iln2/T". With the calculated decay
half-life T, by fixing the a-cluster preformation probability
as unity, the latter can be extracted from the experimental
a-decay half-life 7., [53] by
cal Tea
P = —. (10)
Texp

From above description about the DDCM, one can find that
when the effective NN interaction v in Eq. (2) is obtained,
we can calculate the nuclear potential as well as the total
potential between the o particle and the daughter nucleus.
Then the «-decay half-life and the «-cluster preformation
probability can be further obtained. Within the DFM for the
calculations of the total «-core potential, the M3Y-type NN
interactions are widely adopted, such as the M3Y-Reid and
M3Y-Paris as well as the density-dependent versions BDM3Y,
DDM3Y, and CDM3Y. Recently, the R3Y NN interaction
derived from the relativistic mean-field formalism and the cor-
responding density-dependent version DDR3Y are also used
to study the cluster radioactivity and fusion reactions [39—44].
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FIG. 1. Different effective NN interactions v.s;(r), the corre-

sponding nuclear potential Vy(R), and the total potential V (R) for
the & decay 2'*Po — 2%Pb 4+« within the DFM.

Next, we will give the explicit forms for these effective NN
interactions.

B. M3Y and density-dependent M3Y interactions

The popular M3Y-type NN interaction includes the M3Y-
Reid [25] and M3Y-Paris [30] versions, which can be written

as
e—4s —2.5s R

1348 4 REYss), (11
45 255 BN, dD

vRi(s, E) = 7999

TABLE 1. Values of the parameters in the factor F(p;, p;) for
each density-dependent M3Y NN interaction [31-33].

Vet C o B(fm?) y (fm*)

BDM3Y1 1.2521 0.0000 0.0000 1.7452

DDM3Y1 0.2963 3.7231 3.7384 0.0000

CDM3Y6 0.2658 3.8033 1.4099 4.0000
6743 672.53

WPi(s, E) = 11062— — 2537.5—— + JE (E)S(s), (12)

4s 2.5s

where the corresponding zero-range exchange terms are, re-
spectively, given by

JH(E) = —276(1 — 0.005E /A,) MeV fm*,  (13)

Jo(E) = —590(1 — 0.002E /A,) MeV fm®,  (14)

where A, is the mass number of « particle. The density-
dependent M3Y NN interaction is constructed to include the
medium effect for the involved two-body system, where a
density-dependent weight factor is multiplied to the original
M3Y-Paris NN interaction as [31-33]

Vet (1, P2, 5, E) = F(p1, p2)vgge (s, E). (15)
The explicit form for F(p;, p,) is given as

F(p1, p2) = C[1 +ae PP, —y(p 4+ py)],  (16)

where the parameters C, o, 8, y are determined by reproduc-
ing the saturation properties of normal nuclear matter within
the Hartree-Fock calculations [31-33]. The o = 0 case is
usually named as BDM3Y and the y = 0 case corresponds
to DDM3Y. The CDM3Y version is the hybrid interaction
from the former two cases. The values of the parameters
C,a, B,y [31-33] corresponding to BDM3Y1, DDM3Y]1,
and CDM3Y6 NN interactions are shown in Table I.

C. R3Y and DDR3Y NN interactions

Recently, the R3Y effective NN interaction derived from
the relativistic mean-field theory has been successfully used to
study the cluster radioactivity and fusion properties within the
DFM [39-44]. It is obtained by the summation of the scalar
and vector parts of a single meson field, which can be written
as [39,40]

R o T v
Vet 5 B =5 4 s 4r s

—3mys
b B B B,
47 47 5
a7

where m,,, m,, and m, are the corresponding masses of w, p,
and o mesons. The parameters g,,, g,, and g, are the nucleon-
meson coupling constants. g, and g3 denote the nonlinear
meson self-interaction parameters. There are various versions
of the R3Y NN interactions with different values for above
parameters. Within the DFM, the linear version L1, W, and
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HS [34-37] and the nonlinear version NL-SH [38] are usually
employed. Their explicit forms are given as [34-38]

