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α decay law of excited nuclei and its role in stellar decay rates
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α decay is one of the prominent decay modes in the nucleosynthesis of heavy and superheavy elements
synthesized at temperatures of the order of gigakelvin. To facilitate the investigation of the role played by
the α decay half-lives of thermally excited nuclei in nucleosynthesis calculations, an empirical formula based
on a model for the α decay of nuclei in their ground and excited states to daughter nuclei in their ground or
excited states is presented. Constants appearing in the analytical expression for the α decay half-life obtained
within the model are treated as adjustable parameters and fitted to experimental data on 342 α decays in the
range of 82 � Zp � 94, to obtain an excitation energy-dependent decay law. Under the assumption that thermal
equilibrium has been reached between nuclear states, temperature (T ) dependent half-lives, t1/2(T ), for several
of the experimentally studied α emitters with 65 � Zp � 94 are presented using available data on the half-lives
of excited nuclei. Though the general trend is a decrease in t1/2(T ) at elevated temperatures, exceptional cases
with increased half-lives are found in the case of some isomeric states. A list of such isomers provided in this
paper motivates future work involving considerations of their thermal equilibration and role in shaping kilonova
light curves.
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I. INTRODUCTION

Empirical laws are not uncommon in physics, especially in
nuclear physics where the many-body problem makes it diffi-
cult to include the properties of the nuclei and the interactions
of the constituents in a microscopic formalism. Semiempirical
formulas based on simple models with parameters fitted to
existing data indeed prove to be a useful tool in understand-
ing nuclear phenomena. One of the oldest examples is the
semiempirical mass formula [1–3] based on the liquid drop
model of the nucleus. This simple formula that estimated
nuclei’s binding energies or masses based on the number of
protons and neutrons was refined and reused over the years in
literature. Improved versions such as the finite range droplet
model [4] combined with microscopic contributions based
on a folded Yukawa single particle potential [5,6] proved
useful in providing more precise nuclear masses as well as
ground state (GS) deformations of nuclei. For applications
in astrophysics and heavy ion collisions, the simple formula
was extended to nonzero excitation energies [7]. Another
well-known example of an empirical formula is the Geiger-
Nuttall (GN) law [8], which relates the half-lives in α decay
of nuclei to the Q values or the energies of the α particles
emitted in the decay of radioactive nuclei. A century later, the
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Geiger-Nuttall law,

log10 t1/2 = a(Z )Q−1/2 + b(Z ), (1)

continues to attract the attention of the community [9]. With
increasing data that have become available over 100 years,
the original GN law is not sufficient to reproduce all α decay
half-lives. Hence, modifications of this law with additional
inputs are proposed [10]. In 1966, Viola and Seaborg (VS),
generalized the GN formula and included an additional term
depending on the so-called hindrance factor [11]. New fits to
this formula were performed in [12,13]. Since these empirical
decay laws can be explained based on the tunneling effect in
quantum mechanics, they have gained popularity and several
“universal decay laws” (UDLs) which are extensions of the
original GN and VS formulas are applied not only to α de-
cay but also to cluster radioactivity and emission of charged
particles in general [14–16].

In the present paper, we intend to study the α decay of
nuclei in their ground and excited states, decaying to daughter
nuclei which can also either be in a ground or excited state,
using a semiempirical formula. In addition to the usual quanti-
ties such as the Q value and the number of nucleons appearing
in the fitted formula mentioned in the literature above, such a
formula should depend on the excitation energies of the nuclei
involved. Except for [17], where a generalized VS formula for
half-lives that depended on the excitation energy of the daugh-
ter nucleus was given, most empirical formulas for half-lives
predict only the ground state α decay half-lives of nuclei. In an
earlier work [18], a decay law for the cluster radioactivity of
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excited nuclei [19] was formulated by the present authors. The
formula was motivated through an analytically solvable model
for tunneling a charged light nucleus through the Coulomb
barrier formed due to its interaction with the heavy daughter
nucleus. Here, we perform some modifications to this formula
and fit the parameters (which have otherwise a physical mean-
ing in the model) to available data on α decay, for nuclei with
(parent) atomic number 82 � Zp � 94, where either the par-
ent or daughter or both the parent and the daughter can be in an
excited state. The semiempirical formula obtained in this pa-
per can be useful for the calculation of the α decay half-lives at
elevated temperatures in astrophysical environments [20–23],
where elements in that mass range are produced.

This paper is organized as follows: in Sec. II we describe
the steps we took to build our proposed model for α decay
from and to excited states. In Sec. III we adjust this model to
a decay law with parameters fitted to evaluated experimental
data and present the resulting coefficients and fit quality. The
correlation matrix of the variables of the model is presented
in the next subsection. We reformulate previous works on α

decay from ground state to ground state, by adding an exci-
tation energy dependence, and we compare with our results
in Secs. III D and III E. In Sec. IV, we study the behavior
of half-lives, t exp

1/2 (T ) with temperature using the available
experimental data on the α decay half-lives of excited nu-
clei. We note several interesting features of the temperature
dependence of α decay. The role of isomeric states and ther-
mal equilibration is also discussed in this section. Later in
this section, the excitation energy-dependent decay law de-
veloped in the earlier sections is used to evaluate the α decay
half-lives of excited nuclei which are in turn used to predict
the temperature-dependent half-lives, t cal

1/2(T ). The model is
validated by presenting the mean square error (MSE) of the
difference between t cal

1/2(T ) and t exp
1/2 (T ). In Sec. V, astrophys-

ical sites and conditions for the occurrence of α decay are
presented. In Sec. VI we give a summary and outlook.

II. MODEL FOR α DECAY OF EXCITED NUCLEI

The relationship between the decay constant and quantities
such as penetration probability, P, assault frequency, ν, and
α preformation factor, Pα , allows us to write a logarithmic
formula for the half-life, which proves convenient for deriving
a parametrized analytical expression. We begin this process by
formulating the following equation:

log10 (ν t1/2) = − log10 P − log10 Pα + const. (2)

In the simplest model, one can start by assuming that both Pα

and ν remain approximately constant, and calculate − log10 P
based on the premise of a tunneling process. The simplicity of
the model brings us to an analytical expression which is then
improved by changing the constants to fitted parameters. In
this model, the α particle goes through the Coulomb barrier
formed due to its interaction with the daughter nucleus. The
nuclear potential in this context is treated as a rectangular
well with a width of R0 = Rα + Rd , where, Rα and Rd are
the radii of the tunneling cluster (in this case an α) and the
daughter nucleus, respectively. The penetration probability

is described by

P = exp

[
−2

∫ R

R0

k(r) dr

]
, (3)

where k(r) =
√

2μ

h̄2 |V (r) − E | is the wave number within the
barrier, and R is the outer classical turning point determined
from V (r) = E . Here, E corresponds to the energy of the
tunneling particle, and μ is the reduced mass of the emitted
α-daughter nucleus system. The interaction potential V (r)
is composed of contributions from both the Coulomb and
centrifugal potentials and is hence given by

V (r) = ZαZd
e2

r
+ h̄2

2μ

�(� + 1)

r2
. (4)

Replacing for V (r), the wave number is given by k(r) =√
2μE
h̄2 [( R

r − 1) + σ 1
r2 ]. Here σ = h̄2

2μE �(� + 1) which repre-
sents a small quantity due to the significant difference in scale
between the centrifugal and Coulomb potentials [24,25]. Ad-
ditionally, in the case where the potential barrier is relatively
wide (i.e., R � R0), we can approximate the integral from
Eq. (3) as follows:∫ R

R0

k(r) dr =
√

2μE

h̄2 R

[
π

2
− 2

(
R0

R

)1/2
]
+σ

√
2μE

h̄2

1√
R0R

.

