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Bayesian inference of the dense matter equation of state built upon extended Skyrme interactions
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The nonrelativistic model of nuclear matter with Brussels extended Skyrme interactions is employed in order
to build, within a Bayesian approach, models for the dense matter equation of state. In addition to a minimal set of
constraints on nuclear empirical parameters, the density behavior of the energy per particle in pure neutron matter
(PNM), and a lower limit on the maximum neutron star (NS) mass, we require that the Fermi velocity of neutrons
(vF ; n) in PNM and symmetric nuclear matter (SNM) with densities up to 0.8 fm−3 (arbitrary) does not exceed the
speed of light. The latter condition is imposed in order to cure a deficiency present in many Skyrme interactions
[Duan and Urban, Phys. Rev. C 108, 025813 (2023)]. We illustrate the importance of this constraint for the
posterior distributions. Some of our models are subjected to constraints on the density dependence of neutron
(nucleon) Landau effective mass in PNM (SNM), too. The impact of various sets of constraints on the behaviors
of nuclear matter and NSs is discussed in detail. Systematic comparison with results previously obtained by
employing Skyrme interactions is done for posteriors of both nuclear matter (NM) and NS parameters. Special
attention is given to the model and constraints dependence of correlations among various quantities.
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I. INTRODUCTION

The collective properties of the dense and strongly inter-
acting matter found in the interiors of neutron stars (NSs)
depend upon the baryonic equation of state (EOS) [1–3].
In the past, NS EOSs have been obtained from EOSs of
cold nuclear matter (NM) by solving the β-equilibrium
equation, which determines the elementary composition of
matter. Limited information extracted from nuclear structure
experiments, which explore densities around the nuclear sat-
uration density (nsat ≈ 0.16 fm−3 ≈ 2.7 × 1014 g/cm3) and
small isospin asymmetries (i.e., with commensurate numbers
of neutrons and protons), and from ab initio calculations of
pure neutron matter (PNM) with densities up to nsat [4], was
reflected in a large scattering of model predictions at densities
in excess of ∼2nsat. The considerable efforts made by the
heavy-ion collision community improved the situation only
marginally. The limited success of these attempts is primarily
due to the large instrumental uncertainties that affect high
multiplicity experiments [5–9]. Extra ambiguities stem from
the model dependence of the results, use of simplified func-
tionals of effective interactions in most molecular dynamics
simulation codes and insufficient exploration of the parameter
spaces [10,11].

Multimessenger observations of NSs, whose number and
precision are growing fast, radically changed the situation.
Measurements of pulsars with masses around or larger than
2M� [12–16] rekindled the debate on the emergence of non-
nucleonic particle degrees of freedom, e.g., hyperons, mesons,

*These authors contributed equally to this work.
†Contact author: mikhail.beznogov@nipne.ro
‡Contact author: araduta@nipne.ro

and quarks, in the cores of massive NSs [17–20]. The in-
terpretation of the outcome of the NSs coalescence in the
GW170817 event [21] as the collapse of a hypermassive star
into a black hole provided an upper boundary (� 2.17M�)
[22] for the maximum gravitational mass NSs can sustain
and, thus, further challenged our understanding on the high-
density behavior of the NS EOS. The measurement of the
combined tidal deformability of NSs with masses 1.17 �
M/M� � 1.60 in the GW170817 event [21,23] supplied the
first constraints on the intermediate-density behavior of neu-
tron rich matter [24]. Soon after that, the equatorial radius
(Req = 12.71+1.14

−1.19 km [25] or Req = 13.02+1.24
−1.06 km [26]) and

mass (M = 1.34+0.15
−0.16M� [25] or M = 1.44+0.15

−0.14M� [26]) of
PSR J0030 + 0451 were estimated based on the analysis of
the x-ray pulse profile measured by NICER and yielded ex-
tra information on the intermediate-density behavior of the
NS EOS. Knowledge on potentially broader domains of den-
sity and isospin asymmetry became later on available due
to measurements of the radius of PSR J0740 + 6620 (Req =
12.39+1.30

−0.98 km [27] or Req = 13.7+2.6
−1.5 km [28]), whose mass

is 2.08 ± 0.07M� [15,16]. In addition to rotating hot spot pat-
terns measured by NICER, the analysis of PSR J0740 + 6620
[27,28] also benefited from x-ray observations by XMM-
Newton. All NICER figures quoted in this paragraph are at
68% credible interval.

The heterogeneity of constraints along with their dissimilar
and not yet sufficiently well understood sensitivities to vari-
ous domains of density and isospin asymmetry and complex
shapes of credibility regions (CRs) commend for statistical
analyses. The strategy consists in generating a large num-
ber of EOS models that ideally explore the whole range of
possibilities and then “filter” them based on how well they
perform with respect to some criteria. The criteria used so
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far belong to three classes: (i) theoretical calculations of NM,
(ii) experimental nuclear physics data, and (iii) astrophysical
observations of NSs. The multimessenger probes of NSs inte-
riors listed in the previous paragraph obviously fall in the third
category. Examples of constraints belonging to the first class
are as follows: the nuclear empirical parameters (NEPs; for
their definition, see Sec. II), the results of various ab initio cal-
culations of PNM with densities up to ∼1.1nsat [29–33], and
the results of perturbative quantum chromodynamics (pQCD)
calculations [34,35]. The latter of these criteria is the most
challenging from the conceptual point of view. It consists in
checking the compatibility between the behavior of EOSs at
densities n � 5nsat and the behavior of matter in the quark
phase, with densities n ∼ 40nsat, by searching for causal and
thermodynamically stable and consistent “connections” of the
two regimes [36,37]. Examples of constraints belonging to the
second class are as follows: neutron skin thicknesses, which
include the recent PREX-II [38] and CREX [39] measure-
ments of 208Pb and 48Ca, respectively; particle production
[7–9] and flow [5,9] in relativistic heavy-ion collisions.

Regarding the EOS models, two strategies have been
adopted. The first one corresponds to the so-called schematic
models and is by far the most popular. Parametric mod-
els, e.g., piecewise polytropes, spectral parametrizations and
(piecewise) parametrizations of the speed of sound, and
nonparametric models, e.g., Gaussian processes, stand out
by their increased flexibility and low computational cost.
Yet, from the nuclear physics point of view, they are far
from ideal. The reasons are that they disregard all nuclear
physics information that cannot be cast into a NS EOS for-
mat and, with the exception of a phase transition to quark
matter, they completely ignore the particle composition of
matter. Inferences of NS EOSs based on schematic mod-
els have been obtained for different sets of constraints. For
instance, Refs. [40–42] accounted for constraints from heavy-
ion collisions. References [40,42] carefully investigated the
consequences of implementing constraints from PREX-II
[38] and CREX [39] neutron skin measurements. References
[42–47] implemented constraints from pQCD. References
[24,48–50] implemented exclusively constraints from as-
trophysical observations of NSs. References [41,42,44,47]
employed constraints from χEFT [31–33]. By alternatively
incorporating constraints belonging to different categories,
Ref. [42] wonderfully demonstrates the role of each con-
straint.

The second strategy consists in using phenomenological,
nuclear physics motivated, models. The statistical inferences
of the dense matter EOSs performed in the last years have
employed a large collection of such models, e.g., Taylor
expansion of the energy per nucleon with respect to the
deviations from saturation and isospin symmetry [51–53],
semiagnostic metamodelling [54], a χEFT inspired expansion
of the energy per nucleon in terms of neutrons and pro-
tons Fermi momenta [55], nonrelativistic mean-field models
with various effective interactions [56–58], and relativistic
mean-field models (RMF) with nonlinear [56,58–60] and
density-dependent [61–63] couplings. The major advantage
of phenomenological models lies in controlling the effective
interactions and matter composition. The former feature al-

lows one to “export” knowledge of the EOS in environments
other than NSs, e.g., cold or hot matter with arbitrary charge
fraction. The obvious drawbacks are the limited flexibility,
non-negligible computational costs and, in principle, spurious
correlations among parameters. As with the schematic mod-
els, different sets of constraints have been considered. The
ensemble of these studies made it possible to address the issue
of correlations among properties of NM and properties of NSs
and the sensitivity of posterior distribution upon implementa-
tion of different constraints.

The role played by the energy density functional in phe-
nomenological models can be judged by comparing the results
of Refs. [60–62] and Ref. [57], which rely on relativistic and
nonrelativistic mean-field models, respectively and employ
the same minimal set of constraints. It comes out that NS
EOSs based on standard Skyrme interactions are softer than
those built based on the RMF model with density-dependent
couplings, so that the NSs built within the first framework
are characterized by values of radii and tidal deformability
lower than those built within the second framework. Signif-
icant differences manifest also in the neutron enrichment of
the core. As a result, models in Ref. [57] are more prone
to allow for direct Urca process than those in Refs. [61,62].
A remarkable result of Ref. [57] is that accounting for the
correlations between the values that the energy per particle
(E/A) in PNM takes at different densities not only brings
further constraints into the isovector channel but also couples
it strongly to the isoscalar channel. The impact of extra con-
straints from NS observations and heavy-ion collisions was
addressed in Ref. [58], which employed a RMF model with
nonlinear couplings and a nonrelativistic mean-field model
with standard Skyrme interactions. According to Ref. [58],
accounting for astrophysical observations results in washing
out much of the model dependence of the posteriors of the
NS-related parameters. Remarkably, NM posteriors and NS
EOSs continue to be model dependent.

The aim of the present work is to pursue the Bayesian study
of purely nucleonic dense matter via EOSs built within mean-
field models of NM. Several avenues are taken to this aim.
First, the Brussels extended Skyrme functional is employed
for generating effective interactions. Compared to standard
Skyrme interactions, these extended interactions contain extra
density-dependent terms, which translates into an enhanced
flexibility. The first expected benefit of this enhanced flex-
ibility is the possibility to account for a range of behaviors
of NS EOSs wider than that allowed by the standard Skyrme
interactions [57]. Second, this parametrization is expected to
be able to provide for the density dependence of the Landau
effective mass a behavior similar to the one predicted by ab
initio calculations with three body forces [64,65]. Then, in ad-
dition to a set of constraints we comment on in the following
paragraph, we ask our models to comply with the requirement
that up to a certain density the Fermi velocity of neutrons vF ; n

in both PNM and symmetric nuclear matter (SNM) does not
exceed the speed of light. This condition is introduced to cure
the deficiency signaled recently by Duan and Urban [66]. It
affects many of the widely used Skyrme parametrizations and,
thus, makes them unphysical. The value of the density up to
which we enforce the condition vF ; n < c is, in most cases,
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0.8 fm−3 (arbitrarily chosen). Other values are considered for
illustrative purposes, too.

With the exception of the condition for vF ; n, which is new,
sets of constraints equivalent to those used in Refs. [57,60–
62] are employed throughout this paper. As such, the present
results can be directly compared with those obtained within
other widely used mean-field models. This is a basic require-
ment for judging the model dependence of the conclusions.
The nuclear physics constraints we implement correspond
to: (i) the four best known NEPs, i.e., nsat, Esat, Ksat, and
Jsym; (ii) the density behaviors of E/A and effective neutron
mass in PNM (mPNM

eff; n ) up to 0.16 fm−3; and (iii) the density
dependence of the effective nucleon mass in SNM (mSNM

eff; N )
up to 0.16 fm−3. For the latter three quantities we utilize the
results of χEFT calculations from Ref. [65]. The only NS-like
constraint we implement is the lower bound on the maximum
gravitational mass of static NSs. In most cases, the conser-
vative value of 2M� is used. For illustrative purposes, larger
values will be considered in specific situations, too. All EOS
models we build are causal up to the density corresponding
to the maximum mass configuration. We also ensure that they
are thermodynamically stable.

The choice not to implement constraints on the tidal de-
formability of the intermediate mass NSs, extracted from
GW170817 [21,23], and radii of intermediate and massive
NSs, extracted from x-ray observations of PSR J0030 + 0451
[25,26] and PSR J0740 + 6620 [27,28], respectively, can be
viewed both as a drawback and an advantage. The drawback
refers to an insufficient constraining of the EOS over the den-
sity domain nsat � n � 3nsat. The advantage lies in keeping
the results free of the systematic uncertainties that might affect
those very sophisticated inference procedures, e.g., models
of atmosphere, instrument response, geometry and temper-
ature distributions of hot spots, sampling techniques, prior
assumptions on the EOSs, etc. Radii measurements of PSR
J0030 + 0451 in Refs. [25,26] show that the result depends
on the number, morphology and topology of hot spots that
generate the observed pulse profile. The updated analysis of
PSR J0030 + 0451 in Ref. [67] has shown that noise setting
and technical aspects of the inference procedure also affect
NICER mass-radius estimates and that the posterior surface
has a multimodal structure. For PSR J0740 + 6620 [27,28],
separate choices for the relative area of XMM-Newton to
NICER also contribute to differences in the results. The sit-
uation with tidal deformabilities constraints extracted from
GW170817 is roughly similar. Reference [21] comments that
the inferred values depend on whether the same EOS was used
for both NSs or not. Reference [23] shows that the constraints
on combined tidal deformability also depend on a number of
assumptions, including the waveform model and NS’s spins.
Even if our models are not conditioned on data extracted from
NICER and LIGO-Virgo measurements, compliance with the
constraints contributed by astrophysicists colleagues is thor-
oughly checked on a posteriori distributions.

The rest of the paper is organized as follows. Section II
briefly reviews the theoretical approach. The Bayesian setup
is discussed in Sec. III. Section IV addresses the behaviors
of NM and NS matter as well as possible correlations among
NEPs or among NEPs and global parameters of NSs. Com-

parison with results obtained in Ref. [57], which employed
standard Skyrme interactions and similar sets of constraints,
highlights the sensitivity of the results, correlations included,
on the structure of the effective interaction and specific con-
straints. The conclusions are drawn in Sec. V. Reference [57]
will be hereafter referred to as Paper I.