673.97s 672.795
bl (s, E) = 9968 — 6661 + IR (E)s(s). (18)
673.97s 72 79s
wWY(s, E) = 8551 — 57505 o HIREBE). (19)
—3.97s —3.90s e—2.64s
vIS(s, E) = 11957 +4099—— — 6883~
+ Joo(E)S(s), (20)
and
NL SH e—'i 97s —3.87s
vl s, E) =10525—— + 1207 —
672.673 —5.33s
— 6851 + 2999
—7.99s
+ 1574T——— + JB(E)S(s).  (21)

It should be mentioned that in the relativistic framework, the
medium effect can be introduced by the nonlinear coupling
constants, such as the fourth term of above NL-SH version
originating from the nonlinear meson self-interaction. In addi-
tion, similar to the nonrelativistic M3Y-type NN interactions,
the medium effect can also be incorporated in the description
of the R3Y NN interaction through the density-dependent
nucleon-meson couplings [45—47] without the nonlinear cou-
pling terms. This density-dependent version is named as
DDR3Y and the density-dependent couplings are defined
as [45-47]

gi(p) = gi(psat)ﬁ(x)|i=a,w (22)
with
_ l4bix+d)
i) = azm (23)
and

8p(P) = 8p(psar) €xpl—a,(x — D)]. (24)

Here the parameter x = p/pg is related to the saturation
density pg, of normal nuclear matter. Thus the DDR3Y NN
interaction can be expressed as

—MyS

8w(01)gu(p2) e

DDR3Y
E) E) E -
Vetf (o1, p2,8, E) = - "
8o (01)8p(02) e7*
_I_
4 S
o (P1)8s (02) €7°
_ ¢ '47g1 +IR(E)S(s).

(25)

The parameters a;, b;, c;, d;, and a, in Egs. (22)—(24) are
determined to fit the properties of finite nuclei and nuclear
matter under certain constraints. The parameter sets adopted
here are the popular DDMEI [45] and DDME2 [46] versions,
which are displayed in Table II.

TABLE II. The parameters for the DDME1 and DDME?2 effec-
tive NN interactions.

DDMEI [45] DDME?2 [46]
My (MeV) 783.0000 783.0000
8o(psa)/Vic 12.8939 13.0189
e 1.3879 1.3892
b, 0.8525 0.9240
Co 1.3566 1.4620
d, 0.4957 0.4775
m, (MeV) 763.0000 763.0000
8o (psa)/~Fic 3.8053 3.6836
a, 0.5008 0.5647
my (MeV) 549.5255 550.1238
8o (psa) /i 10.4434 10.5396
ay 1.3854 1.3881
by 0.9781 1.0943
o 1.5342 1.7057
d, 0.4661 0.4421
e (fm~3) 0.152 0.152

III. RESULTS AND DISCUSSION

Within the description of the DDCM for « decays, we
can insert the different effective NN interactions into the
double-folding integral in Eq. (2) to compute the nuclear
potential Vy(R) as well as the total «-core potential V (R).
Then the «-decay half-life T, can be calculated and the
a-cluster preformation probability P, can be extracted with
the experimental decay half-life Ty, [53]. In order to dis-
cuss the effects of different effective NN interactions on o
decays, we first show the interactions v.g (), the correspond-
ing nuclear potential Vy(R) and the total potential V(R) in
Figs. 1(a)-1(c) by taking the  decay *'*Po — 2%®Pb +« with
£ =0 as an example. The effective NN interactions include
the density-independent (pure) M3Y-Reid and M3Y-Paris,
the density-dependent BDM3Y, DDM3Y, and CDM3Y, the
relativistic R3Y interactions L1, W, HS, NL-SH, DDMEI1,
and DDME?2. The density-dependent interactions BDM3Y,
DDM3Y, CDM3Y, DDMEI, and DDME?2 are plotted at the
saturation density pg. As shown in Fig. 1(a), the attractions
of the M3Y-Reid and M3Y-Paris interactions are moderate.
However, the repulsion of the latter in small-range region is
larger than that of the former, corresponding to the deeper
exchange term in Eq. (14) compared with Eq. (13). Af-
ter the medium effect is further considered, as shown by
BDM3Y1, DDM3Y1, and CDM3Y6, more repulsions are
included throughout all the ranges. This can also be indicated
from Fig. 1(b) that without the renormalization by the BS
quantization condition in Eq. (6) (A = 1), the nuclear poten-
tials Viy(R) for the density-dependent M3Y interactions are
higher than those with pure M3Y types. However, after the
renormalization, the total potentials V(R) with the density-
dependent M3Y interactions are more repulsive than those
with pure M3Y types at small ranges but more attractions
are shown in the penetration region. Considering the same
Coulomb potential, the barriers with the density-dependent
cases are lower than the pure M3Y cases. This can be clearly
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TABLE III. Values of the factor A, the factor F, the classical turning points R, and Rj, the calculated half-life T,, and the extracted
preformation probability P, for the decay *'*Po — 2®Pb 4« with different effective NN interactions. The first turning point is set as
R, = 0 since the angular momentum carried by the « cluster is £ = 0. The experimental decay energy Q = 8.954 MeV and decay half-life
Texp = 0.294 x 107 s are taken from Ref. [53].