(5)

To extend the α decay half-life calculations to excited
states, we begin by defining an effective Q value. Energy
conservation allows us to write mp + E∗

p = mα + md + E∗
d +

Eα + Erecoil, where E∗
p and E∗

d are the excitation energies of
the parent and daughter respectively. With the recoil energy
of the heavy daughter being negligible, Eα = Qα + E∗

p − E∗
d ,

where Qα is the usual definition of the Q value of an α decay
from a GS parent to a daughter in the ground state. Since the
Q value is usually taken to be the tunneling energy in ground
state decays, here we define an effective Q value

Qeff ≡ Qα + E∗
p − E∗

d = Qα + �E∗, (6)

as the energy of the tunneling α. �E∗ is the difference be-
tween the excitation energies of the parent and daughter. The
penetration probability, Eq. (3), can then be expressed as

log10 P = −
(

β1 − β2
�E∗

Qα

)
χ ′ − β3 ρ ′ − β4

�(� + 1)

ρ ′ . (7)

In this equation, the coefficients are defined as β1 = πe2
√

2m0

h̄ ln 10 ,

β2 = β1

2 , β3 = − 4e
√

2m0r0

h̄ ln 10 , and β4 = − 2h̄
ln 10e

√
2m0r0

, and the
functions χ ′ and ρ ′ are defined as

χ ′ = ZαZd

√
AαAd

ApQα

(8)

and

ρ ′ =
√

ZαZd
AαAd

Ap

(
A1/3

α + A1/3
d

)
, (9)

respectively.
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FIG. 1. Left: Measured α decay half-lives [28] for 592 decays, where the parent nucleus, daughter nucleus, or both can have multiple
excited states associated with the α decay process. The dataset includes parent atomic numbers within the range 65 � Zp � 103. Right:
Dataset divided into three regions of parent atomic numbers and including the condition |χ ′ �E∗/Qα| � 15.2 MeV−1/2.

We observe that the first two terms of the decay law in
Eq. (7) are similar to those obtained in [14], specifically when
E∗

p = E∗
d = 0. These terms are attributed to the Coulomb

interaction, representing a fundamental aspect of the decay
process. However, the decay law incorporates a third term,
which serves to correct for the influence of angular momen-
tum carried by the emitted particle [26].

In addition to the above considerations, the impact of
unpaired protons and neutrons on the α decay half-life is
accounted for in the decay law. This adjustment involves the
inclusion of a blocking term, which is not derived from the
simple model, but is given as in [27]. This blocking term, de-
noted as δoe, takes the value of 2 for odd-Z odd-N nuclei, 1 for
odd-A nuclei, and 0 for even-Z even-N nuclei. Incorporating
the outcomes from Eq. (7) and the blocking term, the decay
law, which varies with excitation energy, can be expressed as

log10 t exc
1/2 = β1 χ ′ + β2 χ ′ �E∗

Qα

+ β3 ρ ′ + β4
�(� + 1)

ρ ′

+ β5 δoe, (10)

where the constants β1, β2, β3, and β4 have been defined ear-
lier. Though the constants can in principle be calculated, they
are treated as adjustable parameters and fitted to reproduce
the α decay half-lives, to compensate for the approximations
made during the derivation of the decay law. It is important
to emphasize that the objective of the present paper is not to
fit the universal decay law for ground state to ground state
decays as is often done in literature but rather to derive an
expression suitable for excited nuclei. The contribution of the
assault frequency ν can be incorporated into the other terms of
Eq. (10), given its slight variations in the context of α decay
compared to the changes in penetration probability.

III. FITTING THE EXCITATION
ENERGY-DEPENDENT DECAY LAW

In keeping with the objective mentioned above, we begin
by examining in Fig. 1, the α decay half-lives, t exp

1/2 , of excited

parent nuclei to daughters in the excited or ground state, as a
function of Qeff defined in the previous section.

A. Choice of data

The data in Fig. 1 refer to heavy nuclei with the atomic
number Zp ranging from 65 to 103. At first glance, the data
appear quite scattered, making it challenging to perform a
reliable fit to derive a decay law (left panel). However, upon
closer inspection, we identify a central band of half-lives
increasing with Q−1/2

eff surrounded by islands. Replotting the
same data by dividing it into three regions of Zp, as shown in
the right panel of Fig. 1, it becomes clear that the central band
corresponds to the region of the Zp range between 82 and 94.
Since most of the considered data fall within this band, we
shall focus on this region for performing fits and deriving an
excitation energy-dependent decay law.

Next, we collected all available data on the uncertainties
in the half-lives of the ground and excited states. In Fig. 2,
we plot the ratio of the uncertainty to the half-life, with
histograms indicating the number of decays at each value. In
general, the uncertainties are quite small for most of the cases
studied. However, it is important to note that in some cases
the uncertainties are not listed. To perform a fit that includes
these uncertainties in half-lives, we would have to arbitrarily
assign error bars in such instances. To test the relevance of the
uncertainties, separate fits using the upper and lower limits
of the half-lives based on the listed errors were performed.
The resulting MSE and R2 values showed negligible changes
compared to those obtained using the central values. Conse-
quently, we decided to present the fit results using the central
values of the half-lives, as is commonly done in the literature.

B. Parameters of the decay law

Linear regression is a fundamental statistical method em-
ployed to analyze the relationships between input and output
variables, assuming a linear relationship between a linear
combination of input variables (Xj) and a single output
variable (Y ). The model for multiple linear regression can
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FIG. 2. Ratio of uncertainty and the half-life plotted on a log-
arithmic scale. The vertical axes account for the number of decays
with that uncertainty.

be expressed as

Y = β0 + β1X1 + β2X2 + · · · + βpXp (11)

where Xj represents the jth predictor, and β j represents the
corresponding model parameter. To establish a connection
between the excitation-energy-dependent decay law, Eq. (10),
and the linear regression model, Eq. (11), we consider the
logarithm of the half-life log10 t exc

1/2 as the output variable.
According to Eq. (10), five predictors are identified, namely
X1 = χ ′, X2 = χ ′ �E∗/Qα , X3 = ρ ′, X4 = �(� + 1)/ρ ′, and
X5 = δoe, together with a constant term β0. These depend on
basic decay-related information, including the atomic number,
mass number, Q value, angular momentum of the α particle,
and the excitation energy of the parent and daughter nuclei.
This information has been collected from the National Nu-
clear Data Center [28] for a comprehensive dataset comprising
592 α decays. The nuclei involved in these decays range
from Z = 65 to 103, with the parent and daughter nuclei
existing in either ground state or excited states. However, we
have excluded cases in which the emission occurs from the
ground state of the parent to the ground state of the daughter
nucleus because this study has been made previously by other
authors [8,12,16]. Additionally, to ensure a linear trend in the
data, we have divided the dataset into three subsets based on
the atomic number of the parent nucleus, namely 65 � Zp �
81, 82 � Zp � 94, and 95 � Zp � 103 (right panel of Fig. 1).
From these subsets, we have chosen to focus on the second
set, which comprises 342 cases as explained in the previous
section.

