
PHYSICAL REVIEW C 110, 034608 (2024)

Machine learning study of fission barriers in superheavy nuclei
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The synthesis of superheavy elements represents the forefront of exploring the properties of unknown
nuclear matter. Theoretically, significant uncertainties in predicting the fission barriers of superheavy nuclei
make accurate calculations of the survival probabilities of compound nuclei extremely challenging. This study
utilizes a machine learning methodology to predict the fission barriers of nuclides with 93 < Z � 120 and
135 < N � 184. We have estimated the fission barriers for a total of 660 nuclides, and leveraged these fission
barriers to calculate the crucial survival probabilities in the synthesis of superheavy elements. Based on this, we
calculated the reaction cross sections for the 48Ca + 243Am reaction within the framework of the dinuclear system
model, and compared the results with experimental data measured using the new gas-filled separator DGFRS-2.
The calculations successfully reproduced the experimental data within an acceptable range of error. Additionally,
we explored the optimal synthesis conditions for synthesizing the new elements Z = 119 and Z = 120, including
projectile-target combinations, incident energies, and maximum reaction cross sections.
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I. INTRODUCTION

The synthesis of new elements is a forefront topic in
nuclear physics [1–3]. By successfully synthesizing element
118, the expansion of the periodic table has not only deep-
ened our understanding of nuclear structure but also advanced
progress in physics, chemistry, and interdisciplinary fields
[4–7]. However, the synthesis of the new elements 119
and 120 poses significant scientific and technical challenges
[2,8,9]. The most important challenge in synthesizing new
elements is to choose the optimal projectile-target combina-
tion and the optimal incident energy to obtain the maximum
reaction cross section [10–12].

The key to successfully synthesizing new elements is
their stability, which depends on their ability to resist fission
[13–16]. Thus, accurately determining the fission barrier is
essential for predicting the synthesis of new elements [17–19].
However, the scarcity of experimental data, coupled with dis-
crepancies among theoretical models, introduces substantial
uncertainties into the current predictions of fission barriers
for superheavy elements [20]. In Ref. [21], experimental data
on fission barriers are available only up to atomic number
Z = 96, with no data available for superheavy nuclei. The
fission barriers used in the calculation of survival probabilities
for superheavy nuclei are usually estimated using various
theoretical models. Common models for estimating the fission
barriers include the finite range liquid drop model (FRLDM)
[22], the extended Thomas-Fermi plus Strutinsky integral
(ETFSI) based on the Skyrme SkSC4 functional [23,24],
the Lublin-Strasbourg drop (LSD) approach [25,26], and the
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heavy nucleus (HN) model [17]. These models generally
show a deviation within 2 MeV from the experimental values
for the actinide fission barriers. In the superheavy nuclear
region where experimental data are lacking, the predicted
fission barriers differ significantly. The highest difference in
the fission barriers for the isotopic chains of Z = 112–120
reaches up to 6 MeV [27]. Such a large margin of error is
unacceptable for estimating survival probabilities.

In recent years, machine learning have been widely applied
in the field of nuclear physics, for tasks such as calculating
alpha decay half-lives [28], estimating beta decay energies
[29], and predicting nuclear masses [30–32]. We also noticed
some other works, such as a machine learning framework
successfully encoding several correlated aspects of nuclear
deformation [33], and neural networks being able to emulate
potential energy and collective inertia well [34]. These are
sufficient to illustrate the important role of machine learning
in nuclear physics. For the study of superheavy nuclear fission
processes, Ref. [35] shows that the spontaneous fission half-
lives predicted by the FRLDM are usually longer than the
experimental values. However, the overall trend of these pre-
dictions aligns well with the experimental data. This suggests
that the FRLDM captures most of the essential physics but
misses some aspects, resulting in fission barrier values that
are typically higher than those observed experimentally. In
this paper, we address this discrepancy by first pretraining an
artificial neural network (ANN) on the fission barrier data pro-
vided by the FRLDM. This pretraining helps the ANN learn
the general physical characteristics. We then apply transfer
learning, using a limited set of experimental data to fine tune
the model.

Our goal is to reasonably predict the fission barriers in
the region of superheavy nuclei, which is a crucial step in
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calculating the survival probability. Subsequently, based on
the dinuclear system model, the optimal projectile-target com-
bination, optimal incident energy, and maximum reaction
cross section are explored for the synthesis of new elements.
In Sec. II, we introduce the theoretical framework. In Sec. III,
we analyze and discuss the results. In Sec. IV, we summarize
our work.