Vet A F R, (fm) R; (fm) Tea (5) P,

M3Y-Reid 0.669 0.790 8.170 26.375 0.693 x 1077 0.235
M3Y-Pairs 0.614 0.795 8.162 26.375 0.699 x 1077 0.237
BDM3Y1 1.056 0.733 8.548 26.375 0.188 x 1077 0.063
DDM3Y1 0.902 0.750 8.423 26.375 0.273 x 1077 0.093
CDM3Y6 1.016 0.740 8.515 26.375 0.206 x 1077 0.070
L1 0.284 0.839 8.013 26.374 0.131 x 10°° 0.447
W 0.311 0.838 8.004 26.374 0.137 x 10°° 0.467
HS 0.595 0.773 8.248 26.374 0.515 x 1077 0.175
NL-SH 0.667 0.755 8.336 26.374 0.386 x 1077 0.131
DDMEI1 0.349 0.818 8.065 26.375 0.100 x 10°° 0.341
DDME2 0.342 0.820 8.054 26.375 0.104 x 107 0.354

seen from Fig. 1(c), leading to smaller penetration proba-
bility and «-decay half-life. Besides, there are very minor
differences among the corresponding nuclear potentials Vy (R)
and the total potentials V(R) for BDM3Y1, DDM3Y1, and
CDM3Y6 cases. This indicates the very similar mechanism
for these three nonrelativistic M3Y-type interactions to de-
scribe the medium effect.

As for the relativistic R3Y effective NN interactions in
Fig. 1(a), the L1 and W interactions possess the strongest at-
tractions with shorter force ranges. Hence their corresponding
nuclear potentials Vy(R) in Fig. 1(b) are the deepest. After
the renormalization, their total potentials V(R) in Fig. 1(c)
provide more attractions at small ranges and less in the pene-
tration region, leading to highest Coulomb barriers. By adding
extra repulsive term from p meson given in Eq. (20), the
HS interaction is very analogous to the pure M3Y types,
resulting in very similar nuclear potential and total potential.
As mentioned before, there are two methods to include the
medium effect for the R3Y NN interaction, namely adding
the nonlinear coupling constants such as NL-SH and introduc-
ing the density-dependent nucleon-meson couplings such as
DDMEI and DDME2. Similarly, the above three interactions
can introduce more repulsions compared with the pure R3Y
interactions L1 and W, leading to higher nuclear potentials as
shown in Fig. 1(b). After the renormalization, the correspond-
ing total potentials provide less attractions at small ranges and
more in the penetration region, resulting in lower Coulomb
barriers as shown in Fig. 1(c). Moreover, it can be clearly seen
from Fig. 1(a) that the NL-SH interaction is very different
from the DDME1 and DDME?2 interactions. Hence there are
also large differences for their nuclear potentials and total
potentials. This indicates that these two methods describe the
medium effect with very different extent for the R3Y effective
NN interactions.