As a final consideration, we examined possible constraints
related to the novel term χ ′ �E∗/Qα . To investigate this, lin-
ear regression was performed by varying |χ ′ �E∗/Qα| from
0 to 30 MeV−1/2. Typically, the MSE, which calculates the
average of the squares of the differences between the esti-
mated and actual values, is used to identify the best-fitting

FIG. 3. Plot of MSE vs the quantity χ ′ �E∗/Qα ranging from 0
to 30 MeV−1/2. The inset shows the R2 values vs the same quantity.
The MSE reaches a minimum and R2 reaches a maximum at approx-
imately 15.2 MeV−1/2, indicating the optimal constraint value for the
model.

line representing the relationship between the features and
output. As shown in Fig. 3, the MSE reached a minimum at the
value of χ ′ �E∗/Qα around 15.2 MeV−1/2, while R2 simul-
taneously reached its maximum value. The fits presented in
this paper were performed with the constraint, |χ ′ �E∗

Q | � 15.2

MeV−1/2. When performing a calculation without any con-
straints, we found that the quality of the fit reduced slightly.
For example, with the constraint, the MSE and R2 values were
1.04 and 0.98, respectively, whereas, without the constraint,
they changed to 1.38 and 0.976. Despite this small varia-
tion, we decided to continue our analysis with the constraint
applied, as it provided a marginally better fit.

Training our linear regression model from data involves
using the ordinary least squares (OLS) technique. OLS
minimizes the sum of squared differences between the experi-
mental half-lives and predicted values, providing the best-fit
line that quantifies the linear relationship between the pre-
dictors Xj . To enable a direct comparison of the relative
importance of these predictors, we convert all of them to have
zero mean and unit standard deviation. This standardized OLS
is implemented using the standard PYTHON libraries, specifi-
cally scikit-learn [29].

Table I displays the results derived from the linear
regression, revealing the model parameters β j and their cor-
responding standard errors. Notably, the analysis underscores
that the variables χ ′ and χ ′�E∗/Qα are the dominant predic-
tors. This is expected for the former term since this contains
the Q−1/2

eff -dependent behavior predicted by the Geiger-Nuttall
law. The second term in Eq. (10) contains information about
the excitation energy of either the parent, daughter, or both
nuclei. In contrast, ρ ′, the angular momentum dependent term,
and the blocking term contribute with comparable relative
weight to predicting the half-life. The latter also underscores
the significance of angular momentum and the importance
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TABLE I. Coefficients β j ( j = 0, 1, 2, 3, 4, 5) and their corre-
sponding standard errors obtained from an OLS fit of Eq. (11) using
experimental data for α decay in nuclei with 82 � Zp � 94. These
data points are depicted by orange cross markers in Fig. 1.

Predictors Xj Coefficients β j
a Standard error

Constant 7.1991 0.055
χ ′ 7.4737 0.095
χ ′ �E∗/Qα −1.1852 0.058
ρ ′ −0.6099 0.094
�(� + 1)/ρ ′ 0.6414 0.056
δoe 0.6050 0.068

aThe units of β1 and β2 are in MeV1/2.

of considering unpaired protons and neutrons in the decay
process.

C. Correlation analysis

Completing the regression analysis, the correlation matrix
was generated to obtain a comprehensive overview of the
linear relationships between variables in our model. Each
entry in Fig. 4 corresponds to a correlation coefficient, where
positive values suggest a positive linear relationship, negative
values indicate a negative linear relationship, and values closer
to zero imply weaker or negligible correlations. Figure 4
displays a strong positive correlation between log10 t exc

1/2 and
predictors χ ′ and ρ ′ (approximately 0.97 and 0.75, respec-
tively), indicating that changes in these variables are closely
aligned with changes in log10 t exc

1/2 . Conversely, a significant

FIG. 4. Correlation matrix of target and predictors. Lighter col-
ors represent a positive linear relation between variables, while
darker ones indicate an inverse linear relationship. The diagonal line
displays perfect correlation, as each variable is perfectly correlated
with itself.

TABLE II. Comparison of the accuracy of the fit of the modified
decay laws with the excitation energy-dependent decay law of the
present paper.

Model R2 MSE

Geiger-Nuttall law 0.939 3.14
Royer formula 0.966 1.75
Qi et al. UDL 0.976 1.23
This paper 0.980 1.04

negative correlation of approximately −0.47 and −0.38 exists
with δoe and χ ′�E∗/Qα , respectively, suggesting an inverse
linear relation. Additionally, the correlation with �(� + 1)/ρ ′
indicates a weak linear association between the log10 t exc

1/2 and
this predictor.

To address potential multicollinearity issues in our model,
we first examined the correlation coefficients between pairs of
predictors. Notably, a strong positive correlation was observed
between χ ′ and ρ ′, suggesting potential redundancy in the in-
formation provided by these predictors, as expected from their
definitions, Eqs. (8) and (9). To mitigate this redundancy, we
applied Ridge and Lasso regression techniques. Remarkably,
despite the presence of multicollinearity, neither χ ′ nor ρ ′
were excluded from the model after applying Ridge and Lasso
penalties. However, it is interesting to note that the predictor
ρ ′ switched to a negative correlation with half-life, while
χ ′ remained positive and was the most important feature.
Furthermore, evaluation of the r-squared and MSE metrics
yielded values of 0.976 and 1.08, respectively. These results
suggest that while the regularization techniques did not lead
to the exclusion of predictors, they also did not significantly
improve the model’s predictive ability or overall performance.
To diminish this redundancy, we also tested the model by
dropping the ρ ′ predictor and computing again the linear re-
gression. In this redefined model, R-squared is 0.975, and the
MSE is 1.17, indicating that the model remains a good approx-
imation even after addressing the potential multicollinearity
issue. For a detailed comparison with other models, please
refer to Table II.

D. Modified decay laws with effective Q values

The main objective of this paper is to fit the data on decays
of excited nuclei by an excitation energy-dependent decay
law as given in Eq. (10). However, there exist several works
in literature that provide empirical formulas that have been
fitted using the decays of nuclei in their ground state. Here,
we shall consider these formulas from literature and refit the
parameters in them using an effective Q value as in Eq. (6)
and the data on excited nuclei considered in the present paper.

The different decay laws considered for refitting are as
follows.

(i) The Geiger-Nuttall [8] law reads as

log10 t (GN)
1/2 = a Q−1/2

eff + b, (12)

with Q in Eq. (1) replaced by Qeff .

035804-5



ROJAS-GAMBOA, KELKAR, AND CABALLERO PHYSICAL REVIEW C 110, 035804 (2024)

FIG. 5. Scatter plot of the ratio of the experimental and calculated empirical half-lives using the fitted Geiger-Nuttall law (circles), refitted
formulas of Royer (squares) and Qi et al. (open diamonds), and the fitted decay law of the present paper (filled diamonds) as a function of the
factor �E∗/Qα in Eq. (10) which reflects the ratio of the effective and ground state Q values.

