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Background: Calculating microscopic optical potentials for elastic scattering at intermediate energies from light
nuclei in an ab initio fashion within the Watson expansion has been established within the last few years.
Purpose: Based on the Watson expansion of the multiple scattering series, we employ a nonlocal translationally
invariant nuclear density derived within the symmetry-adapted no-core shell model (SA-NCSM) framework
from a chiral next-to-next-to-leading order (NNLO) nucleon-nucleon interaction and the very same interaction
for a consistent full-folding calculation of the effective (optical) potential for nucleon-nucleus scattering for
medium-heavy nuclei.
Methods: The leading order effective (optical) folding potential is computed by integrating over a translation-
ally invariant SA-NCSM one-body scalar density, spin-projected momentum distribution, and the Wolfenstein
amplitudes A, C, and M. The resulting nonlocal potentials serve as input for a momentum space Lippmann-
Schwinger equation. In the SA-NCSM, the model space is systematically up-selected using Sp(3, R) symmetry
considerations.
Results: For the light nucleus of 6He, we establish a systematic selection scheme in the SA-NCSM for scattering
observables. Then, we apply this scheme to calculations of scattering observables, such as differential cross
sections, analyzing powers, and spin rotation functions for elastic proton scattering from 20Ne and 40Ca in the
energy regime between 65 and 200 MeV, and compare to available data.
Conclusions: Our calculations show that the leading order effective nucleon-nucleus potential in the Watson
expansion of multiple scattering theory obtained from an up-selected SA-NCSM model space describes 40Ca
elastic scattering observables reasonably well to about 60 degrees in the center-of-mass frame, which coincides
roughly with the validity of the NNLO chiral interaction used to calculate both the nucleon-nucleon amplitudes
and the one-body scalar and spin nuclear densities.
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I. INTRODUCTION

The study of atomic nuclei depends on nuclear reactions
to extract structure and dynamics observables. A specific
approach to studying nuclear reactions consists of reducing
the many-body scattering problems to a few-body problem
by isolating the relevant degrees of freedom [1] to arrive at
a few-body problem that is solved with the use of effective
interactions, which are often called optical potentials. While
different techniques have been implemented for these effec-
tive interactions from first principles, e.g., Refs. [2–7], we
focus here on the use of the symmetry-adapted no-core shell
model (SA-NCSM) [8–10] to provide the relevant structure
inputs. Specifically, we combine the one-body densities for
the target calculated within the SA-NCSM framework with
the multiple scattering approach in leading order in the spec-
tator expansion to arrive at ab initio effective interactions
for elastic nucleon-nucleus (NA) scattering. This spectator
expansion allows using the same nucleon-nucleon (NN) in-
teraction when calculating the one-body densities, which are
then folded with those NN amplitudes. Using realistic NN

[and three-nucleon force (3NF) interactions] derived from
chiral effective field theory, we can implement this procedure
within a fully ab initio framework, provided we include all
relevant terms in the spectator expansion at each order. The
recent work of Ref. [5] constructed and implemented effective
nucleon-nucleus interactions that include the spin of the struck
target nucleon consistently at the leading order.

The pioneering work in deriving an ab initio effective
interaction for NA elastic scattering for intermediate projec-
tile energies was based on the no-core shell model (NCSM)
and thus is limited to light nuclei with masses up to A �
16 [5,6,11,12] for reasonably well converged calculations of
binding energies. The SA-NCSM can push the structure calcu-
lations to higher mass nuclei (A � 48 [10,13]) by considering
shape-related symmetries to construct the basis and selecting
only the non-negligible configurations. The advantage of this
selection process is the drastic reduction in the number of
basis states, which in turn allows calculations to move toward
heavier nuclei.