II. THE MODEL

In this paper, we use the Brussels extended Skyrme interac-
tions [68], which are obtained by supplementing the standard
Skyrme interaction [69]

V (r1, r2) = t0(1 + x0Pσ )δ(r)

+ t1
2

(1 + x1Pσ )[k′2δ(r) + δ(r)k2]

+ t2(1 + x2Pσ )k′ · δ(r)k

+ t3
6

(1 + x3Pσ )[n(R)]σ δ(r)

+ iW0(σ1 + σ2) · [k′ × δ(r)k], (2.1)

with two density-dependent terms,

V BSk(r1, r2)

= V (r1, r2) + t4
2

(1 + x4Pσ ){k′2[n(R)]βδ(r)

+ δ(r)[n(R)]βk2} + t5(1 + x5Pσ )k′ · [n(R)]γ δ(r)k.

(2.2)

In Eqs. (2.1) and (2.2) the following notations are used:
r = r1 − r2, R = (r1 + r2)/2; k = (∇1 − ∇2)/2i is the rel-
ative momentum operator acting on the right and k′ is its
conjugate acting on the left; Pσ = (1 + σ1 · σ2)/2 is the two
body spin-exchange operator; n(r) = nn(r) + np(r) is the to-
tal local density; and ni(r) with i = n, p are the neutron and
proton local densities.

In the absence of spin polarization, the energy density of
homogeneous matter with no Coulomb interaction is a sum of
four terms,

H = k + h0 + h3 + heff , (2.3)

where k is the kinetic energy term, h0 is a density-independent
two-body term, h3 is a density-dependent term, and heff is a
momentum-dependent term. Each of these can be expressed
in terms of densities of particles and kinetic energies as

k = h̄2

2m
τ, (2.4)

h0 = C0n2 + D0n2
3, (2.5)

h3 = C3nσ+2 + D3nσ n2
3, (2.6)

heff = C̃eff nτ + D̃effn3τ3, (2.7)

where n = nn + np and n3 = nn − np denote the isoscalar and
isovector particle number densities; τ = τn + τp and τ3 =
τn − τp denote the isoscalar and isovector densities of kinetic
energy; 2/m = 1/mn + 1/mp, where mi with i = n, p denotes
the bare mass of nucleons.
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The coefficients C0, D0, C3, and D3 have the same expres-
sions as for the standard Skyrme interaction [70],

C0 = 3t0/8, D0 = −t0(2x0 + 1)/8,

C3 = t3/16, D3 = −t3(2x3 + 1)/48, (2.8)

while the contributions of extra terms enter into C̃eff and D̃eff ,

C̃eff = Ceff + [3t4nβ + t5(4x5 + 5)nγ ]/16,

D̃eff = Deff + [−t4(2x4 + 1)nβ + t5(2x5 + 1)nγ ]/16, (2.9)

where

Ceff = [3t1 + t2(4x2 + 5)]/16,

Deff = [t2(2x2 + 1) − t1(2x1 + 1)]/16, (2.10)

are the coefficients of momentum-dependent terms in the stan-
dard Skyrme interaction [70]. With this convention there are
13 parameters (C0, D0, C3, D3, Ceff , Deff , t4, x4, t5, x5, σ , β,
and γ ) that define the most general form of Brussels extended
Skyrme parametrizations. In practice, the six parameters that
enter Eq. (2.2) are given fixed values [68,71,72]. The advan-
tages of doing so are in controlling the density dependence
of the extra momentum-dependent terms and keeping the χ2

minimization procedure upon which the values of other pa-
rameters are obtained computationally cheap.

A peculiarity of the zero-range Skyrme interactions, where
the momentum-dependent part of the potential is propor-
tional to k2, consists in the possibility of introducing effective
masses,

h̄2

2meff; i
= h̄2

2mi
+ C̃effn ± D̃effn3, (2.11)

that depend exclusively on particle densities; here “+” and “–”
signs correspond to neutrons and protons, respectively. In the
limit of zero temperature, meff; i correspond to the Landau ef-
fective masses mLandau, eff; i, defined in terms of single-particle
density of states dei/dki at the Fermi surface,

m−1
Landau, eff; i = 1

ki

dei

dki

∣∣∣∣
k=kF ; i

. (2.12)

The presence of extra terms that depend on t4, x4, β, t5, x5,
and γ is essential for alleviating the decrease of meff; i with
density. As such, two major deficiencies can be healed. The
first one regards the neutron Fermi velocity,

vF ; n = kF ; n

meff; n
, (2.13)

that in dense matter might exceed the speed of light. Duan and
Urban [66] have recently shown that this is a general issue
with standard Skyrme interactions, which obviously makes
them unsuitable for describing NS matter. Correlated with
the previous aspect, the extra flexibility granted by the new
terms can be exploited in order to achieve a meff; i(n) behavior
compliant with the one predicted by microscopic models.
Brueckner-Hartree-Fock calculations [64,73] performed up to
the density n = 0.8 fm−3 showed that three-body (3N) forces
are responsible for a U-shape behavior of meff; i(n). The min-
imum value of meff; i/mN of the order of 0.7 was obtained for
densities n ranging between 0.25 and 0.6 fm−3, depending on

the strength of 3N forces and isospin asymmetry. χEFT calcu-
lations [65] validate the qualitative findings of Refs. [64,73],
but predict that the minimum occurs at densities around nsat.
We also note that the extra momentum-dependent terms lift
the degeneracy that standard Skyrme interactions manifest for
σ = 2/3.

The behavior of NM at arbitrary values of n and δ is
commonly discussed in terms of NEPs. The first set of NEPs
corresponds to the coefficients in the Taylor expansion of
the energy per particle E/A = H/n = e/n in terms of the
deviation χ = (n − nδ

sat )/3nδ
sat from the saturation density nδ

sat,

E (n, δ)/A =
∑

i=0,1,2,...

1

i!
X δ; i

sat X i, (2.14)

with

X δ; i
sat = 3i

(
nδ

sat

)i
(

∂ i(e/n)

∂ni

)∣∣∣∣
n=nδ

sat

. (2.15)

The (approximate) isospin invariance of the nucleon-nucleon
interaction and the fact that SNM is more stable than isospin
asymmetric matter allow for an alternative Taylor expansion,
this time in terms of δ2 [74],

E (n, δ)/A = E0(n, 0) + δ2Esym; 2(n, 0) + δ4Esym; 4(n, 0)

+ · · · . (2.16)

Here E0(n, 0) corresponds to the saturation density of SNM
and Esym; k denote different order terms of the symmetry en-
ergy. Each of these can be further expanded in terms of the
deviation x = (n − n0

sat )/3n0
sat from the saturation density of

SNM,

E0(n, 0) =
∑

i=0,1,2,...

1

i!
X 0; i

sat xi, (2.17)

Esym; k (n, 0) =
∑

j=0,1,2,...

1

j!
X 0; j

sym; kx j, k = 2, 4, . . . , (2.18)

where X 0; j
sym; k = (∂ jEsym; k (n, 0)/∂x j )|n=n0

sat
.

For asymmetric NM, the lowest order term in δ2 in
Eq. (2.16), called the symmetry energy, and the per-nucleon
cost of converting SNM in PNM, called asymmetry energy,
are of major interest. Their expressions are

Esym; 2(n) = 1

2

∂2(e/n)

∂δ2

∣∣∣∣
n, δ=0

, (2.19)

and

Easym(n) = E (n, δ = 1)/A − E (n, δ = 0)/A, (2.20)

respectively.
The expressions of most frequently used NEPs are pro-

vided in Appendix A.

III. THE BAYESIAN SETUP

In this section, we discuss the various constraints imposed
on our EOS models and the procedure adopted to explore the
parameter space.
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TABLE I. Constraints imposed on EOS models. Esat and Ksat rep-
resent the energy per particle and compression modulus of symmetric
saturated matter with the density nsat ; Jsym = Esym; 2(nsat, 0) stays for
the symmetry energy at saturation; (E/A)i with i = 2, 3, 4 denote
the energy per particle of PNM at the densities of 0.08, 0.12, and
0.16 fm−3; mPNM

eff; n; i (mSNM
eff; N ; i) denotes the Landau effective mass of the

neutron (nucleon) in PNM (SNM) at the density ni; M∗
G represents the

maximum gravitational mass of a NS. For all quantities except M∗
G,

we provide the mean and its standard deviation; for M∗
G, we specify

the threshold values. mn and mN represent the neutron and nucleon
bare masses, respectively.

Quantity Units Value Std. deviation Ref.

nsat fm−3 0.16 0.004 a

Esat MeV −15.9 0.2 a

Ksat MeV 240 30 a

Jsym MeV 30.8 1.6 a

(E/A)2 MeV 9.212 0.226 b

(E/A)3 MeV 12.356 0.512 b

(E/A)4 MeV 15.877 0.872 b

mSNM
eff; N ; 2 mN 0.715 0.011 b

mSNM
eff; N ; 3 mN 0.667 0.012 b

mSNM
eff; N ; 4 mN 0.638 0.013 b

mPNM
eff; n; 2 mn 0.877 0.004 b

mPNM
eff; n; 3 mn 0.866 0.011 b

mPNM
eff; n; 4 mn 0.880 0.026 b

M∗
G M� >2.0 – c

aMargueron et al. [75];
bSomasundaram et al. [65];
cFonseca et al. [16].

A. Constraints

As in our previous works [57,62], our strategy is to employ
a minimum number of well-motivated constraints coming
from nuclear physics data, χEFT calculations of NM with
densities up to nsat and extreme isospin asymmetries and
astrophysical observations of NSs. As such, quantities not
yet constrained will span wide ranges, which is essential for
potential correlations to manifest.

The constraints from nuclear physics data correspond to
properties of NM close to saturation and are the following:
saturation density of SNM (nsat), energy per particle of sat-
urated SNM (Esat), compression modulus of saturated SNM
(Ksat), and the symmetry energy (Jsym) at nsat. Their values,
listed in Table I, are those calculated by Margueron et al. [75],
who considered a collection of 35 Skyrme interactions that are
frequently employed in the literature.

The density behavior of PNM is constrained by the χEFT
data from Ref. [65], where nucleon-nucleon (NN) interac-
tions computed at N3LO are supplemented by three nucleon
(3N) interactions computed at N2LO. All our runs account
for χEFT predictions for E/A in PNM, which are sufficient
for constraining the low-density behavior of the isovector
channel. Some of our runs also account for χEFT results
regarding the density behavior of mPNM

eff; n and mSNM
eff; N . The for-

mer is expected to further constrain the isovector channel,
while it remains to be seen whether the latter adds to stronger
constraints in the isoscalar sector or, on the contrary, reveals
tension with the values adopted for NM in the vicinity of

TABLE II. Synoptic view of constraints on (E/A)i, mSNM
eff; N ; i, and

mPNM
eff; n; i with i = 2, 3, 4 and Fermi velocity (vF ) whose implementa-

tion changes from one run to the others.

Run (E/A)i Correl. mSNM
eff; N ; i Correl. mPNM

eff; n; i Correl. vF ; n

0
√ √

– – – –
√

1
√

– – – – –
√

1∗ √
– – – – – –

2
√

–
√

–
√

–
√

3
√

–
√

–
√ √ √

(nsat, δ = 0). For all the quantities for which we use the
predictions of χEFT [65], constraints are imposed at three
densities n = 0.08, 0.12, 0.16 fm−3. The availability of the
results corresponding to six Hamiltonians in Ref. [65] makes
it possible to account for correlations among the values that
each of these quantities takes at different densities, which
strengthen the constraints [57]. For the means and standard
deviations (SDs) of (E/A)i, mPNM

eff; n; i, and mSNM
eff; N ; i, see Table I.

For the different manner in which these constraints are im-
plemented, see Table II. We mention that in addition to the
runs in Table II, we also considered the case analogous to run
3 but with correlations among mSNM

eff; N ; i instead of correlations
among mPNM

eff; n; i. As the results of this run were very similar
to the results of run 2, they are not included in the following
figures. Nevertheless, some comments will be offered in the
end of Sec. IV.

Two extra constraints are added to both SNM and PNM to
ensure that the models we generate are physical. Specifically,
we ask that in SNM and PNM (i) for densities n � 0.8 fm−3,
0 � meff, i/mN � 1 with i = n, p and (ii) unless otherwise
explicitly mentioned, for densities n � 0.8 fm−3 the neutron
Fermi velocity (vF ; n) does not exceed the speed of light. The
threshold density of 0.8 fm−3 was chosen somewhat arbitrar-
ily as a compromise between extending the validity domain
of the model and computational efficiency. It goes without
saying that for n > 0.8 fm−3, meff, i/mN , and/or vF ; n/c may
exceed 1, which implies that the EOS models we generate
behave well over a density domain narrower than the one
that is explored within the NSs built upon these models. To
better judge the implications of the condition on vF ; n, a case
where this constraint is disregarded is also considered. More
precisely, run 1∗ is a full analog of run 1 but without the
Fermi velocity constraint. Results obtained when replacing
the value of 0.8 fm−3 with the values of 0.5 and 1.0 fm−3 are
considered too, see Appendix C.

In addition, NS EOSs are required to be (i) stiff enough to
produce maximum NS masses in excess of 2M�, (ii) thermo-
dynamically stable (P > 0 and dP/dn � 0), and (iii) causal
up to a density equal to the central density of the maximum
mass configuration. The consequences of using a larger value
for the lower limit of the maximum gravitational mass (M∗

G �
2.2M�) have been investigated as well; the conclusions are
reported in the end of Secs. IV C 1 and IV C 2.

We note that usage of constraints similar to those imple-
mented in Paper I, where standard Skyrme interactions have
been employed, allows to reveal the model dependence of the
results. We are particularly interested in the role played by the
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extra momentum-dependent terms of the extended interaction,
on the one hand, and the condition on the Fermi velocity, on
the other hand. As a matter of fact, posterior distributions
of various sets of models built here will be systematically
confronted with some of the posteriors from Paper I. We
also note that a similar exercise, where results of standard
Skyrme interactions were confronted with those of an RMF
model with density-dependent couplings [62], has been done
in Paper I.