(ii) Royer [12] performed fits by assuming that the ground
state half-lives depend on the Q value of the decay,
the mass of the parent nucleus, and its charge. Here
we refit the decay law in [12] by replacing Qα by Qeff

as follows:

t (Royer)
1/2 = a ZpQ−1/2

eff + b A1/6
p Z1/2

p + c. (13)

(iii) The half-lives of nuclei decaying by the emission of a
wide range of charged particles have been explained
by a UDL in [16]. Once again replacing Qα amounts
to changing χ ′ in [16] to χ ′

eff , such that

log10 t (Qi)
1/2 = a χ ′

eff + bρ ′ + c + d ρ ′√�(� + 1)

+ e
√

Ip(Ip + 1) + f Ap[1 − (−1)�]
(14)

with

χ ′
eff = ZαZd

√
AαAd

ApQeff
.

The first two terms of Eq. (14) dominate the Coulomb
penetration, while the last three ones include the an-
gular momentum and isospin dependence.

E. Comparison of the fitted decay laws

The four distinct linear models, namely, the Geiger-Nuttall
law, Eq. (12), the formula of Royer, Eq. (13), and the UDL
derived by Qi and collaborators, Eq. (14), refitted with effec-
tive Q values to the half-life data of excited nuclei (for the
same data set as in the previous sections), and the excitation-
energy-dependent decay law of the present paper, as given
in Eq. (10), are now compared. To evaluate the quality of
the regression model, we employ two metrics: r-squared and
MSE. While all four models yield r-squared scores close to

1, the excitation-energy-dependent decay law of the present
paper demonstrates a better fit compared to the others (see
Table II). Figure 5 displays the spread of the predicted data
for each model. In the case of the MSE, we observe that pre-
dictions derived from the Geiger-Nuttall law exhibit a larger
spread than those of the other models, indicating a higher de-
gree of variance from the experimental half-lives. In contrast,
the excitation-energy-dependent decay law of this paper once
again emerges as the most accurate model for reproducing the
experimental data.

IV. α DECAY HALF-LIVES AT
ELEVATED TEMPERATURES

It is natural to expect that at elevated surrounding tempera-
tures, α-emitting excited states of nuclei would be populated,
thus affecting the total half-lives. Understanding their con-
tribution could be relevant to nucleosynthetic outcomes in
environments where the temperatures are high enough to have
an impact. In [21], the behavior of half-lives of some parent
nuclei when their excited states were populated, as a function
of temperature, is considered. Specifically, in [21], those five
parent nuclei decaying to daughters at the neutron number
N = 126 shell closure were chosen due to the large number
of excited states decaying by α decay. Here, we extend that
work to a large set of nuclei and study the prediction power
of our model. We start by fixing the temperature and finding
the half-lives using known experimental information. We con-
tinue by applying our model of Eq. (10) to many α emitters,
and finalize by estimating the validity of our approximation
by comparing these two approaches.

The stellar α decay half-life is given by [30]

t1/2(T ) =
[

1

G
∑

i

gpi exp(−E∗
pi
/kBT )

t1/2(E∗
pi

)

]−1

, (15)
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where T is the ambient temperature, kB is the Boltzmann
constant, and the sum runs over the excited levels of the parent
(pi). G = ∑

i gpi exp(−E∗
pi
/kBT ) is the partition function, and

gpi = (2Jpi + 1) is the statistical weight of the parent’s excited
state with spin Jpi . Above, t1/2(E∗

pi
) is the α decay half-life of

the parent’s excited state i. The stellar α decay rate of 212Po,
using the above equation (15), was evaluated and analyzed in
great detail regarding each of the experimentally observed ex-
cited states decaying by α decay, in [22]. A toy model was also
presented to study the role of the contributing factors in (15)
to the temperature-dependent α decay half-lives. Using the
toy model, the author showed that, as long as the temperature
is below T = 2 GK, it was sufficient to consider the excited
levels up to 2 MeV to calculate the temperature-dependent
decay rate of 212Po. In the same spirit and as in [22], in the
next section, we shall investigate the temperature-dependent
half-lives of several nuclei using the available data on the α

decays of excited states.
The semiempirical excitation energy-dependent decay law

can be rewritten as [18]

log10[t1/2(E∗
p , E∗

d )] = log10[t1/2(GS → GS)] − β2χ
′ �E∗

Q
(16)

where t1/2(GS → GS) is the half-life when the emission oc-
curs from the ground state parent to the ground state daughter.
One can, therefore, consider an enhancement function similar
to that in [20], namely,

H = F (E∗
p , T ) × 10β2χ

′ �E∗
Q . (17)

This function will in principle have a similar behavior as
in [20] since F (E∗

p , T ), which contains the population proba-
bility, decreases exponentially and the remaining factor grows
very fast leading to a peak in the function H at some excitation
energies. However, the situation here is a bit more involved
due to the fact that H depends on the excitation energies of
the parent and daughter nuclei in contrast to [20], where only
decays to the ground state were considered.

A. Temperature dependence of half-lives from
experimental data on excited nuclei

Taking the available data from [28], we calculate half-lives
as a function of temperature t1/2(T ), for all the experimen-
tally studied α emitters with 65 � Zp � 94. We denote this
quantity as t exp

1/2 (T ), to indicate that only experimental data
have been introduced in the stellar rate [Eq. (15)]. We include
levels with known α decay branches only. Figure 6 shows the
results normalized to the zero temperature values, i.e. ground
state half-lives, for some of the nuclei considered. Changes are
more noticeable for temperatures beyond 1 GK (note the log
scale). While some nuclei present a decrease in their half-lives
(as previously found for the five nuclei in [21]), others exhibit
an increase. These enhancements are due to a considerably
large spin value of a parent’s excited state Jpi , and/or a longer
half-life of an excited state, both quantities compared to their
respective ground state values. Such is the case of, for exam-
ple, the isomeric state 9− of 210Bi, which has a total half-life
of 3.06 × 106 years, much longer than the 5.012 days half-life

FIG. 6. Temperature dependence of the α decay half-lives evalu-
ated as in Eq. (15) using the available experimental data on t1/2(E∗

pi
)

for the α decay of selected nuclei.

of the 1− ground state that has a large probability of also
decaying by β emission. An interesting behavior is that of
242Am, which has an initial increase in α decay half-life as T
departs from zero. That is followed by a continuous decrease
for temperatures above ≈1.5 GK. At low temperatures, the
isomeric 5− state with a total half-life of 141 years (compared
to 16.02 h of the ground state), and a low excitation energy
of 0.0486 MeV, can be populated contributing to an increase
in half-life. However, higher temperatures populate the state
(2+, 3−), at 2.2 MeV, which with a shorter half-life of 13.9 ms
leads to the observed decrease.