II. THEORETICAL FRAMEWORK

A. Neural network details

The ANN architecture includes an input layer, two hidden
layers, and an output layer. The input layer accepts two main
features: Z and N , representing the number of protons and
neutrons, respectively. These inputs are processed through two
consecutive hidden layers, each containing 64 neurons. The
use of the ReLU (rectified linear unit) activation function in
these hidden layers introduces nonlinear functionality. The
output layer has a separate neuron for predicting the fission
barrier. The ANN is trained using two datasets: theoretical
data and experimental data. First, the model is pretrained on
theoretical data. Then, it uses transfer learning techniques
to retrain on experimental data for fine tuning the model.
The transfer learning method implemented in this study re-
trains the last layer of the network with experimental data.
Simply put, the ANN first learns general physical features
from theoretical data and then trains on experimental data
to find the missing physics. During the training process, the
mean squared error (MSE) loss function is used, which is
expressed as

MSE = 1

N

N∑
i=1

(Bi − BANN,i )
2, (1)

where N represents the total number of data points, Bi the de-
sired output, and BANN,i the output from the ANN. The model
uses the Adam optimizer with an initial learning rate of 0.001.
Training spans 5000 epochs, with batch processing and early
stopping based on validation loss to avoid overfitting. Regular
evaluations on the validation set help monitor performance
and adjust training as needed.

B. Calculating production cross section details

The production cross section, denoted as σ , is expressed as

σ = σcap × Pcn × Wsur, (2)

here, σcap represents the capture cross section, which can be
calculated using the empirical coupled channel model [36].
Detailed descriptions of the calculations for the capture cross
section can be obtained from Ref. [18]. Pcn is the probability
of the evolution of the system from the contact configuration
to the formation of the compound nucleus. The fusion proba-
bility of the dinuclear system is given by

Pcn(Ec.m., J ) =
ZBG∑

Z1=1

NBG∑
N1=1

P(Z1, N1, E1, τint ), (3)

here, the time evolution of the distribution probability func-
tion P(Z1, N1, E1, t ) can be obtained by solving the master

FIG. 1. Training and validation loss curves.

equation in the corresponding potential energy surface [37].
The NBG and ZBG are the neutron number and proton num-
ber at the Businaro-Gallone point respectively. The fission
barriers are crucial for estimating the survival probabilities
of superheavy nuclei. During the deexcitation of an excited
compound nucleus, there is competition between neutron
evaporation and fission [38,39]. The survival probability of
emitting xn neutrons can be written as [40]

Wsur(E
∗
CN, x, J ) = P(E∗

CN, x, J )
x∏

i=1

[
�n

�n + � f

]
i

, (4)

in the formula, E∗
CN represents the excitation energy of the

compound nuclei. P(E∗
CN, x, J ) is the realization probability of

emitting x neutrons, which is addressed in detail in Ref. [16].
The neutron evaporation width �n and the fission width � f are
calculated using a statistical model [18].

III. RESULTS AND DISCUSSION

A. ANN fission barrier estimations

In the pretraining phase, the ANN consists of three fully
connected layers: an input layer with two feature values, two
hidden layers with 64 neurons, and an output layer repre-
senting the fission barriers of the considered nuclei. The data
for the fission barriers are sourced from the FRLDM [22],
focusing on nuclear ranges with proton numbers 93 < Z �
120, neutron numbers 135 < N � 184, and mass numbers
A > 239, encompassing a total of 660 datasets. We divided the
660 datasets into a training set and a validation set with a ratio
of 6:4. The loss curves for both the training set and validation
set are illustrated in Fig. 1. The blue line represents the loss
on the training set, indicating the model’s performance in
learning from the training data. The orange line represents
the loss on the validation set, reflecting how well the model
generalizes to unseen data. The consistent decrease in loss
over epochs suggests effective learning, and the close tracking
of both lines indicates a balanced fit without evident signs of
overfitting or underfitting.

In the transfer learning phase, the weights of the model’s
input layer and hidden layers are frozen. This means that
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FIG. 2. Comparison of experimental and theoretical estimations of fission barriers Bf : blue stars represent experimental results (from
Ref. [21]), black squares denote FRLDM results (from Ref. [22]), red triangles indicate results from our ANN for 16 training and validation
sets, and solid red stars show our ANN results for four test sets.