B. Likelihood

From the likelihood point of view, the quantities on which
we impose conditions can be classified into three categories:
uncorrelated, correlated, and threshold ones. In this paper,
NEPs are always considered as belonging to the first cate-
gory. Depending on whether correlations among the values
that (E/A)i, mPNM

eff; n; i, and mSNM
eff; N ; i take at different densities

are accounted for or not, these quantities enter the second
or the first category. Quantities whose values under specific
conditions are used in order to accept or reject models pro-
posed during the Monte Carlo exploration of the parameter
space enter into the third category. Examples for this case are
offered by the maximum NS mass, speed of sound, and Fermi
velocity. Effective masses in PNM and SNM enter into the
third category as well, but, depending on the run, they might
also enter into the first and/or the second categories.

The log-likelihood function of the run q can be decom-
posed into three parts,

logLq = logLq,uncorr. + logLq,corr. + logLq,thresh.. (3.1)

The log-likelihood function for the uncorrelated constraints
reads

logLq,uncorr. ∝ −χ2
q,uncorr. = −1

2

Nuncorr.
q∑
i=1

(
di − ξi(�)

Zi

)2

,

(3.2)

where Nuncorr.
q is the number of uncorrelated constraints, di and

Zi denote the constraint and its SD, and ξi(�) corresponds to
the value the model defined by the parameter set � provides
for the quantity i. For the meaning and values of di and Zi; see
Table I.

The log-likelihood function for correlated constraints reads

logLq,corr. ∝ −χ2
q,corr.

= −1

2

Ncorr.
q∑

j=1

N j∑
r=1

N j∑
s=1

(cov−1)( j)
rs δξ ( j)

r δξ ( j)
s , (3.3)

where Ncorr.
q represents the number of correlated constraints,

N j is the number of “states” among which the correlations are
accounted for, δξ denotes the difference between the value of
the constraint and the value provided by the model, and

covrs = 1

P − 1

P∑
k=1

ξk (nr )ξk (ns)

− 1

P − 1

P∑
k=1

ξk (nr )
1

P − 1

P∑
k=1

ξk (ns), (3.4)

is the covariance between the values of the quantity ξ com-
puted at densities nr and ns. The index k in Eq. (3.4) runs
over the number P of individual calculations and we have
taken into account the Bessel’s correction since the mean and
the covariance are determined from the same sample. For
χEFT calculations in Ref. [65], which we use here, P = 6.
As follows from Tables I and II, N j = 3 and Ncorr.

q = 1. The
normalization factors in Eqs. (3.2) and (3.3) are disregarded
because they are not relevant for sampling from the posterior
distributions (as long as they do not depend on the input
parameters, which they do not in our case).

The log-likelihood function for threshold constraints is

logLq,thresh. ∝ −χ2
q,thresh. =

{
0, condition satisfied
−1010, condition violated

(3.5)

Our primary method of Bayesian inference was affine in-
variant Markov-chain Monte Carlo (MCMC). For the details
of the implementation, employed software and analysis of
convergence, see Appendix B. For a general discussion on
how to treat constraints pertaining to physical quantities, see
Section 3.2 of Ref. [62]. For the motivation and details of the
implementation of correlations, see Supplemental Materials
of Ref. [65].

C. Priors

For the same technical reasons as in Paper I, we employ
“mixed” input parametrization. More precisely, instead of
using as input parameters the 13 parameters of the effective
interaction, we use three NEPs (nsat, Esat, and Jsym) and 8
parameters of the effective interaction (D3, Ceff , Deff , t4, t5,
σ , β, and γ ), while the values of x4 and x5 are fixed to zero.
The remaining parameters of the effective interaction, C3, C0,
and D0, are computed according to

C3 = 1

σnsat
σ+1

{
−Esat + h̄2

10m

(
3π2

2

)2/3

n2/3
sat −

(
3π2

2

)2/3

n5/3
sat

[
2

5
Ceff + 3t4

80
(3β + 2)nβ

sat + t5
40

(3γ + 2)(5 + 4x5)nγ
sat

]}
,

C0 = − 1

nsat

{(
3π2

2

)2/3
h̄2

5m
n2/3

sat + (σ + 1)C3nσ+1
sat +

(
3π2

2

)2/3

n5/3
sat

[
Ceff + 9t4

80

(
β + 5

3

)
nβ

sat + 3t5
80

(5 + 4x5)

(
γ + 5

3

)
nγ

sat

]}
,

D0 = Jsym − Jk

nsat
− D3nσ

sat +
(

3π2

2

)2/3

n2/3
sat

[
−

(
Ceff

3
+ Deff

)
+ 1

8
t4x4nβ

sat − 1

24
t5(5x5 + 4)nγ

sat

]
, (3.6)

with Jk = h̄2/6m(3π2/2)2/3n2/3
sat .
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TABLE III. Domains of the priors.

Parameter Units Min. Max.

nsat fm−3 0.14 0.18
Esat MeV −16.9 −14.9
Jsym MeV 22.8 38.8
D3 MeV fm3+3σ −3 000 3 000
Ceff MeV fm5 −500 2 000
Deff MeV fm5 −1 000 2 000
t4 MeV fm5+3β −8 000 3 000
t5 MeV fm5+3γ −4 000 4 000
β – 0.07 1.1
γ – 0.07 1.1
σ – 0.07 1.1

As can be seen from Eqs. (2.9), fixing the values of x4 and
x5 to zero does not affect the behavior of C̃eff and D̃eff provided
that the prior range for t4 and t5 is wide enough. In contrast,
some loss of generality occurs because Jsym and t4 become
independent of each other, see Eqs. (A7) and (A12).

The domain we consider for σ , 0.07 � σ � 1.1, is nar-
rower than the one considered in Paper I, 0.01 � σ � 1.1.
While this limitation significantly simplifies the sampling, it
has very limited impact on the posteriors, see Appendix B of
Paper I.

The domains of the priors are presented in Table III. For
the three NEPs, the input ranges are identical to those used
in Paper I; they cover 10 SDs symmetrically around the re-
spective mean value, cf. Table I. For D3, Ceff , Deff , t4, and
t5 the ranges were chosen by the trial and error procedure
to make the ranges as narrow as possible without (strongly)
cutting the posterior. Unlike the situation of standard Skyrme,
here the physical constraints on effective masses cannot be
cast directly into the constraints on Ceff and Deff as there are
additional density-dependent terms there, see Eqs. (2.9) and
(2.11). For β and γ we chose the same range as for σ .

We have employed uniform priors in the ranges provided
in Table III.

IV. RESULTS

Before discussing our results, we briefly mention the fitting
quality of our runs. For all runs expect run 3, the maximum a
posteriori value of χ2 is less than 1.0. For run 3 it is 3.2.

A. Nuclear matter

The role that each constraint plays on NM is diagnosed
following the modifications of conditional probability den-
sity corresponding to the energy per nucleon in SNM and
PNM; Easym [Eq. (2.20)]; and mSNM

eff; N and mPNM
eff; n [Eq. (2.11)],

as functions of number density, as previously done in
Paper I. Though, at variance with Paper I, here only the den-
sity dependence of Easym, mSNM

eff; N , and mPNM
eff; n will be illustrated.

The behavior of E/A(n) in SNM and PNM will be neverthe-
less commented in detail.

Results pertaining to various runs in Table II are illustrated
in Fig. 1 on subsequent rows. As in Paper I, the conditional

probability density plots of the posterior distributions are nor-
malized such that for any given density the total probability is
1.0. The color map is normalized accordingly, with the black
color corresponding to the maximum probability density at
each given n.

The largest dispersion in (E/A)SNM (not shown), (E/A)PNM

(not shown), Easym (right), mSNM
eff; N (left), and mPNM

eff; n (middle
column) are obtained for runs 1∗ and 1, which are the least
constrained runs.

Accounting for correlations among (E/A)i in PNM (run 0)
results in the suppression of models with extreme behaviors
of (E/A)PNM as a function of density, with more impact on the
stiffest models than on the softest ones. As a stiff behavior of
PNM relates to large values of (C̃eff + D̃eff ), by eliminating
stiff PNM models, some of the stiff SNM models, character-
ized by large values of C̃eff , are also eliminated. Indeed, the
95% quantile of (E/A)SNM and the median in run 0 become
less steep than in run 1; the 90% confidence interval (CI)
band gets narrower. As a result, the curves corresponding
to Easym(n) get concentrated in a narrower band; the 95%
quantile and median also move to lower values.

Upon imposing constraints on the Fermi velocity,
Eq. (2.13), the models with strong increase of E/A in both
PNM and SNM as a function of density are disfavored.
The situation is understandable given that (i) the upper limit
on vF translates into a lower limit on effective masses and
(ii) large values of (E/A)PNM [(E/A)SNM] require large values
of (C̃eff + D̃eff ) [C̃eff ] that, in turn, lead to low values of mPNM

eff; n

[mSNM
eff; N ]. Soft models of (E/A)SNM are disfavored as well.

The impact of vF ; n on Easym(n) is particularly strong, run 1
featuring a less pronounced increase with n than run 1∗.

The comparison with the results produced by standard
Skyrme interactions under similar constraints, i.e., run 1∗ here
vs run 1 in Paper I, allows one to see that (i) the increase of
(E/A)PNM with density is much stronger for extended Skyrme
than for standard Skyrme and (ii) the increase of (E/A)SNM

with density is slightly weaker for extended Skyrme than
for standard Skyrme. In all present runs, models providing
Easym increasing with density are dominant; this is in contrast
with the results in Paper I, where a significant fraction of the
models in each run allowed Easym to become negative at high
densities.

Left and middle columns in Fig. 1, where the behavior
of mSNM

eff; N and mPNM
eff; n as functions of density is investigated,

show that for run 1∗ the decrease of effective masses with
density is much stronger than for standard Skyrme, see Fig. 2
in Paper I, especially at low densities. This hints at a strong
increase of C̃eff (n) and D̃eff (n). The condition vF ; n/c � 1 pre-
vents meff from dropping too much. The increased flexibility
of the functional allows for a saturation in the decrease of
effective masses as functions of density. The figure shows
that, for densities in excess of 2 nsat, mSNM

eff; N increases with n;
this behavior is in qualitative agreement with the predictions
of microscopic models [64,65,73]. The behavior of mPNM

eff; n is
more spectacular in the sense that, at least for run 0, many
models manifest a second extremum, followed by a steep
decrease. For runs 0 and 1, where only constraints on (E/A)i

in PNM are implemented, the uncertainties bands are large for
both mSNM

eff; N and mPNM
eff; n .
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FIG. 1. Conditional probability density (also known as curve density) plots corresponding to the density dependence of the asymmetry
energy, Eq. (2.20), (right column), the nucleon effective mass in SNM (left column) and the neutron effective mass in PNM (middle column).
Results of various runs are illustrated on subsequent rows, as indicated in the left panels. Curve density is indicated by colors: dark red (light
yellow) corresponds to large (low) densities. Dotted and dashed dodger blue curves demonstrate the median and 90% CR, respectively. Solid
black curves mark the envelope of the bunch of models associated with each run. Light blue shadowed regions mark the uncertainty domains,
as computed in Ref. [65].

Implementation of constraints on mSNM
eff; N (mPNM

eff; n ) suppresses
models with either too large or too low values for this quan-
tity. The panel corresponding to run 1 in Fig. 1 shows, for
instance, that the number of models with large values of
mSNM

eff; N is smaller than the number of models with low values
of mSNM

eff; N . These models correspond to cases with extreme
values of C̃eff (C̃eff + D̃eff ), i.e., to models with the softest

or stiffest behavior of SNM (PNM). Upon their elimination,
the envelopes of (E/A)SNM(n) [(E/A)PNM(n)] and Easym(n)
shrink considerably. Accounting additionally for correlations
among the values that mPNM

eff; n; i takes at different densities (run
3) slightly favors models with stiffer increase of E/A(n) in
PNM and SNM, which results in an Easym envelope inter-
mediate between those of run 0 and run 2. For mSNM

eff; N , a
good agreement with the data from Ref. [65], which is used
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FIG. 2. Conditional probability density (also known as curve
density) plots corresponding to the density dependence of the speed
of sound squared (left column) and proton fraction (right column)
in NS matter. Results of various runs are illustrated on subsequent
rows, as indicated on the left panels. The color map shows the
curve density. Dotted and dashed dodger blue curves demonstrate
the median and 90% CR, respectively. Solid black curves mark the
envelope of the bunch of models associated with each run. The light
blue domains on the right panels correspond to the direct URCA
threshold, as predicted by our models; see text for details.

as constraints, is obtained up to n = 0.2 fm−3. In what re-
gards mPNM

eff; n , the situation is less good. For n � 0.1 fm−3, our
data fit the constraints from Ref. [65] well, while at higher
densities it undershoots the constraints. The explanation is
straightforward: for mSNM

eff; N , the target χEFT band has roughly

constant width, which means that all constraints contribute
more or less equally. For mPNM

eff; n , the width of the target band is
rapidly increasing with density, which results in low-density
(� 0.08 fm−3) constraints being significantly more important
than the high-density (0.16 fm−3) ones. Then, our data also
fail to provide mPNM

eff; n that, for densities exceeding ≈ nsat, in-
creases with density. Accounting for correlations among the
values that mPNM

eff; n; i takes at different densities further shrinks
the uncertainty bands for densities n � 0.5 fm−3. In the end,
we mention that the run in which correlations among the
values that mSNM

eff; N takes at different densities are taken into
account leads to a collection of models very similar to the one
in run 2.