Despite the interesting features listed above, this analysis
is clouded by uncertainties in the data. In the absence of a
confirmed α decay, we have used the upper limits provided
by the NuDat database [28]. Further uncertainties arise when
one compares the NuDat information with the literature. For
example, NuDat provides a value of 10−6 for the upper limit
on the absolute α branch of the 1− ground state but in [31]
it was found that if there exists an α decay of 242Am with
the α particle energy in the range of 5000 to 5300 keV, its
probability is no more than 10−7 of the total number of decays
of the GS of 242Am. Given the range of α particle energies,
such decays would correspond to 242Am (GS) decaying to
some excited states of 238Np with excitation energies of about
300 to 500 keV. We chose the NuDat value for the branching
fraction and in the absence of information assumed that 242Am
(GS) decays to the GS of 238Np. Similarly, there are excited
states that can potentially contribute to α emission, but for
which there is no experimental information. For example,
the 0− state of 210Bi at energy 46.5 keV could transmute
to 206Tl; however, measuring its branching ratio would be
difficult given its electromagnetic half-life of about 3 ns. If
states like this one are indeed α emitters then the half-lives of
the isotopes would be reduced. Under these limitations, our
paper aims at providing estimates of stellar decay rates based
only on available experimental data.
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A word of caution is in order here. Our results are based
on the assumption that thermal equilibrium has been achieved
between nuclear states. It has been shown in literature [30]
that there exist criteria for limiting temperatures below which
the isomeric states for example are not in equilibrium with
the ground state and hence may be treated as different species
of nuclei [32]. In the absence of thermal equilibrium, the
assumptions regarding the occupation probabilities of nuclear
levels applied in this paper may be in doubt. While the initial
temperature conditions in several astrophysical sites might
allow for such an equilibrium, finding an isomer’s equilibra-
tion temperature, especially when decaying to stability is the
most dominant process, requires the knowledge of the specific
stellar conditions and the use of a specialized network [32].
Identifying astromers, i.e. isomeric states with an impactful
role in shaping light curves, needs careful consideration [33].
A detailed study of the β decay rates including isomers and
the consideration of their thermalization as a function of
temperature has been done in literature [32,34–36]. Ther-
mal equilibration of high-spin isomers requires transitions via
higher-lying intermediate states. This has been discussed in
the literature for the examples of 180Ta and 176Lu [37,38].

Details of a method to compute thermally mediated tran-
sition rates between the ground states and long-lived isomers
has been outlined in [32,39]. The authors in [32], however,
note that most isomers transition to lower energy states prefer-
entially over destruction channels and this connection ensures
that destruction cannot cause deviation from thermal equilib-
rium. Apart from this, isomers which do make a difference
may not have an effect in all environments. An isomer may
prevent thermalization at low temperatures but in a hotter
environment thermally driven transitions through intermediate
states can enable equilibration. For example, during r-process
nucleosynthesis, isomeric states of heavy nuclei can be pop-
ulated by neutron captures, radioactive decay of a parent
nucleus, and photon absorption among other processes. Fig-
ure 4 of [40] shows that within a few seconds the heaviest
elements, including α emitters, have been synthesized. At that
stage, temperatures are high so it is reasonable to assume
thermal equilibration between energy levels. After neutron
freeze-out, once neutron capture and photodissociation rates
are not in equilibrium, radioactive decay shapes the final abun-
dances and determines the evolution of light curves (see [33]
for the role of isomers in the case of β decay).

Performing such a calculation applying methods as those
developed in [32–34,39] is a full-fledged project in itself.
In [41], while developing a novel decay network Jade that
handles nuclear decays and transitions between excited states,
the authors note that the complete inclusion of isomers is
subject to challenges from a nuclear data perspective. The
same is in part true also for the data on α decay. Hence, the
half-lives of α decaying isotopes of the present paper can
serve as a first gauge to determine a rating of isomers that
are more influential especially given that not all isotopes with
isomeric states will be equally produced (see [34] for a rating
of β decaying isomers).

In Table III, we list the isomeric states of the isotopes that
we find to have increased half-lives; some of these count with
little or no experimental information. In the table, we highlight

TABLE III. Isotopes that exhibit longer half-lives with increasing
temperature, found in this paper. Isotopes marked with ∗ are also
listed in [42].

Isotope Isomer Jπ Total t exp
1/2 %α

149Tb 11/2− 4.17(5) min 0.02
153Ho∗ 1/2+ 9.3(5) min 0.18
153Tm∗ 1/2+ 2.5(2) s 92
155Lu∗ 1/2+ 138(8) ms 76

(25/2−) 2.69(3) ms 100
165Re∗ (11/2)− 1.74(6) s 13
166Ir (9+) 15.1(9) ms 98.2
185Hg∗ 13/2+ 21.6(15) s 0.03
187Pb∗ (13/2+) 18.3(2) s 9.5
191Po (13/2+) 93(3) ms 96
191At (7/2−) 2.1(+4–3) ms 100
192Bi∗ (10−) 39.6(4) s 10
193At (7/2−) 21(5) ms 100

(13/2+) 27(+4–3) ms 24
210Bi 9− 3.04 × 106(6) yr 100
211Po (25/2+) 25.2(6) s 99.98
214At 9− 760(15) ns 100
216Ac (9−) 441(7) µs 100
218Fr (8−, 9−) 22.0(5) ms 100
217Ac (29/2+) 740(40) ns 4.51
218U (8+) 0.56(+26–14) ms 100
242Am 5− 141(2) yr 0.45

(2+, 3−) 14.0(10) ms <0.005
254Es∗ 2+ 39.3(2) h 0.32

those that were also identified in [42] as a good starting point
for experimental searches.

Trends in half-lives can be seen in Fig. 7, where we show
the ratio of stellar half-lives to the ground state values across
the nuclear landscape. The temperature was fixed at T = 2
GK. The colored squares correspond to nuclei known to have
excited states that decay by α’s, the dark-gray squares corre-
spond to stable nuclei, and the light-gray ones are nuclei that
do not decay by α emission and/or have no observed excited
states emitting α’s. At modest temperatures of a few GK, there
is a good fraction of the total nuclei that exhibit an increase
in half-life by a factor of ≈10. A larger group of nuclei
show decreasing half-lives, with overall changes of an order
of magnitude, a few decreasing by two orders of magnitude,
and 242Am with a decrease of three orders of magnitude. An
asymptotic trend is observed and shows that nuclei with popu-
lated isomeric states do not show further increases. Instead of
the ground state, isomeric states are the main contributors to
the α decay half-life. If such nuclei were to have short-lived
α-emitting higher energy levels populated, then they would
decay faster. However, with the experimental information we
have at this point, the isomeric states are responsible for the
increase and asymptotic behavior of α decay half-lives at
elevated T . On the other hand, for nuclei with decreasing
half-lives at 2 GK, a trend towards further reduction of their
half-lives is expected as increased temperatures would lead to
a higher population of the excited α emitting states.
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FIG. 7. Temperature-dependent half-lives t exp
1/2 (T ) at T = 2 GK normalized by those at T = 0. Only experimental data (with known α

branching) have been used as an input in these stellar half-lives given by (15).