the weights of these layers do not change during the transfer
learning process. We only retrain the output layer, and the
weights of this layer will be updated and retrained based on
the experimental data set, thereby fine tuning the pretrained
network. In this study, the experimental data are obtained from
Ref. [21], focusing on nuclear ranges with proton numbers
93 < Z � 120, neutron numbers 135 < N � 184, and mass
numbers A > 239, comprising a total of 20 data points. This
experimental dataset is initially split such that 80% is used
for both training and validation purposes, while the remaining
20% is reserved as the test set, crucial for evaluating the
model’s performance on unseen data. Further, the 80% portion
allocated for training and validation is subdivided, with 60%
used as the training set and the remaining 40% serving as the
validation set. Figure 2 presents the estimated values from our
ANN (a total of 20 data points, with 16 from the training and
validation sets, and 4 from the test set), and compares them
with the experimental values and the estimated values from
the FRLDM. One can observe that the results estimated by
our ANN are very close to the experimental values, with a
maximum deviation not exceeding 0.7 MeV. Furthermore, the
FRLDM estimated results exhibit an MSE of 0.491 MeV for
all 20 data points, while the ANN estimated results have an
MSE of 0.0651 MeV for the same 20 data points. Notably, the
ANN estimated results show an MSE of only 0.00233 MeV
when compared to the four test data points. These findings
suggest that the ANN approach is suitable for estimating
fission barriers.

We also used ANN to estimate the fission barriers of su-
perheavy nuclei, which are far from the actinide nuclei with
experimental data used in transfer learning, to understand the
predictive capability of the ANN method. In Table I, we com-
pare several theoretical estimations with experimental data.
Notably, the experimental data in Ref. [42] only provides
lower limit values. As we observed, both FRLDM [22] and
SHF [41] significantly overestimate the fission barriers. For
nuclide 292114, FRLDM predicts a value of 9.98 MeV, which
is about 3 MeV higher than the experimental value. For nu-
clide 294116, SHF predicts 9.59 MeV, also considerably higher
than the experimental data. Meanwhile, HN [17] and ETFSI

[24] estimates for the fission barriers of nuclides 284112 and
286112 are lower than the lower limits of the experimental val-
ues. Our ANN results are slightly higher than the experimental
values, ranging from 0.7 to 1.7 MeV above, but, considering
that the experimental data represents lower limits, the fission
barriers predicted by the ANN in the superheavy region are
relatively reasonable, further demonstrating the effectiveness
of the ANN approach.

In Fig. 3, we show the contour map of estimated fission
barriers by FRLDM and ANN. The figure contains the fission
barriers for superheavy nuclei in the range of proton numbers
93 < Z � 120, neutron numbers 135 < N � 184, and mass
numbers A > 239 (totaling 660 data points). It can be seen
that for the entire range of nuclei considered, the fission bar-
riers estimated by FRLDM are all below about 10 MeV, and
those by ANN are all below about 8 MeV. The range with
higher fission barriers for both occurs approximately within

TABLE I. Comparison of fission barriers (in MeV) of superheavy
nuclei with other theoretical evaluations: SHF [41], HN [17], ETFSI
[24], FRLDM [22], ANN (present paper), and experimental data (the
lower limits) taken from Ref. [42].

Nucleus SHF HN ETFSI FRLDM ANN Exp

283112 2.20 6.99 6.21 5.50
284112 6.06 4.29 2.20 7.41 6.41 5.50
285112 2.70 8.00 6.61 5.50
286112 6.91 5.01 3.60 8.24 6.80 5.50
288114 8.12 5.53 6.10 9.18 7.75 6.70
289114 6.70 9.61 7.92 6.70
290114 8.52 5.83 6.60 9.89 7.91 6.70
291114 7.30 9.97 7.89 6.70
292114 6.34 7.20 9.98 7.87 6.70
292116 9.35 6.22 6.50 9.26 8.01 6.40
293116 7.00 9.35 8.03 6.40
294116 9.59 6.28 7.20 9.46 8.06 6.40
295116 7.70 9.49 8.08 6.40
296116 6.07 7.60 9.10 7.90 6.40
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FIG. 3. Contour map of estimated fission barriers Bf for superheavy nuclei.

114�Z � 116 and 174 � N � 180. Within this range, the
fission barriers estimated by ANN are overall 1–2 MeV lower
than those estimated by FRLDM.

B. Production cross sections of superheavy nuclei

The fission barriers are crucial for estimating the survival
probabilities of superheavy nuclei. During the deexcitation
of an excited compound nucleus, there is competition be-
tween neutron evaporation and fission [38,39]. In Fig. 4, we
present the survival probabilities calculated using different
fission barriers. The fission barriers estimated by FRLDM
are typically higher, leading to higher survival probabilities.
It is clear that varying fission barriers used in calcula-
tions cause significant differences in survival probabilities,

FIG. 4. The survival probabilities for the 2n, 3n, 4n, and 5n evap-
oration channels in the 48Ca + 243Am → 291−xn115 + xn reaction.

sometimes even by an order of magnitude. Hence, selecting
relatively accurate fission barriers is crucial for estimating
survival probabilities and cross sections in heavy-ion fusion
reactions.