B. Neutron stars matter

We now turn to investigate the role that each set of con-
straints plays on the NS EOS. NS EOSs are obtained by
smoothly matching the core and the crust EOSs. For the outer
and inner crusts we adopt the models by Haensel, Zdunik,
and Dobaczewski [76] and Negele and Vautherin [77], respec-
tively. The matching between crust and core EOSs is done at
a density of about nsat/2. We assume that the leptonic sector
consists of both electrons and muons.

Basic properties of NS EOSs are addressed in Fig. 2.
The left column depicts the density dependence of the speed
of sound squared (c2

s ), defined as c2
s /c2 = (dP/de)fr, where

the subscript “fr” indicates that the derivatives have to be
evaluated with the composition frozen. The composition of
β-equilibrated matter is considered in the right column in
terms of the proton fraction Yp = np/n. As before, each row
corresponds to one of the runs in Table II.

The models in the least constrained runs (run 1 and run 1∗)
show, as expected, the largest dispersion. The extra constraints
on effective masses reduce the dispersion of c2

s (n) curves over
the whole density range. Accounting for correlations between
the values that E/A in PNM takes at different densities slightly
reduces the dispersion. The narrowest uncertainty band at
90% CR corresponds to run 2; this is the situation where
Easym curves show the smallest dispersion. Runs 0 and 1
contain models that soften at densities n ∼ 4nsat, which makes
that the lower boundary of the envelopes decreases with the
density. The number of these models is nevertheless very
small because the curves corresponding to the 5% quantiles
still increase as functions of density. We also note that for
densities exceeding a certain (model-dependent) value, c2

s (n)
tends to saturate. The strongest effect is seen for soft models
in runs 0 and 1. None of the runs in Paper I presented this
behavior. Comparison between results of runs 1 and 1∗ allows
to judge the effect of the vF ; n constraint. It comes out that this
condition suppresses the models with the most extreme values
of c2

s .
The Easym increase with n, shown by most of the models,

see Fig. 1, makes that for a huge majority of EOS models, Yp

of β-equilibrated matter increases with the density. As such, at
variance with the results of Paper I, here only a small fraction
of models allow for NS cores made exclusively of neutrons.
The uncertainty bands of all runs are still large, indicating that
the isovector channel is not well constrained. The shadowed
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light blue bands mark the threshold of the direct URCA pro-
cesses, Yp; DU = 1/[1 + (1 + x1/3

e )3], with xe = ne/(ne + nμ).
It comes out that all runs accommodate models that allow for
this fast cooling process to operate as well as models where
this reaction is forbidden. The constraint on vF ; n suppresses
models with steep Yp(n) behavior.

C. Model dependence of the result

Here, we investigate further the way in which the vari-
ous sets of constraints modify the NM and NS EOSs. The
analysis is done by considering one-dimensional marginalized
posterior distributions of different quantities. Examined are
the following: parameters of NM; energy per particle in PNM
with densities between 0.04 and 0.16 fm−3; neutron (nucleon)
effective mass in PNM (SNM) with n = 0.16 fm−3; global
parameters of NSs.

1. Posterior distributions of NM parameters;
E/A in PNM and effective masses

Similarly to what was done in Paper I and for the same rea-
son of improving the efficiency of the sampling, the MCMC
exploration is performed by controlling nsat, Esat, and Jsym,
see Sec. III C. The first two quantities are allowed to take
values in a narrow domain, see Table I. As such, their posterior
distributions are confined and differ little from one run to
the others. Posterior distributions of Esat sit on the top of
the target distribution; with the exception of run 1∗, posterior
distributions of nsat are slightly shifted toward higher values.
The latter result suggests that the constraint imposed on nsat is
in some tension with some of the constraints that govern the
high density behavior, e.g., Ksat.

Posterior distributions of X i
sat with i = 2, 3, 4 differ from

one run to the others. The order of peaks’ positions of Ksat

distributions is opposite to the one of Zsat distributions and
similar to the one of Qsat distributions. This is due to a strong
and negative correlation between Ksat and Zsat and a loose
and positive correlation between Ksat and Qsat, which was
previously discussed in Refs. [57,60–62] and seems to be a
universal feature. Run 3 provides the narrowest distributions
of Ksat and Zsat. The narrowing of the Ksat distribution upon
accounting for correlations among mPNM

eff; n is the out-turn of
the coupling between the isovector and isoscalar sectors, see
Fig. 6. All the Ksat distributions miss the target distribution.
The narrowest distributions of Qsat are obtained for runs 0 and
2. The relative positions of Ksat and Zsat posteriors correspond-
ing to runs 1, 0, and 2 suggest that accounting for correlations
among the values that E/A in PNM takes at different densities
softens (stiffens) the EOS at densities slightly (a few times)
higher than nsat. X i

sat distributions are almost identical for runs
0 and 2, which means that the constraints imposed on the
density dependence of mSNM

eff; N and mPNM
eff; n have on the isoscalar

channel effects similar to those of accounting for correlations
among (E/A)i in PNM. Accounting for correlations among
the values that mPNM

eff; n takes at different densities shifts Ksat and
Qsat (Zsat) distributions to larger (lower) values. Posteriors of
run 3 are peaked at same values as posteriors of run 1 but are
narrower.

Posterior distributions of Jsym are almost identical for runs
0 and 1 and runs 2 and 3. For runs 2 and 3, the peak value
of Jsym fits the peak value of the target distribution. Posterior
distributions of X i

sym with i = 1, . . . , 4 are different from one
run to the others. The narrowest distributions of Lsym corre-
sponds to run 0; the narrowest distribution of Zsym corresponds
to run 3. These are the cases where the lowest (largest) peak
values are obtained for Lsym (Zsym), too. The fact that for
i = 1, . . . , 4 X i

sym distributions of run 0 are narrower than for
run 1 confirms that accounting for correlations among E/A in
PNM reduces the uncertainty band in the isovector channel.
The effects of accounting for correlations among mPNM

eff; n seem
to be more important for high order terms in the Taylor expan-
sion of the symmetry energy than for low order terms.

The target distribution of mSNM
eff; N at n = 0.16 fm−3 is met

only when the behavior of this quantity is explicitly con-
strained, i.e., in runs 2 and 3. The target distribution of mPNM

eff; n

at n = 0.16 fm−3 is never met, even if the posteriors of runs
2 and 3 are narrow and closer to the χEFT distribution than
the posteriors of runs 0 and 1. As it was the case of mPNM

eff; n (n)
shown in Fig. 1, this is the out-turn of the uncertainty band
in χEFT calculations [65] that widens with density such that
the constraints imposed at high densities are much less effi-
cient than those imposed at low densities. mSNM

eff; N distributions
of runs 0 and 1 are identical. This is a first indication that
the isovector and isoscalar channels are less coupled than in
Paper I. mPNM

eff; n distributions are different for runs 0 and 1 and
both are wide. When compared with equivalent distributions
corresponding to the standard Skyrme interactions, see Fig. 7
in Paper I, one notes that here effective masses are prevented
from taking small values. This is the outcome of the constraint
imposed on neutron Fermi velocity.

χEFT distributions of E/A in PNM with densities equal to
0.04, 0.08, and 0.16 fm−3 are best described by run 0, which
accounts for correlations among the values that this quantity
takes at different densities. Even if no constraint is posed at
n = 0.04 fm−3, it is at this density that the predictions of
run 0 agree best with those of χEFT [65]. We interpret this
situation as the consequence of the uncertainty range of the
E/A constraints, which widens with the density. In addition,
one can see that run 0 here matches χEFT results somewhat
better than run 0 in Paper I (green shaded area). The peak
value of (E/A)1 agrees with the peak value of the correspond-
ing χEFT distribution also in run 1, though the posterior is
much wider than the χEFT reference. Note that for run 1 in
Paper I (orange shaded area) the (E/A)1 distribution misses
the target distribution. The (E/A)4 distributions of runs 1
here and in Paper I are almost identical and narrower than
the corresponding distribution of the more constrained run
0. Along with distributions of other runs, they span values
higher than those of the χEFT distribution. Accounting for
extra constraints on mPNM

eff; n and mSNM
eff; N makes all the (E/A)i

distributions in Fig. 3 deviate even more from the χEFT
distributions. Together with the way in which the different
constraints modify the distributions of mSNM

eff; N and mPNM
eff; n , this

suggests that the flexibility introduced by the extra terms in
the Brussels functional is not enough to match the density
behavior of both E/A and meff in χEFT calculations.
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FIG. 3. Marginalized posteriors of NEPs; effective nucleon mass in SNM with density n = 0.16 fm−3; effective neutron mass in PNM
with density n = 0.16 fm−3 and energy per particle in PNM with densities n = 0.04, 0.08, and 0.16 fm−3. All runs are considered. When
available, target distributions for constrained parameters are also plotted. For comparison, marginalized posteriors corresponding to runs 0 and
1 in Paper I are illustrated as well (green and orange shaded areas, respectively). The y-axis ranges have been chosen to increase readability.
As such, some of the very narrow distributions are cut.

All X i
sat, X i

sym, mPNM
eff; n; i, mSNM

eff; N ; i, and (E/A)i distributions
are monomodal. This situation is at variance with the one
obtained in Paper I, where many of these quantities, e.g.,
Ksat, Qsat, Zsat, Ksym, Qsym, Zsym, (E/A)1, and mPNM

eff; N , show
bimodal distributions. In the case of the standard Skyrme
interactions, the bimodality arises because the energy den-
sity functional becomes degenerate at σ = 2/3. The extra
momentum-dependent terms in extended interactions lift the
σ -related degeneracy and, thus, suppress the bimodality.
Shaded areas in Fig. 3, that correspond to runs 0 and 1 in
Paper I, show that NEP distributions in this paper are, in most
cases, narrower than those in Paper I. Considering that the
interactions used here have more parameters than the interac-
tions in Paper I, we attribute the better constraints of EOSs
in this paper to the extra constraint on Fermi velocity. Further
evidence in this sense is given by posteriors of run 1∗.

When the constraint on the Fermi velocity [66] is removed,
a larger portion of the parameter space becomes available.
This translates into a larger variety of models and, thus,

broader distributions of NEPs. The modification of the Ksat,
Qsat, and Zsat posteriors with respect to run 1 is rather limited,
which means that the isoscalar channel is not strongly limited
by vF constraints. The modification of X i

sym with i = 0, . . . , 4
are more important and increase with the order in the ex-
pansion. For the first time, the target distribution of Jsym is
described satisfactorily but this might be a coincidence. The
fair agreement between Lsym distributions in this run and run
1 in Paper I might be fortuitous, too. The fact that the Qsym and
Zsym distributions are wider than those of run 1 in Paper I is the
consequence of a larger number of parameters in the effective
interaction parametrization. The fair agreement between the
(E/A)1 distributions in run 1∗ here and run 1 in Paper I could
be the out-turn of the fair agreement of Lsym and Ksym distri-
butions. We remind that none of these runs posed constraints
on the distribution of (E/A)1. For the first time, the (E/A)2

distribution perfectly fits the target distribution. The same
holds for run 1 in Paper I. The (E/A)4 distribution resembles
the distributions in runs 0 and 1. This result is in line with
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FIG. 4. Marginalized posteriors of selected properties of NSs. Considered are: maximum gravitational mass (M∗
G); the central density

corresponding to the most massive configuration (n∗
c ); speed of sound squared (c∗2

s ), energy density (ρ∗
c ) and pressure (P∗

c ) at n∗
c ; radii (R1.4,

R2.0) and tidal deformabilities (�1.4, �2.0) of NSs with masses equal to 1.4M� and 2.0M�; the lowest mass of a NS that accommodates for direct
URCA (MDU). The vertical dotted-dashed and dashed lines on the R1.4 and R2.0 plots illustrate the median and the lower and upper bounds (at
68% confidence), respectively, of the R = 12.45 ± 0.65 km and R = 12.35 ± 0.75 km constraints from Ref. [28]. The vertical dotted-dashed
and dashed lines on the �1.4 plot illustrate the median and the upper bound (at 90% confidence), respectively, of the 190+390

−120 constraint
from Ref. [24]. For MDU the value “−1” corresponds to the models that do not allow this process to operate in stable NSs. For comparison,
marginalized posteriors corresponding to runs 0 and 1 of Paper I are illustrated as well (green and orange shaded areas, respectively). The
y-axis ranges have been chosen to increase readability.

those corresponding to X i
sat. Distributions of mPNM

eff; n and mSNM
eff; N

are wide and peaked at very low values, i.e., ∼0.2mN ; this
are the situations where the largest discrepancies are obtained
with respect to the other runs here and in Paper I.

In the end, we mention that the posteriors of a run similar
to run 1 but with a larger value for the lower bound of the
maximum gravitational mass (M∗

G � 2.2M�) (not shown) in-
dicate a slightly stiffer behavior in both isovector and isoscalar
channels. More precisely, posteriors of Ksat, Qsat, and Ksym

become narrower and are centered at slightly higher values;
the posterior of Zsat is narrower and shifted at slightly lower
values; other distributions are marginally affected. This be-
havior is similar to the one shown by RMF models, see Fig. 6
in Ref. [62].

Medians and 68% CI of marginalized posterior distribu-
tions of key NM quantities, including those plotted in Fig. 3,
are provided in Table IV in Appendix D.

2. Posterior distributions of global NS parameters

Equilibrium configurations of static and spherically sym-
metric NSs are obtained by solving the Tolman-Oppenheimer-
Volkoff equations. Tidal deformabilities are computed follow-
ing Refs. [78,79].

Posterior distributions of a number of commonly consid-
ered global parameters of NS are illustrated in Fig. 4. Posterior

distributions for runs 0 and 1 in Paper I are depicted for com-
parison. The 68% CI combined constraints [28] on the radii of
1.4M� and 2.0M� NSs are also shown on the corresponding
panels. Constraints from GW170817 at 90% CI, as obtained
in Ref. [24], are illustrated on the plot corresponding to the
tidal deformability of a 1.4M� NS.