B. Validating the model for excitation
energy-dependent decay law

We now apply the excitation energy-dependent decay law
based on a model for α decay of excited nuclei, from the
previous sections, to predict the stellar half-lives of thermally
excited nuclei. Specifically, we use Eq. (10) to estimate the
half-lives of the excited states (with known α decay branches)
that enter Eq. (15) and denote this rate by t cal

1/2(T ). To do
so, we first find each nucleus’s predicted half-life of ex-
cited levels. The calculation included decays both from the
ground state of the parent to the ground state of the daugh-
ter and from excited state to ground and/or excited states
of the daughter (i.e. we have added to our data in Fig. 5,
decays from parent to daughter ground states). The calcula-
tion included 148 decays, in contrast to the fitting done in
Sec. III E, which comprised 342 decays. Using our predicted
half-lives of excited states, we calculate the half-life temper-
ature dependency, Eq. (15), for the set of nuclei that satisfy
the condition, |χ ′ �E∗

Q | � 15.2 MeV−1/2. The temperature de-

pendence of the α decay half-lives, t cal
1/2(T ), thus calculated

is very similar to that in Fig. 6. Hence, instead of display-
ing the calculated t cal

1/2(T ) as a function of the temperature,
T , we rather validate the model by comparing the ratio in
Fig. 6, namely R exp(T ) = t exp

1/2 (T )/t exp
1/2 (0), with R cal(T ) =

t cal
1/2(T )/t cal

1/2(0) and present the deviation of the calculated
numbers, R cal(T ), from R exp(T ) obtained from data, in the
form of a plot of the MSE as a function of temperature in
Fig. 8. The figure is presented on a log scale to show that the
MSE is indeed quite small over a large range of temperatures.
The model for t cal

1/2(T ) presented here may not necessarily pre-
dict the absolute values of temperature-dependent half-lives
for all nuclei accurately; however, it can give a good estimate
of the change in the half-lives at elevated temperatures for
hundreds of nuclei that are involved in the nucleosynthesis

path, allowing the community to perform good estimates of
related phenomena.

V. α DECAY IN DIFFERENT
ASTROPHYSICAL SCENARIOS

Before going over the summary of the findings of the
present paper, we present the relevance of this paper for dif-
ferent types of nucleosyntheses occurring in high-temperature
environments.

(i) One set of nuclei in our paper lies in the region of
neutron number N � 126 and proton number Z � 82.

FIG. 8. MSE of predicted temperature-dependent half-lives to
those based on experimentally known data. All values are normalized
to those at T = 0.
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Simulations have shown that nuclei in this mass re-
gion (see [43] and reference therein) and superheavy
ones (see [44,45], and recently revisited in Holm-
beck et al. [46,47]) can be synthesized in r-process
nucleosynthesis. At the early stages of an r process,
where temperatures start from ≈10 GK and reach 3
GK, there is competition between neutron capture,
and photodissociation (and for some conditions with
β decay), which forms the well-known r-process path
below the line of stability. At later stages, neutrons
are exhausted (i.e. at neutron freeze-out) and all the
very unstable neutron-rich nuclei, including actinides
and superheavies (if formed), will decay to stability.
Simulations identify α decays, especially the decay
chains originating from actinide nuclei, as important
contributors to the emitted light curve expected from
r-process events [48]. Depending on the nucleus,
there will be competition between decay channels
(including fission) and α decay. It is here that the α

decay will be of relevance.
(ii) The above picture, would not be related to the

neutron-deficient nuclei that we include in our paper
(those with 65 � Z < 82). However, our results could
be important for the synthesis of p nuclei (with 34 �
Z � 80) via the p process and the recently proposed
νr process (see point 3 below).

The abundances of p nuclei, located on the west
side of the stability valley, are still poorly under-
stood [43,49]. The p process (also known as γ

process) which occurs by the dissociation of neutron-
rich nuclei via reactions with photons is thought to be
responsible for the synthesis of p nuclei. The p pro-
cess moves matter from nuclei previously produced
by the s and r process to the proton-rich side of stabil-
ity [43]. It has been discussed that their synthesis has
contributions from different astrophysical scenarios,
with typical temperatures around 2–4 GK [50,51].
So far, the path of the p process is still unclear due
to uncertainties in nuclear physics and astrophys-
ical modeling [52,53]. However, α emission from
neutron-deficient nuclei competes with other channels
including β decay [43].

(iii) In r-process nucleosynthesis, neutrino interactions
also play a key role. During the explosive condi-
tions of an r process, neutron-rich nuclei can increase
their proton number by the capture of neutrinos, in
what has been recently proposed as the “νr pro-
cess” [54]. The large neutrino fluxes move matter
from the neutron-rich side towards the proton-rich
side. Again, unstable nuclei, in this νr-process path,
will decay to stability making α emission at those
relevant temperatures.

The present paper explores α decay in a range of tem-
peratures motivated by the conditions that can be achieved
in different astrophysical scenarios. We provide a way to
include the temperature dependency of this decay mode. Its
application to each of the above nucleosynthesis scenarios is

beyond the scope of this paper. However, it motivates future
work.

VI. SUMMARY AND OUTLOOK

Observations of “kilonovas” which followed the gravi-
tational waves after neutron star mergers have added fresh
impetus to the investigations of different forms of nuclear
decays. Neutron-rich matter which emerges from the colli-
sion of neutron stars undergoes the r-process nucleosynthesis
which is responsible for the production of heavy elements
such as gold and platinum. Radioactive decays of the heavy
elements power the thermal transients (kilonovas). Models
of kilonovas which depend on the energy production from
nuclear decays can give us information on the physical con-
ditions during the merger and the aftermath [55]. Apart from
this, the radioactive decay half-lives are also an essential in-
put [56] to the networks that predict the abundance of heavy
elements.

The semiempirical decay law for half-lives of excited nu-
clei presented in this paper can be used to fill in the missing
information on the half-lives of levels that enter such cal-
culations. A good number of the cases that are used in the
fits for the excitation energy-dependent decay law consist
of the parent in the ground state and the daughter in the
excited state. There exist nuclei with a percentage decay to
a daughter level, which is around 50 to 100 keV above the
ground state, much higher than that to the ground state. For
example, 224Pa has < 0.5% decay to the ground state of
220Ac but 70% decay to an excited state of 220Ac at 68.7
keV. 225Th, which has 90% α decay, has only 8.1% decay to
the ground state of 221Ra but 31% decay to a level at 321.4
keV. In most cases, the excited daughter decays quickly by
emitting a γ or series of γ ’s. This situation can change the en-
ergy production (distribution between decay modes) scenario
of kilonovas, where, if one includes an excitation energy-
dependent α decay law, the α’s will carry less energy and the
photons will carry a bit more. It remains to be tested if this
effect would be significant. However, if found important, we
note that the photons are also responsible in part for photon-
induced fission which in turn could have a small increased
contribution.

Given that α decay in the different astrophysical scenarios
discussed in the previous section can occur at temperatures
of the order of gigakelvin, it is crucial to consider the tem-
perature dependence of the nuclear decay rates or half-lives,
t1/2(T ), of heavy nuclei. The simplest formulation for t1/2(T )
involves performing a sum over the half-lives of all excited
states of a particular nucleus along with the corresponding
population probabilities of the excited states, for a certain
kind of decay. The stellar decay rates presented here rely on
the simplified assumption of thermal equilibrium between the
ground and excited states including isomeric states if any too.
The observed features listed below could change if one takes
into account the fact that up to a certain value of temperature,
isomeric states are not in equilibrium with the ground state of
the nucleus. We have investigated the temperature-dependent
α decay half-lives, t exp

1/2 (T ), of heavy elements, using data
on 66 cases with the criterion that at least one excited state
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decays by emitting an α. Salient features which arise from the
study of t exp

1/2 (T ) as a function of the temperature, T , can be
summarized as follows.