Besides, comparing the nonrelativistic M3Y-type effective
NN interactions with the relativistic R3Y types, it can be
seen from Fig. 1(a) that the former have moderate attrac-
tions, while the latter possess much more attractive forces
in smaller ranges. In consequence, the nuclear potentials in
Fig. 1(b) for the R3Y types are generally much deeper than

those for the M3Y types. After the renormalization for the
total potentials, the R3Y types provide more attractions in
small-range region and less in the penetration region than the
M3Y types, leading to higher Coulomb barriers and smaller
a-decay half-lives. It should be noted that in principle the
density distributions of the « particle and the daughter nucleus
could be calculated from the effective NN interactions. In
order to reduce the uncertainty from calculating the densities,
we keep them as the popular forms within the DFM and
concentrate on the effects coming from the NN interactions on
the a-decay half-life and the extracted «-cluster preformation
probability.

In Table III, we give more details about our calculations
for the o decay *'’Po — 2%Pb 4, including the values of
the renormalization factor A, the normalization factor F', the
second and third turning points R, and Rj, the theoretical
decay half-life T.,;, and the extracted preformation probability
P,. The first turning point is set as R; = 0 since the angular
momentum carried by the « cluster is £ = 0. From Table IIT
we can see that the values of A for pure M3Y types are
around 0.6, while those for the density-dependent versions
are larger and close to unity. This is natural because after
the medium effect is included into the density-dependent part,
the factor A possesses less medium effect to renormalize the
nuclear potential. The similar trends can also be found from
the relativistic R3Y types. However, as mentioned above,
since the relativistic R3Y types have much more attractions
than the nonrelativistic M3Y types in the inner region, the
values of A are much smaller for the former types. The values
of the factor F are all close to unity, indicating the validity
of the two-potential approach in Eq. (9). Besides, a common
behavior can be obtained for the second turning point R, that
the values with medium effect are generally larger than others.
This originates from the more attractions in the penetration re-
gion by the medium effect, leading to lower Coulomb barrier.
The third turning points are almost the same because of the
short-range nuclear force. As a result, the calculated decay
half-life T, and the extracted preformation probability P, are
smaller by including the medium effect, as shown in the last
two columns of Table III.
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FIG. 2. Deviations of the calculated half-lives from the experimental data for the « emitters in the valley around the two main shells Z = 82

and N = 126.

In Fig. 2, we show the logarithmic deviations log,,
(Teat/ Texp) for the a-decay half-lives T¢, calculated with P, =
1 compared with the experimental data T, for the isotopes in
the valley around the two main shells Z = 82 and N = 126.
The results in the top panel are for the even-Z isotopes and
the bottom panel are for the odd-Z ones. The results from
the first row to the last one are successively for the e-e, e-o,
odd-even (o0-e), and odd-odd (0-0) parent nuclei. It can be seen
from Fig. 2 that the numerical sequences of the logarithmic
deviation for different effective NN interactions are the same
to those of the Coulomb barriers in Fig. 1(c). That is to
say, the L1 and W interactions provide the largest absolute
logarithmic deviations and the density-dependent M3Y cases
give the smallest values. The results of other interactions are
between these two cases. This is easy to understand that the
penetration probability is decreased with the increasing height
and width of the Coulomb barrier, resulting in the increas-
ing a-decay half-life. Hence the higher and wider Coulomb
barrier corresponds to the larger calculated «-decay half-life
and logarithmic deviation. Moreover, the general behaviors
for different effective NN interactions are very similar. That
is to say, with the increasing neutron number N of the parent
nuclei, the logarithmic deviation is generally decreased before

the closed shell with N = 126 and then increased after the
closed shell. The shell effect is obviously indicated with the
minimal logarithmic deviation around N = 126 for even-N
parent nuclei and N = 127 for odd-N parent nuclei. This
is because it is very difficult for the valence nucleons of
these two particular nuclei to interact with the ones inside
the closed shell to preform « cluster. Hence the preformation
probability in these nuclei around the closed shell is relatively
small, leading to the smaller calculated «-decay half-lives
and the minimal logarithmic deviations. On the contrary, for
the parent nuclei with N = 128 and N = 129, there are large
deviation gains due to the increasing a-cluster preformation
probability with sufficient valence nucleons outside the closed
shell. Moreover, it can also be found from Fig. 2 that the abso-
lute logarithmic deviations for e-e nuclei are generally smaller
(around zero) than those for e-o and o-e nuclei, while the latter
ones are generally smaller than those for 0-o nuclei. This is
because with odd protons and odd neutrons, the Pauli blocking
effect will hinder the preformation of « cluster, leading to
the smaller calculated «-decay half-life and larger logarithmic
deviation.