Posterior distributions of the maximum gravitational mass
(M∗

G) are asymmetric and peaked at values in excess of 2.0M�.
In contrast, M∗

G distributions corresponding to runs 0 and 1 in
Paper I peak at 2.0M�, i.e., at the lower limit of the allowed
maximum NS mass. Posterior distributions of the speed of
sound squared at a density equal to the density of the maxi-
mum mass configuration (c∗2

s ) lean on the maximum accepted
value, c2. The c∗2

s distribution corresponding to run 0 of Paper
I peaks at ∼0.9c2, while the one corresponding to run 1 is
intermediate between distribution of run 0 of Paper I and those
obtained here. When the constraint on vF ; n is accounted for,
the widest (narrowest) distributions of M∗

G and c∗2
s correspond

to run 1 (2).
The explanation for the “dip” in the M∗

G distribution, which
“shifts” the position of the peak, is that a significant number
of models with the maximum mass close to the threshold
value did not pass the criterion of having c∗2

s /c2 � 1 and, thus,
have been suppressed. M∗

G distributions of runs 0 and 1 in
Paper I manifest no “dip” and the respective c∗2

s /c2 posteriors
are peaked at values lower than c2. The posteriors of other
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FIG. 5. Two-dimensional marginalized posteriors of some of the NM parameters. The color map indicates the probability density. The
light cyan solid and the black dashed contours show 50% and 90% CR, respectively. The results correspond to run 0 in Table II.

quantities considered in Fig. 4, e.g., n∗
c , ρ∗

c , R1.4, R2.0, and
�1.4, help to understand the reason of the discrepancy between
present results and those in Paper I. Posteriors of n∗

c and ρ∗
c for

run 0 in Paper I are concentrated in ranges that correspond to
the highest values covered by the posteriors of the runs built
here, which suggests that the EOSs in the run 0 in Paper I
are softer than most of the EOS models we built here. This
conclusion agrees with what the values of M∗

G in run 0 in
Paper I, which are only slightly larger than 2M�, and a c∗2

s /c2

distribution peaked at 0.9–0.95 convey. Posteriors of n∗
c and

ρ∗
c for run 1 in Paper I are broad and bimodal, which suggests

that there a bunch of soft models coexists with a bunch of
stiff models. The bunch of soft (stiff) models leads to M∗

G
values slightly (significantly) larger than the threshold value;
low (large) values of R1.4, R2.0, �1.4, and �2.0.

The EOS models in runs 0, 2 and 3 have a tendency to be
softer (stiffer) than most of the models corresponding to run
1 (0) in Paper I; the models in runs 1 and 1∗ are stiffer than
those in run 0 in Paper I. The predictions of runs 0, 2 and 3
are relatively similar. Run 1, which is the least constrained,
shows a wider range of behaviors. The EOSs’ softness leads
to R1.4 and R2.0 distributions that sit partially outside of the
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FIG. 6. The same as in Fig. 5 but for run 3 in Table II.

domains of Ref. [28], which have been extracted based on a
combination of pulsar timing data, x-ray data from NICER
and XMM-Newton, GW data on tidal deformabilities and
three theoretical frameworks of schematic EOS modeling. The
disagreement with the data in Ref. [28] is more important for
R2.0 than for R1.4. At variance with this, posteriors of �1.4 for
all runs except run 1∗ cover a domain delimited by the median
and the upper boundary (at 90% CI) from Ref. [24].

When the very stringent constraint of the Fermi velocity
[66] is relaxed, the characteristics of EOS models change
drastically. All posteriors become wide. The EOS models
become stiffer than when this constraint is imposed, which

explains why many models provide for M∗
G values that exceed

the threshold value by much. EOS’s stiffness also implies
that distributions of n∗

c , ρ∗
c and P∗

c span values lower than
those in the other runs. The positions of the peaks of the
n∗

c and ρ∗
c posteriors roughly coincide with the positions of

the low-density mode of the run 1 in Paper I. The fact that
EOS models in run 1∗ are nevertheless different than those
that make the “stiff bunch” of run 1 in Paper I is indicated
by the P∗

c posterior, which does extend far beyond the range
covered by the “stiff bunch” of run 1 in Paper I. In what
regards R1.4 and R2.0, we note that the peaks are situated
close to the median values from Ref. [28]. The peak of �1.4
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FIG. 7. Two-dimensional marginalized posterior distributions for selected NM and NS parameters for which correlations have been
previously obtained for run 1 in Ref. [57]. The color map indicates the probability density. The light cyan solid and the black dashed contours
demonstrate 50% and 90% CR, respectively. Results correspond to run 0 in Table II.

distribution is located somewhat below the 90% upper bound
from Ref. [24] with ≈40% of the posterior lying beyond this
upper bound.

Figure 4 also shows that all runs accommodate models
that allow the direct URCA process to operate along with
models where these reactions are forbidden. The percentages
of models where the direct URCA acts in stable stars [stars
with mass larger than 1.8M�] are as follows: 98.7 [75.9], 88.9
[51.9], 93.8 [15.1], 93.2 [79.4], and 69.6 [64.9] for run 0, 1,
1∗, 2, and 3, respectively.

While there is no doubt that each constraint leaves imprints
on every global parameter of NSs, the bunch of runs in this
paper shows that the constraint on the Fermi velocity [66] is
by far the strongest constraint.

Medians and 68% CI of marginalized posterior distribu-
tions of key NS quantities, including those plotted in Fig. 4,
are provided in Table IV in Appendix D.

The posteriors of the run similar to run 1 but with a
larger value for the lower bound of the maximum gravitational
mass (M∗

G � 2.2M�) (not shown) confirm that NSs’ EOSs get
stiffer. This behavior is consistent with the behavior of RMF
models, see Fig. 6 in Ref. [62].

In the end, we mention that for all the “output” quantities
plotted on Figs. 1 to 4 the posteriors of the run analogous to
run 3 but with correlations between mSNM

eff; N ; i instead of mPNM
eff; n; i

are very close to the posteriors of run 2. However, the posteri-

ors of the parameters of the effective interactions (not included
here) are different from those of run 2. We explain the lack
of effect of accounting for correlations among mSNM

eff; N ; i by the
good constraint posed by individual values of mSNM

eff; N ; i, in its
turn, due to both narrow uncertainty band of χEFT data [65]
and nearly constant width. The fact that different posteriors
of the parameters of the effective interactions lead to almost
identical “output” quantities illustrates inherent degeneracies
of the energy density functional.

3. Correlations between NEPs, mPNM
eff; n and mSNM

eff; N

Correlations between NEPs, mPNM
eff; n and mSNM

eff; N correspond-
ing to runs 0 and 3 in Table II, are illustrated in Figs. 5 and 6,
respectively.

The only relatively strong correlations present in Fig. 5
are Ksat − Zsat (negative), Jsym − Lsym (positive) and mPNM

eff; n −
mSNM

eff; N (positive). When compared with Fig. 9 in Paper I that
corresponds to run 0 in that paper, which is the equivalent
of run 0 here, the situation is surprising. None of the strong
cross channel correlations present in Fig. 9 in Paper I, e.g.,
Xsat − Ysym with X,Y = K, Z, Q, manifest here. Then, the
Qsat − Zsat and Qsym − Zsym correlations, which were very
strong in Fig. 9 in Paper I, barely manifest here. All the cor-
relations in Paper I that are lost when extra density-dependent
terms are included into the functional of the effective
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FIG. 8. The same as in Fig. 7 but for run 3 in Table II.

interaction are the spurious effect of the limited flexibility
allowed by the standard Skyrme interaction.

When, instead of accounting for correlations between the
values that E/A in PNM takes at different densities, one
accounts for the correlations between the values that mPNM

eff; n
takes at different densities, the correlation “picture” sits in
between the one showed by run 0 here and the one showed
by run 0 in Paper I. Indeed, the correlations present in Fig. 6
are as follows: Xsat − Ysat with X,Y = K, Q, Z , Xsym − Ysym

with X,Y = L, K, Q, Xsat − Ysym with X = K, Q, Z and Y =
L, K, Q. We also notice that the correlation mPNM

eff; n − mSNM
eff; N

present in Fig. 5 does not manifest in Fig. 6 and that the sign
of the Ksym − Qsym correlation in run 3 here is opposite to the
one in run 0 here and in Paper I.

The correlation patterns of the run analogous to run 3
but with correlations between mSNM

eff; N ; i instead of mPNM
eff; n; i (not

shown) are qualitatively similar to those in Fig. 6.
The obvious conclusion of this investigation is that cor-

relations among parameters of NM are very sensitive to the
structure of the functional and the way in which the con-
straints are imposed.

4. Correlations between parameters of NM and NS

Correlations between selected NM and NS parameters cor-
responding to runs 0 and 3 in Table II are illustrated in Figs. 7
and 8, respectively. Considered are the combinations of quan-
tities for which correlations have previously been obtained in
Paper I.

Similarly to what we have noticed with respect to Figs. 5
and 6, the augmented flexibility of extended Skyrme interac-
tions washes out many of the correlations. The effect is much
stronger for run 0 than for run 3. Only the correlations Lsym −
R1.4, Ksym − P∗

c , and Ksym − MDU manifest in Fig. 5 and all
of them are weaker than those that manifest in Fig. 11 of
Paper I. When, in exchange of accounting for correlations be-
tween (E/A)i in PNM, one accounts for correlations between
mPNM

eff; n; i in PNM, the correlations Lsym − R1.4 and Ksym − P∗
c

get stronger, the correlation Ksym − MDU disappears and a
loose correlation manifest between Lsym and R2.0.

It comes out that, as it was the case with the correlations
among parameters of NM, the correlations between parame-
ters of NM and NSs are very sensitive to the structure of the
functional and the way in which the constraints are imposed.
It is, thus, clear that in order for any correlation to be phys-
ical it has to manifest in any model in which the considered
quantities are allowed to explore ranges that are wide enough.

V. CONCLUSIONS

In this work, we have performed a full Bayesian investi-
gation of the dense matter EOS built upon the nonrelativistic
mean-field model of nuclear matter with Brussels extended
Skyrme interactions. Knowledge from nuclear structure ex-
periments was implemented via constraints on the values of
the four best known NEPs, i.e., nsat, Esat, Ksat, and Jsym.
Knowledge from ab initio theoretical calculations of nuclear
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matter was incorporated via the density behavior of E/A and
mPNM

eff; n in PNM and the density behavior of mSNM
eff; N in SNM, re-

spectively, as computed in Ref. [65] based on χEFT with NN
interactions computed at N3LO and 3N interactions computed
at N2LO. The behavior of neutron rich matter with densities
in excess of several times nsat was controlled by requiring that
all EOS models comply with the 2M� constraint on the lower
bound of the maximum NS gravitational mass. NS EOSs were
also required to be thermodynamically stable, i.e., P > 0 and
dP/dn � 0, and causal up to the density corresponding to the
central density of the maximum mass configuration.

In addition to these, we implemented a condition that is
mandatory for Skyrme models to be physical, but brought into
attention only recently by Duan and Urban [66]. It consists in
requiring that the Fermi velocity of nucleons in dense matter is
inferior to the speed of light, which translates into a condition
on the minimum value of the Landau effective masses. Our
calculations show that this condition drastically changes the
properties of NM and NSs. The density dependence of the
Landau effective masses acquires a behavior that, up to the
densities of the order of 2nsat − 3nsat, qualitatively reproduces
the one predicted by ab initio calculations [64,65,73]. NS
models show lower values of NS radii and tidal deforma-
bilities and larger values of n∗

c , ρ∗
c , P∗

c . Moreover, extreme
values of maximum NS gravitational masses (�2.3M�) are
disfavored. We note that increasing the value of the density up
to which the condition vF ; n < c is enforced does not guarantee
that the NS EOS is physical over the whole density range
spanned in massive NSs, which can be seen as a failure of
nonrelativistic models at densities in excess of 2nsat − 3nsat.

Families of EOS models have been built for various sets of
constraints. In addition to accounting for correlations among
the values that E/A in PNM takes at different densities,
previously discussed in Paper I, here we have also considered
the modifications brought by accounting for the correlations
among the values that mPNM

eff; n (mSNM
eff; N ) in PNM (SNM) takes

at different densities. The behavior of NM under different
sets of constraints was analyzed considering the behaviors of
E/A and effective masses as functions of density in PNM and
SNM as well as the density dependence of Easym. As is easy
to foresee, any extra condition on mSNM

eff; N and/or mPNM
eff; n helps

to narrow down the uncertainty band of the EOS, especially
at low densities. NS EOSs were investigated considering the
density dependence of the speed of sound squared and Yp.
The model dependence of the results; the role of individual
constraints; the effects of extra momentum-dependent terms
were judged upon by confronting the posterior distributions of
various NM and NS quantities. For all the runs built here, the
distributions of n∗

c extend up to densities exceeding 1.2 fm−3,
which are supposedly beyond the validity limit of the model.
Strong core compression, typical to “soft” models, is reflected
also in relatively low values of R1.4, �1.4, and R2.0. Similarly
to the case of standard Skyrme, all of the runs here contain
models that allow for direct URCA to operate in stable stars.

It is particularly interesting to notice that, under identical
constraints, some of the predictions of Brussels extended in-
teractions differ from those of standard Skyrme interactions
[57]: (i) the overwhelming majority of Brussels interactions
favor an (a)symmetry energy that increases with density,

which translates into a Yp of β-equilibrated matter also in-
creasing with density; (ii) stiffer NS EOS; (iii) much lower
values of mSNM

eff; N and mPNM
eff; n at 0.16 fm−3; and (iv) different

distributions of Qsat, Ksym, Qsym, and Zsym. The last feature
suggests that domains of values extracted by studying the
behavior of either of these interactions should not a priori be
imposed to the other.