(i) The majority of the nuclei studied show a decrease
in the half-lives with temperature (T ), with a good
number of cases showing about an order of magnitude
decrease at T = 2 GK. A few cases with a decrease
between one and two orders of magnitude are also
identified.

(ii) Exceptional cases where the half-life increases with
temperature, however, at the most by an order of
magnitude are identified. The increase is associated
with the presence of isomeric states.

(iii) For T � 2 GK, t exp
1/2 (T ) saturates; however, the

decreasing half-lives fall further by an order of mag-
nitude before saturation in contrast to the cases
where the increase never exceeds an order of
magnitude.

The validity of the model for the decay law of excited nu-
clei presented earlier is tested by evaluating t1/2(T ) using the
empirical formula instead of the available data and comparing
it with t exp

1/2 (T ). With an MSE that remains quite small over a
large range of temperatures, the empirical decay law presented
here can be used in the absence of data. Though out of the
scope of the present paper, the decay law provided here can
be incorporated in nucleosynthesis network codes to study the
effects of thermally enhanced (or reduced) α decay rates on
the abundance of heavy elements. In passing, we note that the
decay law could prove useful for investigations in the field of
heavy-ion collisions that involve hot nuclei.

ACKNOWLEDGMENTS

N.G.K. thanks the Faculty of Science, Universidad de
Los Andes, Colombia, for financial support through Grant
No. INV-2023-162-2841. O.L.C. acknowledges support from
the National Sciences and Engineering Research Council of
Canada.

[1] H. Bethe and R. Bacher, Nuclear physics A. Stationary states of
nuclei, Rev. Mod. Phys. 8, 82 (1936).

[2] C. Weizsäcker, Zur theorie der Kernmassen, Z. Phys. 96, 431
(1935).

[3] P. Seeger, Semiempirical atomic mass law, Nucl. Phys. 25, 1
(1961).

[4] P. Möller and J. Nix, Nuclear mass formula with a Yukawa-plus-
exponential macroscopic model and a folded-Yukawa single-
particle potential, Nucl. Phys. A 361, 117 (1981).

[5] P. Möller and J. Nix, Nuclear masses from a unified
macroscopic-microscopic model, At. Data Nucl. Data Tables
39, 213 (1988).

[6] P. Möller, A. Sierk, T. Ichikawa, and H. Sagawa, Nuclear
ground-state masses and deformations: FRDM (2012), At. Data
Nucl. Data Tables 109–110, 1 (2016).

[7] N. J. Davidson, S. S. Hsiao, J. Markram, H. G. Miller, and
Y. Tzeng, A semi-empirical determination of the properties of
nuclear matter, Nucl. Phys. A 570, 61 (1994).

[8] H. Geiger and J. Nuttall, LVII. The ranges of the α particles
from various radioactive substances and a relation between
range and period of transformation, London Edinburgh Philos.
Mag. & J. Sci. 22, 613 (2009).

[9] C. Qi et al., On the validity of the Geiger-Nuttall alpha-decay
law and its microscopic basis, Phys. Lett. B 734, 203 (2014).

[10] Y. Ren and Z. Ren, New Geiger-Nuttall law for α decay of
heavy nuclei, Phys. Rev. C 85, 044608 (2012).

[11] V. E. Viola Jr. and G. T. Seaborg, Nuclear systematics of the
heavy elements-II lifetimes for alpha, beta, and spontaneous
fission decay, J. Inorg. Nucl. Chem. 28, 741 (1966).

[12] G. Royer, Alpha emission and spontaneous fission through
quasi-molecular shapes, J. Phys. G 26, 1149 (2000).

[13] T. Dong and Z. Ren, New calculations of α-decay half-lives by
the Viola-Seaborg formula, Eur. Phys. J. A 26, 69 (2005).

[14] C. Qi, F. R. Xu, R. J. Liotta, and R. Wyss, Universal decay law
in charged-particle emission and exotic cluster radioactivity,
Phys. Rev. Lett. 103, 072501 (2009).

[15] D. Delion, Universal decay rule for reduced widths, Phys. Rev.
C 80, 024310 (2009).

[16] A. Soylu and C. Qi, Extended universal decay law formula
for the α and cluster decays, Nucl. Phys. A 1013, 122221
(2021).

[17] D. S. Delion and A. Dumitrescu, Systematics of α-decay tran-
sitions to excited states, Phys. Rev. C 92, 021303(R) (2015).

[18] D. F. Rojas-Gamboa, N. Kelkar, and O. Caballero, Tempera-
ture dependence of cluster decay, Nucl. Phys. A 1028, 122524
(2022).

[19] D. F. Rojas-Gamboa, Ground- and excited-state calculations of
cluster radioactivity and alpha decay, Ph.D. thesis, Universidad
de los Andes, 2022.

[20] F. Perrone and D. Clayton, Thermally enhanced α-decay and
the s-process, Astrophys. Space Sci. 11, 451 (1971).

[21] J. P. Velasquez, O. Caballero, and N. Kelkar, Alpha de-
cay of thermally excited nuclei, J. Phys. G 50, 015203
(2023).

[22] P. Mohr, α-decay half-life of 212Po at stellar temperatures,
J. Phys. G 50, 075103 (2023).

[23] J. P. Velasquez, N. Kelkar, and O. Caballero, Reply to comment
on Alpha decay of thermally excited nuclei, J. Phys. G 50,
098001 (2023).

[24] G. Gamow and C. Critchfield Theory of Atomic Nucleus and
Nuclear Energy Sources (Clarendon, Oxford, 1949).

[25] X. Zhang, C. Xu, and Z. Ren, α decay to members of favored
bands in both even-even and odd-A nuclei, Phys. Rev. C 84,
044312 (2011).

[26] C. Qi, D. S. Delion, R. J. Liotta, and R. Wyss, Effects of
formation properties in one-proton radioactivity, Phys. Rev. C
85, 011303(R) (2012).

[27] N.-N. Ma, T.-L. Zhao, W.-X. Wang, and H.-F. Zhang, Simple
deep-learning approach for α-decay half-life studies, Phys. Rev.
C 107, 014310 (2023).

[28] National Nuclear Data Center (NNDC) Chart of Nuclides, avail-
able at http://www.nndc.bnl.gov.