Besides, comparing the results for the density-dependent
M3Y interactions with those for the pure M3Y cases, it can
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TABLE IV. «-cluster preformation probability P, extracted with
optimized average deviation (AD) and root-mean-square deviation
(RD) under different effective NN interactions for e-e, 0-A, and 0-0
parent nuclei, respectively.

P, with AD P, with RD

Veff e-e 0-A 0-0 e-e 0-A 0-0

M3Y-Reid 0472 0248 0.129 0514 0210 0.109
M3Y-Pairs 0482 0.253 0.131 0.523  0.214  0.111
BDM3Y1 0.115 0.058 0.034 0.120 0.049 0.026
DDM3Y1 0.172  0.088 0.050 0.184 0.075 0.039
CDM3Y6 0.127  0.064 0.038 0.134 0.055 0.029
L1 0.872 0453 0238 0944 0390 0.202
w 0.903 0474 0.246 0983 0406 0.211
HS 0.332  0.175 0.092 0.362 0.148 0.077
NL-SH 0.243  0.127 0.069 0.265 0.108 0.056
DDMEI1 0.675 0.351 0.181 0.726  0.299 0.155
DDME2 0.704  0.366 0.189 0.756 0.311 0.161

be seen that the medium effect reduces the calculated «-decay
half-life because of the decreased height and width of the
Coulomb barrier, as shown in Fig. 1(c). Similar behavior
can also be found from the comparison between the NL-SH
interaction and the pure relativistic R3Y cases L1, W, and
HS. However, for the DDME1 and DDME2 interactions, the
corresponding calculated «-decay half-lives are smaller than
those of the deepest L1 and W cases but larger than those of
HS case. This is because of the stronger extra repulsion from
p meson in HS interaction.

In order to study the effects of the different effective NN
interactions on the «-cluster preformation probability P,, we
calculate the a-decay half-lives of all the emitters through-
out the nuclide chart. Hence we can obtain the preformation
probability with Eq. (10). Similar to previous studies, the
parent nuclei are also classified into e-e, odd-A (0-A), and
0-0 cases. By fitting the whole calculated «-decay half-lives
to the experimental data, we can extract different common
preformation probability for above three kinds of parent nuclei
with two usual strategies, namely average deviation (AD)
and root-mean-square deviation (RD), which are, respectively,
defined as

M
1 i i
AD = M Z‘logw Ty —logyo Ty

i=1

, (26)

S

1 ) )
RD = Vi Z (logyo T, — logg ]::lal)z’ @7

i=1

where M is the number of the involved parent nuclei. By
optimizing the values of AD and RD, we obtain three kinds of
a-cluster preformation probability P, under different effective
NN interactions. The values are given in Table IV and the
comparison for different effective NN interactions are shown
in Fig. 3.

From Table IV we can see that under each effective NN
interaction, the values of the preformation probability for the
e-e nuclei are generally the largest and those for the 0-o nuclei

1.0

N o o
EN = )

Preformation probability P
(=)
o

FIG. 3. Comparison for the «-cluster preformation probability
under different effective NN interactions.