The augmented flexibility of the Brussels-Skyrme effective
interactions with respect to the standard Skyrme ones
drastically changes the patterns of correlations among NM
parameters or among parameters of NM and NSs. The
strong cross channel correlations that appear in Paper I upon
accounting for correlations between (E/A)i in PNM do not
manifest in the case of Brussels interactions. In exchange,
the isovector and isoscalar channels appear to get coupled
when correlations between mPNM

eff; n; i are accounted for. We also
note that the sign of the Ksym−Qsym correlation for run 3 here
is opposite to the one previously seen for run 0 in Paper I.
The situation of correlations among parameters of NM and
NSs is qualitatively similar. With the exception of Lsym−R1.4,
Ksym−P∗

c , and MDU−Ksym, none of the correlations present
in run 0 in Paper I manifest in run 0 here. Switching
from accounting for correlations between (E/A)i in PNM
to accounting for correlations between mPNM

eff; n; i helps the
correlations cited above to get stronger and new correlations,
e.g., Lsym−n∗

c and Lsym−R2.0, to manifest.
The present paper is the follow-up of Paper I; the two

papers aim to explore the capabilities of the nonrelativistic
mean-field model with Skyrme interactions to describe NS
matter. Together with Refs. [60–62], Paper I and the present
paper contribute to a wider investigation of the high-density
behavior of phenomenological mean-field models with
nucleonic degrees of freedom. Contrary to other Bayesian
studies in the literature that also use mean-field models, e.g.,
Refs. [56,58,59,63], we have employed a minimum set of
constraints and favored constraints from nuclear physics.
The obvious drawback of not implementing constraints from
measurements of NSs’ radii and tidal deformabilities resides
in a loose constraint of the intermediate-density domain of
the EOS.

In Ref. [80] we provide the posterior distributions of the
input parameters for all the effective interactions that make
our five main runs.
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APPENDIX A: NUCLEAR EMPIRICAL PARAMETERS

We provide here analytic expressions for low order NEPs.
A hybrid set of parameters mixing the C0, D0, C3, D3, Ceff ,
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FIG. 9. The same as Fig. 3 but for runs 1, 1a, and 1b. See Appendix C for details.

and Deff parameters, introduced in the standard Skyrme in-
teractions in order to reduce the dimension of the parameter
space relevant for the description of NM [70], with the t4,
x4, t5, and x5 parameters of the extra terms along with σ ,
β, and γ exponents that regulate the density dependence of
the momentum-dependent terms is employed. There are two
arguments in favor of this choice. The first relates to the
conciseness. More precisely, for each NEP, the expression
corresponding to Brussels interactions X BSk will be presented
as a sum between a term entering the standard Skyrme in-
teractions X Sk, provided in Paper I, and extra terms specific
to the extended interactions. The second argument pertains
to the way in which the parameter space exploration is done
numerically, see Sec. III. For equivalent expressions in terms
of the most commonly used ti, xi with i = 0, . . . , 4 and σ , β,
and γ coefficients, see Ref. [81].

The saturation energy of NM with isospin asymmetry δ is
written as follows:

EBSk
sat (δ) = ESk

sat (δ) + T4 + T5. (A1)

The corresponding expressions for incompressibility
Ksat (δ) = X δ; 2

sat , skewness Qsat (δ) = X δ; 3
sat , and kurtosis

Zsat (δ) = X δ; 4
sat are as follows:

KBSk
sat (δ) = KSk

sat (δ) + (5 + 3β )(8 + 3β )T4

+ (5 + 3γ )(8 + 3γ )T5, (A2)

QBSk
sat (δ) = QSk

sat (δ) + (2 + 3β )(5 + 3β )(3β − 1)T4

+ (2 + 3γ )(5 + 3γ )(3γ − 1)T5, (A3)

ZBSk
sat (δ) = ZSk

sat (δ) + (3β − 4)(2 + 3β )(5 + 3β )(3β − 1)T4

+ (3γ − 4)(2 + 3γ )(5 + 3γ )(3γ − 1)T5. (A4)

In the above expressions we made use of τi(T = 0) =
π4/3(3ni )5/3/5 and have introduced the notations:

T4 = 3

40

(
3π2

2

)2/3(
nδ

sat

)5/3+β

×
[

t4(x4 + 2)G5/3(δ) − t4

(
x4 + 1

2

)
G8/3(δ)

]
, (A5)

T5 = 3

40

(
3π2

2

)2/3(
nδ

sat

)5/3+γ

×
[

t5(x5 + 2)G5/3(δ) + t5

(
x5 + 1

2

)
G8/3(δ)

]
, (A6)
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FIG. 10. The same as Fig. 4 but for runs 1, 1∗, 1a, and 1b. Comparison with run 1 of Paper I (orange shaded area) and with run 4 of
Ref. [62] (gray shaded area) are also presented. The y-axis ranges have been chosen to increase readability. See Appendix C for details.

and Gα (δ) = [(1 − δ)α + (1 + δ)α]/2.
The symmetry energy can be computed as

EBSk
sym; 2 = ESk

sym; 2 + T4 + T5, (A7)

while its slope Lsym, curvature Ksym, skewness Qsym, and kur-
tosis Zsym write

LBSk
sym = LSk

sym + (5 + 3β )T4 + (5 + 3γ )T5, (A8)

KBSk
sym = KSk

sym+ (5+ 3β )(2 + 3β )T4+ (5 + 3γ )(2 + 3γ )T5,

(A9)

QBSk
sym = QSk

sym + (5 + 3β )(2 + 3β )(3β − 1)T4

+ (5 + 3γ )(2 + 3γ )(3γ − 1)T5, (A10)

ZBSk
sym = ZSk

sym + (5 + 3β )(2 + 3β )(3β − 1)(3β − 4)T4

+ (5 + 3γ )(2 + 3γ )(3γ − 1)(3γ − 4)T5. (A11)

In the above expressions we have introduced

T4 = −1

8

(
3π2

2

)2/3

t4x4n5/3+β, (A12)

T5 = 1

24

(
3π2

2

)2/3

t5(5x5 + 4)n5/3+γ . (A13)

Notice that in Eqs. (A8)–(A11) the “0” superscript has been
dropped off for convenience. The same convention is used
throughout this paper.

APPENDIX B: MCMC IMPLEMENTATION DETAILS

The general approach to the MCMC setup and its imple-
mentation here follows closely those described in Appendix B
of Paper I. However, the higher dimensionality of the

parameter space and the additional constraints on neutron
Fermi velocity make the inference even more difficult.

We have employed EMCEE (v.3.1.4) Python package
[82–84] as an implementation of the affine invariant MCMC
[85] and as our main Bayesian inference tool. In all calcula-
tions we have used kernel density estimate steps and 1 000
walkers. For the details of the two-stage inference procedure,
autocorrelation length analysis and bootstrap analysis of the
stability of the posteriors, see Appendix B of Paper I. Here,
we focus on what is different compared to Paper I.

First, due to the much higher computational cost of
Bayesian inference for extended Skyrme, we had to thin the
original chains less. If previously they were thinned up to
the “thinned” autocorrelation length τth = 1.0 − 1.2, here we
only thinned the chains up to τth = 1.2 − 2.1, thus reducing
the number of independent samples in the posterior to �48%
of the number of samples (in the worst case).

Second, for run 0 the autocorrelation length estimate was
unreliable due to some of the walkers getting stuck for a
large number of chain steps. Thus, for this run we decided
to switch to PTEMCEE sampler (v.1.0.0) [82,86,87] with tem-
pered chains. Specifically, we employed five chains with the
maximum temperature T = 512 and autoadjusting tempera-
tures for intermediate chains. The latter aimed to equalize
the interchain swap probabilities, which were ≈30%. We
made sure that even the highest temperature chain cannot
“break through” the physical constraints on Fermi veloc-
ity and thermodynamic stability. With tempered chains the
autocorrelation length is no longer an issue as each chain
swap almost entirely erases all intrachain correlations; in
other words, τ does not exceed the number of steps between
two consecutive chain swaps. Nevertheless, even the highest
temperature chain had low acceptance fraction (≈15%) and
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advanced slowly, so we still had to thin the chains to com-
pensate for this. With autocorrelation length no longer being a
viable diagnostics, we used bootstrap analysis and the fraction
of repetitions in the main chain as our diagnostic tools and
to determine the necessary thinning factor. In particular, we
thinned the chains until the fraction of repeated samples in the
main chain dropped below � 10−4.

In the same manner as in Paper I, to additionally ver-
ify the correctness of the results, the posterior for the most
numerically problematic run (run 0) was calculated inde-
pendently by means of a nested sampling [88,89] algorithm
MLFriends [90,91], implemented in the Python package UL-
TRANEST (v.3.6.4) [92,93]. We had to introduce minor custom
adjustments to the algorithm responsible for the choice of
initial positions of the live points. This was necessary to
deal with likelihood plateaus occurring in the very beginning
of the sampling as ULTRANEST default algorithm was inef-
ficient for our problem. No other modifications were done.
After ≈1.1 × 1010 likelihood evaluations we ended up with

≈ 69 000 effective samples of the posterior (we employed
inefficient, but robust region sampling). We have computed
the values of 10%, 50%, and 90% quantiles and compared
ULTRANEST results against PTEMCEE results. The maximum
difference between the corresponding values did not exceed
6% and typical differences were less than 1%. Moreover, the
maximum difference corresponded to a case where a quantile
value was close to zero. Plotted on a figure, the histograms
were very close.

Thus, we have confirmed that despite above-mentioned
difficulties our results are reliable.

APPENDIX C: FERMI VELOCITY AND EFFECTIVE
MASS CONSTRAINTS

Here, we investigate the sensitivity of our results to the
density up to which the constraints on the Fermi velocity
and effective masses are imposed (hereafter, limiting density).
To this end, two runs equivalent to run 1 but with these

TABLE IV. Median and 68% CI of marginalized posterior distributions corresponding to key properties of NM and NSs. Reported data
correspond to runs 0, 1, 1∗, 2, and 3. For the significance of each entry, see the text. The median values and the values of the CI are rounded to
3 and 2 significant digits, respectively; all trailing zeros after the decimal point are removed.

Run 0 Run 1 Run 1∗ Run 2 Run 3

Par. Units Med. 68% CI Med. 68% CI Med. 68% CI Med. 68% CI Med. 68% CI

nsat fm−3 0.16 +0.0038
−0.0038 0.161 +0.0038

−0.0038 0.16 +0.0039
−0.0039 0.161 +0.0038

−0.0038 0.161 +0.0038
−0.0038

Esat MeV −15.9 +0.2
−0.2 −15.9 +0.2

−0.2 −15.9 +0.2
−0.2 −15.9 +0.2

−0.2 −15.9 +0.2
−0.2

Ksat MeV 235 +12
−12 255 +18

−18 263 +23
−21 236 +14

−13 256 +10
−10

Qsat MeV −434 +32
−40 −383 +61

−55 −364 +84
−72 −415 +36

−31 −388 +47
−48

Zsat MeV 1760 +280
−290 1250 +460

−440 1050 +520
−520 1710 +290

−340 1210 +270
−240

Jsym MeV 29.8 +0.96
−0.93 29.9 +0.98

−0.91 30.1 +1.3
−1.4 30.9 +0.7

−0.69 31.2 +0.69
−0.69

Lsym MeV 40.7 +5
−4.9 46.5 +7.1

−7 53.9 +11
−10 49.8 +5.7

−5.7 52.7 +5.6
−6.2

Ksym MeV −146 +18
−18 −122 +33

−28 −29.5 +110
−77 −131 +15

−16 −135 +17
−20

Qsym MeV 629 +86
−69 590 +120

−120 722 +360
−220 507 +57

−67 435 +65
−69

Zsym MeV −2460 +380
−320 −2420 +480

−430 −3440 +890
−1200 −2170 +270

−260 −1780 +170
−160

mSNM
eff; N mN 0.532 +0.092

−0.063 0.539 +0.096
−0.061 0.265 +0.13

−0.077 0.634 +0.0086
−0.0089 0.626 +0.0083

−0.0083

(E/A)1 MeV 6.22 +0.06
−0.06 6.22 +0.25

−0.25 6.89 +0.64
−0.52 5.87 +0.2

−0.21 5.92 +0.17
−0.18

(E/A)2 MeV 9.32 +0.2
−0.2 9.14 +0.22

−0.21 9.23 +0.22
−0.22 9.02 +0.2

−0.2 8.99 +0.2
−0.2

(E/A)3 MeV 12.6 +0.45
−0.44 12.4 +0.28

−0.28 12.1 +0.35
−0.36 12.6 +0.27

−0.27 12.6 +0.27
−0.27

(E/A)4 MeV 16.4 +0.77
−0.75 16.5 +0.64

−0.64 16.4 +0.7
−0.7 16.8 +0.58

−0.58 17 +0.56
−0.57

mPNM
eff; n mn 0.848 +0.079

−0.076 0.892 +0.062
−0.079 0.248 +0.19

−0.087 0.852 +0.011
−0.011 0.823 +0.0071

−0.007

M∗
G M� 2.11 +0.048

−0.034 2.13 +0.086
−0.059 2.18 +0.12

−0.1 2.08 +0.039
−0.023 2.09 +0.046

−0.029

c∗2
s c2 0.928 +0.051

−0.089 0.885 +0.083
−0.17 0.789 +0.15

−0.21 0.969 +0.023
−0.041 0.945 +0.038

−0.057

n∗
c fm−3 1.15 +0.041

−0.042 1.1 +0.059
−0.07 0.991 +0.086

−0.073 1.18 +0.031
−0.045 1.17 +0.038

−0.049

ρ∗
c,15 1015 g/cm3 2.71 +0.12

−0.11 2.56 +0.17
−0.17 2.27 +0.22

−0.18 2.8 +0.083
−0.11 2.76 +0.11

−0.12

P∗
c,36 1036 dyn/cm2 1.32 +0.12

−0.14 1.17 +0.15
−0.18 0.922 +0.17

−0.19 1.38 +0.085
−0.085 1.32 +0.13

−0.092

R1.4 km 11.6 +0.21
−0.22 12.1 +0.32

−0.34 12.7 +0.5
−0.49 11.8 +0.28

−0.27 12 +0.27
−0.34

�1.4 – 292 +37
−35 372 +73

−64 539 +160
−130 306 +51

−42 338 +54
−57

R2.0 km 11 +0.29
−0.27 11.4 +0.5

−0.42 12.2 +0.65
−0.69 10.9 +0.36

−0.25 11 +0.39
−0.32

�2.0 – 15.3 +4.1
−3.1 21 +9.6

−6 38.1 +20
−15 13.5 +4.3

−2.5 15 +5.4
−3.3
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constraints imposed up to 0.5 fm−3 (run 1a) and 1.0 fm−3 (run
1b) are considered. Note that, since for nonrelativistic models
vF = pF /m, the constraint from above on vF is, essentially,
a density-dependent constraint from below on the effective
mass. This is the reason why for runs 1a and 1b we vary the
limiting density not only for the Fermi velocity constraint, but
for the effective masses constraints as well.