035804-11

https://doi.org/10.1103/RevModPhys.8.82
https://doi.org/10.1007/BF01337700
https://doi.org/10.1016/0029-5582(61)90147-X
https://doi.org/10.1016/0375-9474(81)90473-5
https://doi.org/10.1016/0092-640X(88)90022-8
https://doi.org/10.1016/j.adt.2015.10.002
https://doi.org/10.1016/0375-9474(94)90269-0
https://doi.org/10.1080/14786441008637156
https://doi.org/10.1016/j.physletb.2014.05.066
https://doi.org/10.1103/PhysRevC.85.044608
https://doi.org/10.1016/0022-1902(66)80412-8
https://doi.org/10.1088/0954-3899/26/8/305
https://doi.org/10.1140/epja/i2005-10142-y
https://doi.org/10.1103/PhysRevLett.103.072501
https://doi.org/10.1103/PhysRevC.80.024310
https://doi.org/10.1016/j.nuclphysa.2021.122221
https://doi.org/10.1103/PhysRevC.92.021303
https://doi.org/10.1016/j.nuclphysa.2022.122524
https://doi.org/10.1007/BF00649638
https://doi.org/10.1088/1361-6471/aca03c
https://doi.org/10.1088/1361-6471/acd39a
https://doi.org/10.1088/1361-6471/ace63b
https://doi.org/10.1103/PhysRevC.84.044312
https://doi.org/10.1103/PhysRevC.85.011303
https://doi.org/10.1103/PhysRevC.107.014310
http://www.nndc.bnl.gov


ROJAS-GAMBOA, KELKAR, AND CABALLERO PHYSICAL REVIEW C 110, 035804 (2024)

[29] F. Pedregosa et al., Scikit-learn: Machine Learning in Python,
JMLR 12, 2825 (2011).

[30] R. Ward and W. Fowler, Thermalization of long-lived nuclear
isomeric states under stellar conditions, Astrophys. J. 238, 266
(1980).

[31] B. M. Aleksandrov et al., The decay of 242Am, Sov. At. Energy
27, 724 (1969).

[32] G. W. Misch et al., Astromers: Nuclear isomers in astrophysics,
Astrophys. J. Suppl. Series 252, 2 (2021).

[33] S.-i. Fujimoto and M.-a. Hashimoto, The impact of isomers on
a kilonova associated with neutron star mergers, MNRAS 493,
L103 (2020).

[34] G. W. Misch, T. M. Sprouse, and M. R. Mumpower, Astromers
in the radioactive decay of r-process nuclei, ApJL 913, L2
(2021).

[35] R. C. Runkle, A. E. Champagne, and J. Engel, Thermal equili-
bration of 26Al, Astrophys. J. 556, 970 (2001).

[36] R. Reifarth et al., Treatment of isomers in nucleosynthesis
codes, Int. J. Mod. Phys. A 33, 1843011 (2018).

[37] T. Hayakawa, P. Mohr, T. Kajino, S. Chiba, and G. J. Mathews,
Reanalysis of the (J = 5) state at 592 keV in 180Ta and its
role in the ν-process nucleosynthesis of 180Ta in supernovae,
Phys. Rev. C 82, 058801 (2010).

[38] P. Mohr, S. Bisterzo, R. Gallino, F. Kappeler, U. Kneissl, and
N. Winckler, Properties of the 5− state at 839 keV in 176Lu and
the s-process branching at A = 176, Phys. Rev. C 79, 045804
(2009).

[39] S. S. Gupta and B. S. Meyer, Internal equilibration of a nucleus
with metastable states: 26Al as an example, Phys. Rev. C 64,
025805 (2001).

[40] M. R. Mumpower et al., β-delayed fission in r-process nucle-
osynthesis, Astrophys. J. 869, 14 (2018).

[41] T. M. Sprouse, G. W. Misch, and M. R. Mumpower, Isochronic
evolution and the radioactive decay of r-process nuclei,
Astrophys. J. 929, 22 (2022).

[42] G. W. Misch and M. R. Mumpower, Astromers: Status and
prospects, Eur. Phys. J. Spec. Top. 233, 1075 (2024).

[43] A. Arcones and F. K. Thielemann, Origin of the elements,
Astron. Astrophys. Rev. 31, 1 (2023).

[44] I. Petermann et al., Have superheavy elements been produced
in nature? Eur. Phys. J. A 48, 122 (2012).

[45] J. de J. Mendoza-Temis, M. R. Wu, K. Langanke, G. Martinez-
Pinedo, A. Bauswein, and H.-T. Janka, Nuclear robustness of
the r process in neutron-star mergers, Phys. Rev. C 92, 055805
(2015).

[46] E. M. Holmbeck et al., Superheavy elements in kilonovae,
Astrophys. J. Lett. 951, L13 (2023).

[47] E. M. Holmbeck, T. M. Sprouse, and M. R. Mumpower, Nucle-
osynthesis and observation of the heaviest elements, Eur. Phys.
J. A 59, 28 (2023).

[48] J. Barnes, D. Kasen, M.-R. Wu et al., Astrophys. J. 829, 110
(2016).

[49] M. Arnould and S. Goriely, The p-process of stellar nucleosyn-
thesis: Astrophysics and nuclear physics status, Phys. Rep. 384,
1 (2003).

[50] D. L. Lambert, The p-nuclei: Abundances and origins,
Astron. Astrophys. Rev. 3, 201 (1992).

[51] A. Choplin et al., The p-process in exploding rotating massive
stars, Astron. Astrophys. 661, A86 (2022).

[52] L. Roberti et al., The γ -process nucleosynthesis in core-
collapse supernovae I. A novel analysis of γ -process
yields in massive stars, Astron. Astrophys. 677, A22
(2023).

[53] M. Pignatari, K. Göbel, R. Reifarth, and C. Travaglio, The
production of proton-rich isotopes beyond iron: The γ -process
in stars, Int. J. Mod. Phys. E 25, 1630003 (2016).

[54] Z. Xiong, G. Martinez-Pinedo, O. Just, and A. Sieverding,
Production of p nuclei from r-process seeds: The νr process,
Phys. Rev. Lett. 132, 192701 (2024).

[55] B. Metzger, Kilonovae, Living Rev. Relativ. 23, 1
(2020).

[56] N. Kelkar, D. F. Rojas-Gamboa, O. Caballero, and J.
Perez Velasquez, Alpha and cluster decay in r-process
nucleosynthesis, Acta Phys. Pol. A 142, 324 (2022).

035804-12

https://www.jmlr.org/papers/v12/pedregosa11a.html
https://doi.org/10.1086/157983
https://doi.org/10.1007/BF01816912
https://doi.org/10.3847/1538-4365/abc41d
https://doi.org/10.1093/mnrasl/slaa016
https://doi.org/10.3847/2041-8213/abfb74
https://doi.org/10.1086/321594
https://doi.org/10.1142/S0217751X1843011X
https://doi.org/10.1103/PhysRevC.82.058801
https://doi.org/10.1103/PhysRevC.79.045804
https://doi.org/10.1103/PhysRevC.64.025805
https://doi.org/10.3847/1538-4357/aaeaca
https://doi.org/10.3847/1538-4357/ac470f
https://doi.org/10.1140/epjs/s11734-024-01136-z
https://doi.org/10.1007/s00159-022-00146-x
https://doi.org/10.1140/epja/i2012-12122-6
https://doi.org/10.1103/PhysRevC.92.055805
https://doi.org/10.3847/2041-8213/acd9cb
https://doi.org/10.1140/epja/s10050-023-00927-7
https://doi.org/10.3847/0004-637X/829/2/110
https://doi.org/10.1016/S0370-1573(03)00242-4
https://doi.org/10.1007/BF00872527
https://doi.org/10.1051/0004-6361/202243331
https://doi.org/10.1051/0004-6361/202346556
https://doi.org/10.1142/S0218301316300034
https://doi.org/10.1103/PhysRevLett.132.192701
https://doi.org/10.1007/s41114-019-0024-0
https://doi.org/10.12693/APhysPolA.142.324