are the smallest. This is also due to the Pauli blocking effect
originating from the odd nucleons. For the pure M3Y-type
interactions, our obtained values of the preformation proba-
bility are consistent with previous results 0.38, 0.24, and 0.13
[54] for the e-e, 0-A, and 0-0 nuclei, respectively. Besides,
it is shown in Table IV that the values of the preformation
probability obtained with AD are generally smaller than those
with RD for the e-e nuclei, while opposite behavior is for the
0-A and o-o nuclei. Moreover, it is clearly shown in Fig. 3
that there are large drops for the values of the preformation
probability for all three kinds of nuclei from pure M3Y-
type interactions to the density-dependent M3Y types. This
is because the density-dependent versions introduce more
repulsion in small-range region. As a result, the nuclear in-
teractions between the valence nucleons in the surface region
and the daughter nucleus are increased, thus hindering the
preformation of « cluster in parent nuclei. Similarly, for the
R3Y-type interactions, the values of the preformation prob-
ability for all three kinds of nuclei are also decreased from
L1 and W to HS, NL-SH, DDMEI1, and DDME?2. Because
of the extra repulsion in HS, the corresponding preformation
probability are much smaller than those of L1 and W. In
addition, the values for NL-SH and DDME1/DDME?2 are also
very different, which is because of the different methods to
include the medium effect. For the NL-SH interaction, the
medium effect is introduced by adding the nonlinear coupling
constants. As a result, there are more attractions in the pene-
tration region, leading to lower Coulomb barrier and smaller
calculated «-decay half-life as well as the extracted preforma-
tion probability. On the contrary, the DDME1 and DDME2
introduce the density-dependent nucleon-meson couplings to
describe the medium effect, which results in less attractions in
the penetration region and higher Coulomb barrier. Hence the
calculated «-decay half-life and the extracted preformation
probability are increased a lot. In the future, more detailed
studies are necessary to include the medium effect for the
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4— — .
= M3Y-Reid AD

3 F + MB3Y-Paris
= BDM3Yl1

2t + DDM3YI

1+ » CDM3Y6

O L

log IO(Tcal/ Texp)
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180 60 90 120 150 180

Neutron number N

FIG. 4. Comparison for the calculated o-decay half-lives with the experimental data by using the extracted «-cluster preformation

probability.

effective NN interactions. Compared the M3Y-type interac-
tions with the R3Y types, it can be seen from Fig. 3 that the
values of the preformation probability are generally consis-
tent with each other for all three kinds of parent nuclei. The
differences are within a reasonable range despite the deepest
L1 and W interactions provide a little larger preformation
probability.

With the extracted preformation probability given in
Table IV, we recalculate the «-decay half-lives for all the o
emitters throughout the nuclide chart. The comparison for the
calculated a-decay half-lives with the experimental data are
shown in Fig. 4. It can be clearly seen from Fig. 4 that with the
extracted preformation probability, the logarithmic deviations
of the w-decay half-lives are all generally in the range £0.5.
That is to say, the calculated a-decay half-lives are consistent
with the experimental data within a factor of 3. Considering
the complicated couplings from the odd nucleons, the distri-
butions for the 0-o nuclei are a little larger than other two types
of nuclei. Besides, the deviation distributions for AD are in
good agreement with those for RD, indicating the consistent

mechanism for these two strategies to extract the «-cluster
preformation probability.

IV. SUMMARY

Within the double-folding model (DFM), we insert various
effective nucleon-nucleon (NN) interactions to compute the
nuclear potentials between the o cluster and the daughter
nucleus, including the nonrelativistic M3Y types and the rela-
tivistic R3Y types as well as their extended versions including
the medium effect. We first compare the different effective
NN interactions as well as their corresponding nuclear po-
tential and total potential in detail. By including the medium
effect, more repulsions are generally introduced compared
with the pure versions, resulting lower Coulomb barriers
and smaller «-decay half-lives. With the experimental decay
half-lives for even-even, odd-A, and odd-odd parent nuclei
throughout the nuclide chart, we extract different common
a-cluster preformation probability for different effective NN
interactions under two usual strategies. Generally, the values
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of the preformation probability with including the medium
effect are smaller than those of the pure versions. The obtained
values for the M3Y-type interactions are consistent with those
for the R3Y types and also agree with previous studies. In
addition, there are differences for the two methods to include
the medium effect in R3Y-type interactions. Moreover, with
the extracted preformation probability, the calculated «-decay
half-lives for all the o emitters are in good agreement with the
experimental data, especially for the even-even parent nuclei.
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