Figure 9 is the analog of Fig. 3 and shows the marginalized
posterior distributions of NEPs, effective masses, and E/A in
PNM. One can see that the impact of the limiting density de-
pends on the quantity under consideration. The quantities that
are tightly constrained (e.g., nsat, Esat) are not affected, those
that are loosely constrained (e.g., Jsym) are affected slightly.
Finally, the quantities that are practically unconstrained (e.g.,
Ksym, Qsym, and Zsym) manifest the largest modifications. In
general, the changes are never too large and run 1b has a
tendency to provide narrower distributions. The latter fact is
not surprising, as run 1b has the strongest constraints among
the three considered runs.

Figure 10 is the analog of Fig. 4 and shows the marginal-
ized posterior distributions of some selected properties of
NSs. In addition to the results of runs 1, 1a, and 1b, con-
sidered in Fig. 9, here we show also the results of run 1∗,
which has no vn; F constraint, as well as those of run 1 from
Paper I and run 4 from Ref. [62]. First, we note that increasing
the limiting density does not suffice to make the NS EOS
physical over the whole density domain spanned in massive
NSs. Then, it is obvious that the value chosen for the limiting
density impacts all NS properties. As expected based on the
results in Fig. 4, none of the posteriors of runs 1a and 1b
resemble the posteriors of run 1 in Paper I. In exchange, it
appears that the posteriors of n∗

c , R2.0, and �2.0 for run 1∗
here and run 4 in Ref. [62] are similar. We consider this as
accidental.

APPENDIX D: POSTERIOR DATA TABLE

In Table IV, we provide information complementary to
Figs. 3 and 4.

[1] M. Oertel, M. Hempel, T. Klähn, and S. Typel, Equations of
state for supernovae and compact stars, Rev. Mod. Phys. 89,
015007 (2017).

[2] G. F. Burgio, H. J. Schulze, I. Vidaña, and J. B. Wei, Neutron
stars and the nuclear equation of state, Prog. Part. Nucl. Phys.
120, 103879 (2021).

[3] S. Typel et al. (CompOSE Core Team Collaboration), Com-
pOSE reference manual, Eur. Phys. J. A 58, 221 (2022).

[4] R. B. Wiringa, V. Fiks, and A. Fabrocini, Equation of state for
dense nucleon matter, Phys. Rev. C 38, 1010 (1988).

[5] A. Andronic et al. (FOPI Collaboration), Directed flow in Au +
Au, Xe + CsI and Ni + Ni collisions and the nuclear equation
of state, Phys. Rev. C 67, 034907 (2003).

[6] W. Reisdorf, Constraints on the equation of state of nuclear
matter from nucleus-nucleus collisions, Nucl. Phys. A 734, 565
(2004).

[7] W. Reisdorf et al. (FOPI Collaboration), Systematics of pion
emission in heavy ion collisions in the 1A- GeV regime, Nucl.
Phys. A 781, 459 (2007).

[8] V. Zinyuk et al. (FOPI Collaboration), Azimuthal emission
patterns of K+ and of K− mesons in Ni + Ni collisions near
the strangeness production threshold, Phys. Rev. C 90, 025210
(2014).

[9] P. Russotto et al., Results of the ASY-EOS experiment at GSI:
The symmetry energy at suprasaturation density, Phys. Rev. C
94, 034608 (2016).

[10] Y.-X. Zhang et al. (TMEP Collaboration), Comparison of
heavy-ion transport simulations: Collision integral in a box,
Phys. Rev. C 97, 034625 (2018).

[11] A. Ono et al. (TMEP Collaboration), Comparison of heavy-
ion transport simulations: Collision integral with pions and �

resonances in a box, Phys. Rev. C 100, 044617 (2019).
[12] P. B. Demorest, T. Pennucci, S. M. Ransom, M. S. E. Roberts,

and J. W. T. Hessels, A two-solar-mass neutron star measured
using Shapiro delay, Nature (Lond.) 467, 1081 (2010).

[13] J. Antoniadis et al., A massive pulsar in a compact relativistic
binary, Science 340, 1233232 (2013).

[14] Z. Arzoumanian et al. (NANOGrav Collaboration), The
NANOGrav 11-year data set: High-precision timing of 45 mil-
lisecond pulsars, Astrophys. J., Suppl. Ser. 235, 37 (2018).

[15] H. T. Cromartie et al. (NANOGrav Collaboration), Relativistic
Shapiro delay measurements of an extremely massive millisec-
ond pulsar, Nat. Astron. 4, 72 (2020).

[16] E. Fonseca et al., Refined mass and geometric measurements of
the high-mass PSR J0740 + 6620, Astrophys. J. Lett. 915, L12
(2021).

[17] M. Oertel, C. Providência, F. Gulminelli, and A. R. Raduta,
Hyperons in neutron star matter within relativistic mean-field
models, J. Phys. G 42, 075202 (2015).

[18] D. Chatterjee and I. Vidaña, Do hyperons exist in the interior of
neutron stars? Eur. Phys. J. A 52, 29 (2016).

[19] T. Klähn, D. Blaschke, F. Sandin, C. Fuchs, A. Faessler, H.
Grigorian, G. Ropke, and J. Trumper, Modern compact star
observations and the quark matter equation of state, Phys. Lett.
B 654, 170 (2007).

[20] A. Sedrakian, J. J. Li, and F. Weber, Heavy baryons in compact
stars, Prog. Part. Nucl. Phys. 131, 104041 (2023).

[21] B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo
Collaboration), GW170817: Observation of gravitational waves
from a binary neutron star inspiral, Phys. Rev. Lett. 119, 161101
(2017).

[22] B. Margalit and B. D. Metzger, Constraining the maximum
mass of neutron stars from multi-messenger observations of
GW170817, Astrophys. J. Lett. 850, L19 (2017).

[23] B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo
Collaboration), Properties of the binary neutron star merger
GW170817, Phys. Rev. X 9, 011001 (2019).

[24] B. P. Abbott et al. (The LIGO Scientific Collaboration and the
Virgo Collaboration), GW170817: Measurements of neutron
star radii and equation of state, Phys. Rev. Lett. 121, 161101
(2018).

[25] T. E. Riley et al., A NICER view of PSR J0030+0451: Mil-
lisecond pulsar parameter estimation, Astrophys. J. Lett. 887,
L21 (2019).

035805-21

https://doi.org/10.1103/RevModPhys.89.015007
https://doi.org/10.1016/j.ppnp.2021.103879
https://doi.org/10.1140/epja/s10050-022-00847-y
https://doi.org/10.1103/PhysRevC.38.1010
https://doi.org/10.1103/PhysRevC.67.034907
https://doi.org/10.1016/j.nuclphysa.2004.01.105
https://doi.org/10.1016/j.nuclphysa.2006.10.085
https://doi.org/10.1103/PhysRevC.90.025210
https://doi.org/10.1103/PhysRevC.94.034608
https://doi.org/10.1103/PhysRevC.97.034625
https://doi.org/10.1103/PhysRevC.100.044617
https://doi.org/10.1038/nature09466
https://doi.org/10.1126/science.1233232
https://doi.org/10.3847/1538-4365/aab5b0
https://doi.org/10.1038/s41550-019-0880-2
https://doi.org/10.3847/2041-8213/ac03b8
https://doi.org/10.1088/0954-3899/42/7/075202
https://doi.org/10.1140/epja/i2016-16029-x
https://doi.org/10.1016/j.physletb.2007.08.048
https://doi.org/10.1016/j.ppnp.2023.104041
https://doi.org/10.1103/PhysRevLett.119.161101
https://doi.org/10.3847/2041-8213/aa991c
https://doi.org/10.1103/PhysRevX.9.011001
https://doi.org/10.1103/PhysRevLett.121.161101
https://doi.org/10.3847/2041-8213/ab481c


MIKHAIL V. BEZNOGOV AND ADRIANA R. RADUTA PHYSICAL REVIEW C 110, 035805 (2024)

[26] M. C. Miller et al., PSR J0030+0451 mass and radius from
NICER data and implications for the properties of neutron star
matter, Astrophys. J. Lett. 887, L24 (2019).

[27] T. E. Riley et al., A NICER view of the massive pulsar PSR
J0740+6620 informed by radio timing and XMM-Newton spec-
troscopy, Astrophys. J. Lett. 918, L27 (2021).

[28] M. C. Miller et al., The radius of PSR J0740+6620 from NICER
and XMM-Newton data, Astrophys. J. Lett. 918, L28 (2021).

[29] S. Gandolfi, J. Carlson, and S. Reddy, Maximum mass and
radius of neutron stars, and the nuclear symmetry energy, Phys.
Rev. C 85, 032801(R) (2012).

[30] K. Hebeler, J. M. Lattimer, C. J. Pethick, and A. Schwenk,
Equation of state and neutron star properties constrained
by nuclear physics and observation, Astrophys. J. 773, 11
(2013).

[31] J. Carlson, S. Gandolfi, F. Pederiva, S. C. Pieper, R. Schiavilla,
K. E. Schmidt, and R. B. Wiringa, Quantum Monte Carlo meth-
ods for nuclear physics, Rev. Mod. Phys. 87, 1067 (2015).

[32] I. Tews, J. Carlson, S. Gandolfi, and S. Reddy, Constraining
the speed of sound inside neutron stars with chiral effective
field theory interactions and observations, Astrophys. J. 860,
149 (2018).

[33] C. Drischler, J. A. Melendez, R. J. Furnstahl, and D. R. Phillips,
Quantifying uncertainties and correlations in the nuclear-matter
equation of state, Phys. Rev. C 102, 054315 (2020).

[34] A. Kurkela, P. Romatschke, and A. Vuorinen, Cold quark mat-
ter, Phys. Rev. D 81, 105021 (2010).

[35] E. S. Fraga, A. Kurkela, and A. Vuorinen, Interacting quark
matter equation of state for compact stars, Astrophys. J. Lett.
781, L25 (2014).

[36] O. Komoltsev and A. Kurkela, How perturbative QCD con-
strains the equation of state at neutron-star densities, Phys. Rev.
Lett. 128, 202701 (2022).

[37] T. Gorda, O. Komoltsev, and A. Kurkela, Ab-initio QCD calcu-
lations impact the inference of the neutron-star-matter equation
of state, Astrophys. J. 950, 107 (2023).

[38] D. Adhikari et al., Accurate determination of the neutron skin
thickness of 208Pb through parity-violation in electron scatter-
ing, Phys. Rev. Lett. 126, 172502 (2021).

[39] D. Adhikari et al., Precision determination of the neutral weak
form factor of 48Ca, Phys. Rev. Lett. 129, 042501 (2022).

[40] W. Lynch and M. Tsang, Decoding the density dependence
of the nuclear symmetry energy, Phys. Lett. B 830, 137098
(2022).

[41] S. Huth, P. T. H. Pang, I. Tews, T. Dietrich, A. Le Fèvre,
A. Schwenk, W. Trautmann, K. Agarwal, M. Bulla, M. W.
Coughlin, and C. Van Den Broeck, Constraining neutron-star
matter with microscopic and macroscopic collisions, Nature
(Lond.) 606, 276 (2022).

[42] H. Koehn, H. Rose, P. T. H. Pang, R. Somasundaram,
B. T. Reed, I. Tews, A. Abac, O. Komoltsev, N. Kunert, A.
Kurkela, M. W. Coughlin, B. F. Healy, and T. Dietrich, An
overview of existing and new nuclear and astrophysical con-
straints on the equation of state of neutron-rich dense matter,
arXiv:2402.04172.

[43] A. Kurkela, E. S. Fraga, J. Schaffner-Bielich, and A. Vuorinen,
Constraining neutron star matter with quantum chromodynam-
ics, Astrophys. J. 789, 127 (2014).

[44] E. Annala, T. Gorda, A. Kurkela, and A. Vuorinen,
Gravitational-wave constraints on the neutron-star-matter equa-
tion of state, Phys. Rev. Lett. 120, 172703 (2018).

[45] E. Lope Oter, A. Windisch, F. J. Llanes-Estrada, and M. Alford,
nEoS: Neutron star equation of state from hadron physics alone,
J. Phys. G 46, 084001 (2019).

[46] E. Annala, T. Gorda, A. Kurkela, J. Nättilä, and A. Vuorinen,
Evidence for quark-matter cores in massive neutron stars, Nat.
Phys. 16, 907 (2020).

[47] E. Annala, T. Gorda, E. Katerini, A. Kurkela, J. Nättilä, V.
Paschalidis, and A. Vuorinen, Multimessenger constraints for
ultradense matter, Phys. Rev. X 12, 011058 (2022).

[48] P. Landry and R. Essick, Nonparametric inference of the neu-
tron star equation of state from gravitational wave observations,
Phys. Rev. D 99, 084049 (2019).

[49] R. Essick, P. Landry, and D. E. Holz, Nonparametric in-
ference of neutron star composition, equation of state, and
maximum mass with GW170817, Phys. Rev. D 101, 063007
(2020).