Currently, there is relatively more experimental data on
the reaction cross section for 48Ca + 243Am [6,43–45], in-
cluding the latest results generated at the new gas-filled
separator DGFRS-2 of the superheavy element factory at
JINR [44,45]. Based on the obtained survival probability, we
calculated the cross section for the reaction within the frame-
work of the dinuclear system model. In Fig. 5, we present
the cross sections for the reaction 48Ca + 243Am, and com-
pare them with experimental data. According to Ref. [44],

σ

FIG. 5. Production cross sections for the 2n, 3n, 4n, and 5n
evaporation channels in the 48Ca + 243Am → 291−xn115 + xn reac-
tion. Vertical error bars indicate total uncertainties. Symbols with
arrows denote upper cross section limits. Data are represented by
open symbols (from Ref. [43]), half-closed symbols (from Ref. [6]),
and closed symbols (representing the latest results obtained with
the DGFRS-2, from Refs. [44,45]). The lines are the result of our
calculation.
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TABLE II. Estimated fission barriers for isotopic chains of
Z = 119 and Z = 120 by our ANN.

Nucleus Bf (MeV) Nucleus Bf (MeV)

292119 7.23 297120 7.30
293119 7.31 298120 7.37
294119 7.39 299120 7.29
295119 7.47 300120 6.93
296119 7.52 301120 6.57
297119 7.54 302120 6.21

the cross section for the 3n evaporation channel in the reac-
tion 48Ca + 243Am, measured through DGFRS-2, is 17.1+6.3

−4.7
pb. This is about twice the value measured by DGFRS in
Ref. [6], and it is the largest value for the known superheavy
nuclei at the island of stability. In the 3n evaporation chan-
nel, our calculation resulted in a maximum cross section of
14.45 pb, which astonishingly corresponds with the results
produced at DGFRS-2. In these experiments, products of the
4n evaporation channel were observed within an excitation
energy range of 35–49 MeV, with the maximum measured
cross section at about 42 MeV being 1.4+3.2

−1.2 pb. In the 4n
channel, at an excitation energy of 42 MeV, our calculated
result is 3.23 pb, again consistent with experimental values.
Reference [45] first reported results for the 5n evaporation
channel of this reaction, with a cross section of 0.5+1.3

−0.4 pb at
E∗

CN = 49 MeV. Our calculations show a cross section of 0.35
pb at E∗

CN = 49 MeV, fitting well within the error margin of
the experimental data. Within the framework of the dinuclear
system model, the cross sections calculated using the fission
barriers estimated by our ANN have accurately reproduced
the latest results measured at DGFRS-2, which also indirectly
demonstrates the effectiveness of our ANN. To further study
the synthesis and properties of new elements Z = 119 and
Z = 120, we have provided in Table II the fission barriers of
isotopic chains of Z = 119 and Z = 120 as estimated by our
ANN. It can be seen that the fission barriers of these nuclei

are all about 6 MeV or higher, suggesting that compared to
previously synthesized superheavy nuclei, the probability of
survival does not decrease rapidly. In the synthesis of super-
heavy elements, 48Ca has traditionally been the projectile of
choice [46], extending the periodic table to element 118. For
the synthesis of new elements Z = 119 and Z = 120, due
to the lack of suitable target nuclei, 54Cr has been selected
as the projectile. In Fig. 6, we present the production cross
sections for the 2n, 3n, 4n, and 5n evaporation channels in
the reactions using 54Cr to synthesize new elements Z = 119
and Z = 120. It is observed that for the synthesis of Z = 119,
the optimal incident energy is 241.65 MeV, with a maximum
production cross section of 0.005 68 pb. For the synthe-
sis of Z = 120, the optimal incident energy is identified as
251.85 MeV, with a maximum production cross section of
0.00019 pb.

IV. SUMMARY

This study presents an effective ANN model that can
quickly estimate fission barriers affecting the survival prob-
ability of superheavy nuclei. The model provides 660 fission
barrier estimates for nuclei ranging from Z = 93 to Z = 120
and N = 135 to N = 184. While we cannot determine the
exact accuracy of these estimates, they appear reasonable
based on current experimental data. Additionally, this study
highlights the importance of fission barrier in calculating the
survival probability of heavy-ion fusion reactions. Leveraging
these fission barriers, we reconstructed the experimental reac-
tion cross section of 48Ca + 243Am within the framework of
the dinuclear system model and explored the optimal incident
energy and maximum reaction cross section for synthesizing
new elements. We hope our research provides insights for the
study of superheavy nuclei reactions and structures.
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FIG. 6. Production cross sections for 2n, 3n, 4n, and 5n evaporation channels in the reactions producing new elements Z = 119 and
Z = 120.
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