[50] G. Raaijmakers, S. K. Greif, K. Hebeler, T. Hinderer, S.
Nissanke, A. Schwenk, T. E. Riley, A. L. Watts, J. M. Lattimer,
and W. C. G. Ho, Constraints on the dense matter equation of
state and neutron star properties from NICER’s mass–radius es-
timate of PSR J0740+6620 and multimessenger observations,
Astrophys. J. Lett. 918, L29 (2021).

[51] N.-B. Zhang and B.-A. Li, Implications of the mass M =
2.17+0.11

−0.10 M� of PSR J0740+6620 on the equation of state of
super-dense neutron-rich nuclear matter, Astrophys. J. 879, 99
(2019).

[52] M. Ferreira, M. Fortin, T. Malik, B. K. Agrawal, and C.
Providência, Empirical constraints on the high-density equation
of state from multimessenger observables, Phys. Rev. D 101,
043021 (2020).

[53] N. K. Patra, Sk Md Adil Imam, B. K. Agrawal, A. Mukherjee,
and T. Malik, Nearly model-independent constraints on dense
matter equation of state in a Bayesian approach, Phys. Rev. D
106, 043024 (2022).

[54] H. Güven, K. Bozkurt, E. Khan, and J. Margueron, Multimes-
senger and multiphysics bayesian inference for the GW170817
binary neutron star merger, Phys. Rev. C 102, 015805 (2020).

[55] Y. Lim and J. W. Holt, Bayesian modeling of the nuclear
equation of state for neutron star tidal deformabilities and
GW170817, Eur. Phys. J. A 55, 209 (2019).

[56] J. Zhou, J. Xu, and P. Papakonstantinou, Bayesian inference of
neutron-star observables based on effective nuclear interactions,
Phys. Rev. C 107, 055803 (2023).

[57] M. V. Beznogov and A. R. Raduta, Bayesian survey of the dense
matter equation of state built upon Skyrme effective interac-
tions, Astrophys. J. 966, 216 (2024).

[58] Sk Md Adil Imam, T. Malik, C. Providência, and B. K. Agrawal,
Implications of comprehensive nuclear and astrophysics data on
the equations of state of neutron star matter, Phys. Rev. D 109,
103025 (2024).

[59] S. Traversi, P. Char, and G. Pagliara, Bayesian inference of
dense matter equation of state within relativistic mean field
models using astrophysical measurements, Astrophys. J. 897,
165 (2020).

[60] T. Malik, M. Ferreira, M. B. Albino, and C. Providência,
Spanning the full range of neutron star properties within a
microscopic description, Phys. Rev. D 107, 103018 (2023).

[61] T. Malik, M. Ferreira, B. K. Agrawal, and C. Providência,
Relativistic description of dense matter equation of state and
compatibility with neutron star observables: A Bayesian ap-
proach, Astrophys. J. 930, 17 (2022).

035805-22

https://doi.org/10.3847/2041-8213/ab50c5
https://doi.org/10.3847/2041-8213/ac0a81
https://doi.org/10.3847/2041-8213/ac089b
https://doi.org/10.1103/PhysRevC.85.032801
https://doi.org/10.1088/0004-637X/773/1/11
https://doi.org/10.1103/RevModPhys.87.1067
https://doi.org/10.3847/1538-4357/aac267
https://doi.org/10.1103/PhysRevC.102.054315
https://doi.org/10.1103/PhysRevD.81.105021
https://doi.org/10.1088/2041-8205/781/2/L25
https://doi.org/10.1103/PhysRevLett.128.202701
https://doi.org/10.3847/1538-4357/acce3a
https://doi.org/10.1103/PhysRevLett.126.172502
https://doi.org/10.1103/PhysRevLett.129.042501
https://doi.org/10.1016/j.physletb.2022.137098
https://doi.org/10.1038/s41586-022-04750-w
https://arxiv.org/abs/2402.04172
https://doi.org/10.1088/0004-637X/789/2/127
https://doi.org/10.1103/PhysRevLett.120.172703
https://doi.org/10.1088/1361-6471/ab2567
https://doi.org/10.1038/s41567-020-0914-9
https://doi.org/10.1103/PhysRevX.12.011058
https://doi.org/10.1103/PhysRevD.99.084049
https://doi.org/10.1103/PhysRevD.101.063007
https://doi.org/10.3847/2041-8213/ac089a
https://doi.org/10.3847/1538-4357/ab24cb
https://doi.org/10.1103/PhysRevD.101.043021
https://doi.org/10.1103/PhysRevD.106.043024
https://doi.org/10.1103/PhysRevC.102.015805
https://doi.org/10.1140/epja/i2019-12917-9
https://doi.org/10.1103/PhysRevC.107.055803
https://doi.org/10.3847/1538-4357/ad2f9b
https://doi.org/10.1103/PhysRevD.109.103025
https://doi.org/10.3847/1538-4357/ab99c1
https://doi.org/10.1103/PhysRevD.107.103018
https://doi.org/10.3847/1538-4357/ac5d3c


BAYESIAN INFERENCE OF THE DENSE MATTER … PHYSICAL REVIEW C 110, 035805 (2024)

[62] M. V. Beznogov and A. R. Raduta, Bayesian inference of the
dense matter equation of state built upon covariant density
functionals, Phys. Rev. C 107, 045803 (2023).

[63] P. Char, C. Mondal, F. Gulminelli, and M. Oertel, Generalized
description of neutron star matter with a nucleonic relativistic
density functional, Phys. Rev. D 108, 103045 (2023).

[64] X. L. Shang, A. Li, Z. Q. Miao, G. F. Burgio, and H.-J. Schulze,
Nucleon effective mass in hot dense matter, Phys. Rev. C 101,
065801 (2020).

[65] R. Somasundaram, C. Drischler, I. Tews, and J. Margueron,
Constraints on the nuclear symmetry energy from asymmetric-
matter calculations with chiral NN and 3N interactions, Phys.
Rev. C 103, 045803 (2021).

[66] M. Duan and M. Urban, Energy and angle dependence of neu-
trino scattering rates in proto–neutron star and supernova matter
within Skyrme RPA, Phys. Rev. C 108, 025813 (2023).

[67] S. Vinciguerra, T. Salmi, A. L. Watts, D. Choudhury, T. E.
Riley, P. S. Ray, S. Bogdanov, Y. Kini, S. Guillot, D.
Chakrabarty, W. C. G. Ho, D. Huppenkothen, S. M. Morsink,
Z. Wadiasingh, and M. T. Wolff, An updated mass–radius anal-
ysis of the 2017–2018 NICER data set of PSR J0030+0451,
Astrophys. J. 961, 62 (2024).

[68] N. Chamel, S. Goriely, and J. M. Pearson, Further explorations
of Skyrme–Hartree–Fock–Bogoliubov mass formulas. XI. Sta-
bilizing neutron stars against a ferromagnetic collapse, Phys.
Rev. C 80, 065804 (2009).

[69] J. W. Negele and D. Vautherin, Density-matrix expansion for an
effective nuclear Hamiltonian, Phys. Rev. C 5, 1472 (1972).

[70] C. Ducoin, P. Chomaz, and F. Gulminelli, Role of isospin in
the nuclear liquid–gas phase transition, Nucl. Phys. A 771, 68
(2006).

[71] S. Goriely, N. Chamel, and J. M. Pearson, Further explorations
of Skyrme-Hartree-Fock-Bogoliubov mass formulas. XIII. The
2012 atomic mass evaluation and the symmetry coefficient,
Phys. Rev. C 88, 024308 (2013).

[72] S. Goriely, Further explorations of Skyrme–Hartree–Fock–
Bogoliubov mass formulas. XV: The spin–orbit coupling, Nucl.
Phys. A 933, 68 (2015).

[73] M. Baldo, G. F. Burgio, H.-J. Schulze, and G. Taranto, Nucleon
effective masses within the Brueckner-Hartree-Fock theory: Im-
pact on stellar neutrino emission, Phys. Rev. C 89, 048801
(2014).

[74] L.-W. Chen, B.-J. Cai, C. M. Ko, B.-A. Li, C. Shen, and J.
Xu, Higher-order effects on the incompressibility of isospin
asymmetric nuclear matter, Phys. Rev. C 80, 014322 (2009).

[75] J. Margueron, R. Hoffmann Casali, and F. Gulminelli, Equa-
tion of state for dense nucleonic matter from metamodeling. I.
Foundational aspects, Phys. Rev. C 97, 025805 (2018).

[76] P. Haensel, J. L. Zdunik, and J. Dobaczewski, Composition and
equation of state of cold catalyzed matter below neutron drip,
Astron. Astrophys. 222, 353 (1989).

[77] J. Negele and D. Vautherin, Neutron star matter at sub-nuclear
densities, Nucl. Phys. A 207, 298 (1973).

[78] T. Hinderer, Tidal love numbers of neutron stars, Astrophys. J.
677, 1216 (2008).

[79] T. Hinderer, B. D. Lackey, R. N. Lang, and J. S. Read, Tidal
deformability of neutron stars with realistic equations of state
and their gravitational wave signatures in binary inspiral, Phys.
Rev. D 81, 123016 (2010).

[80] M. V. Beznogov and A. R. Raduta, “Bayesian inference
of the dense matter equation of state built upon ex-
tended Skyrme interactions (2024)” [Data Set], Zenodo,
doi:10.5281/zenodo.13347763.

[81] M. Dutra, O. Lourenço, J. S. Sá Martins, A. Delfino, J. R. Stone,
and P. D. Stevenson, Skyrme interaction and nuclear matter
constraints, Phys. Rev. C 85, 035201 (2012).

[82] D. Foreman-Mackey, D. W. Hogg, D. Lang, and J. Goodman,
emcee: The MCMC Hammer, Publ. Astron. Soc. Pac. 125, 306
(2013).

[83] D. Foreman-Mackey, W. Farr, M. Sinha, A. Archibald, D.
Hogg, J. Sanders, J. Zuntz, P. Williams, A. Nelson, M. de
Val-Borro, T. Erhardt, I. Pashchenko, and O. Pla, emcee v3: A
Python ensemble sampling toolkit for affine-invariant MCMC,
J. Open Source Softw. 4, 1864 (2019).

[84] The documentation is available at https://emcee.readthedocs.io
and the GitHub page is https://github.com/dfm/emcee.

[85] J. Goodman and J. Weare, Ensemble samplers with affine in-
variance, Commun. Appl. Math. Comput. Sci. 5, 65 (2010).

[86] W. D. Vousden, W. M. Farr, and I. Mandel, Dynamic tem-
perature selection for parallel tempering in Markov chain
Monte Carlo simulations, Mon. Not. R. Astron. Soc. 455, 1919
(2016).

[87] The documentation is available at https://emcee.readthedocs.io/
en/v2.2.1/user/pt/ and the GitHub page is https://github.com/
willvousden/ptemcee. Note that PTEMCEE is no longer main-
tained.

[88] J. Skilling, Nested sampling, in Bayesian Inference and Max-
imum Entropy Methods in Science and Engineering: 24th
International Workshop on Bayesian Inference and Maximum
Entropy Methods in Science and Engineering, American In-
stitute of Physics Conference Series, Vol. 735, edited by R.
Fischer, R. Preuss, and U. V. Toussaint (American Institute of
Physics, College Park, MD, 2004), pp. 395–405

[89] J. Skilling, Nested sampling for general Bayesian computation,
Bayesian Anal. 1, 833 (2006).

[90] J. Buchner, A statistical test for nested sampling algorithms,
Stat. Comput. 26, 383 (2016).

[91] J. Buchner, Collaborative nested sampling: Big data versus
complex physical models, Publ. Astron. Soc. Pac. 131, 108005
(2019).

[92] J. Buchner, UltraNest—A robust, general purpose
Bayesian inference engine, J. Open Source Softw. 6, 3001
(2021).

[93] The documentation is available at https://johannesbuchner.
github.io/UltraNest/ and the GitHub page is https://github.com/
JohannesBuchner/UltraNest.

035805-23

https://doi.org/10.1103/PhysRevC.107.045803
https://doi.org/10.1103/PhysRevD.108.103045
https://doi.org/10.1103/PhysRevC.101.065801
https://doi.org/10.1103/PhysRevC.103.045803
https://doi.org/10.1103/PhysRevC.108.025813
https://doi.org/10.3847/1538-4357/acfb83
https://doi.org/10.1103/PhysRevC.80.065804
https://doi.org/10.1103/PhysRevC.5.1472
https://doi.org/10.1016/j.nuclphysa.2006.03.005
https://doi.org/10.1103/PhysRevC.88.024308
https://doi.org/10.1016/j.nuclphysa.2014.09.045
https://doi.org/10.1103/PhysRevC.89.048801
https://doi.org/10.1103/PhysRevC.80.014322
https://doi.org/10.1103/PhysRevC.97.025805
https://ui.adsabs.harvard.edu/abs/1989A%26A...222..353H/abstract
https://doi.org/10.1016/0375-9474(73)90349-7
https://doi.org/10.1086/533487
https://doi.org/10.1103/PhysRevD.81.123016
https://doi.org/10.5281/zenodo.13347763
https://doi.org/10.1103/PhysRevC.85.035201
https://doi.org/10.1086/670067
https://doi.org/10.21105/joss.01864
https://emcee.readthedocs.io
https://github.com/dfm/emcee
https://doi.org/10.2140/camcos.2010.5.65
https://doi.org/10.1093/mnras/stv2422
https://emcee.readthedocs.io/en/v2.2.1/user/pt/
https://github.com/willvousden/ptemcee
https://doi.org/10.1214/06-BA127
https://doi.org/10.1007/s11222-014-9512-y
https://doi.org/10.1088/1538-3873/aae7fc
https://doi.org/10.21105/joss.03001
https://johannesbuchner.github.io/UltraNest/
https://github.com/JohannesBuchner/UltraNest