In this work, the nonlocal, translationally invariant
scalar one-body densities and spin-projected momentum
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distributions are derived from the SA-NCSM and employed
for the calculation of a leading order—in the spectator
expansion—effective NA interaction for targets of the halo
nucleus 6He, the deformed nucleus 20Ne, and the medium-
mass nucleus 40Ca. For the underlying NN interaction used
in the structure as well as reaction calculation, we choose
the chiral NN interaction at the next-to-next-to-leading order,
NNLOopt, from Ref. [14]. This interaction is fitted with χ2 ≈
1 per degree of freedom for laboratory energies up to about
125 MeV. In the A = 3, 4 nucleon systems, the contribution of
three-nucleon forces (3NFs) of this interaction is smaller than
in most other parametrizations of chiral interactions. Con-
sequently, nuclear quantities such as root-mean-square radii
and electromagnetic transitions in light and intermediate-mass
nuclei can be calculated reasonably well without invoking
3NFs [10,15–18]. In addition, observables calculated with the
NNLOopt NN interaction have been found to be in good agree-
ment with those calculated with other chiral potentials that
require the use of the corresponding three-nucleon forces (see,
e.g., Refs. [11,19,20]). From this point of view, the NNLOopt

chiral NN interaction is very well suited for elastic scattering
calculations using an optical potential based on the leading
order in the spectator expansion since this order only con-
tains explicit two-nucleon forces. Other choices for structure
methods and realistic nuclear interactions can be made, e.g.,
leading order optical potential calculations have also been
performed for scattering from 40Ca in Ref. [21] based on
densities obtained from self-consistent Green’s function using
the NNLOsat chiral interaction.

The structure of the paper is as follows. In Sec. II, we
first review the basic approach for the SA-NCSM, then we
illustrate the selection prescriptions for the model spaces and
review their effect on structure observables. We also briefly
review the derivation of the leading order effective NA inter-
action in calculating scattering. In Sec. III, we first show the
effect of different symmetry-adapted selections for structure
and proton elastic scattering observables from 6He as a test
case. The choice of this test case is motivated by the fact
that 6He is a p-shell nucleus, for which highly converged
traditional NCSM calculations exist. Then, we apply those
findings to elastic proton scattering from 20Ne and 40Ca, and
conclude in Sec. IV.

II. THEORETICAL FRAMEWORKS

A. Symmetry-adapted no-core shell model

The SA-NCSM is an ab initio many-body approach
that can achieve drastically reduced model spaces based on
symmetries inherent to nuclei [9]. This allows one to de-
scribe heavier nuclear systems and spatially expanded nuclear
modes, including collective, clustering, and continuum de-
grees of freedom. The SA-NCSM framework is reviewed in
Refs. [8,10]. An important feature of the symmetry-adapted
(SA) framework is that the model space is reorganized to an
SA basis that respects the deformation-related SU(3) sym-
metry or the shape-related Sp(3, R) symmetry [8]. While the
approach utilizes symmetry groups to construct the basis and
the many-body Hamiltonian matrix (e.g., see Refs. [22–25]),

calculations are not limited a priori by any symmetry. They
employ a large set of basis states that can describe a significant
symmetry breaking if the nuclear Hamiltonian demands it.
In addition, when necessary, the SA-NCSM calculations can
be performed in complete model spaces that are equivalent
within a unitary transformation to the ones used in NCSM.
Key features, especially the selection of nonnegligible contri-
butions within the model space, are described in Ref. [26].

The many-nucleon basis states of the SA-NCSM are la-
beled according to SU(3)(λ μ) × SU(2)S by the total intrinsic
spin S and (λ μ) quantum numbers, in addition to many
other quantum numbers needed to provide a complete label-
ing, including the nucleon distribution across the harmonic
oscillator (HO) major shells, total proton spin, and total neu-
tron spin. Specifically, λ = Nz − Nx and μ = Nx − Ny, where
Nx + Ny + Nz is the total HO quanta distributed in the x,
y, and z directions. The SU(3) quantum numbers describe
deformation (see Ref. [27]), and for example, the case of
Nx = Ny = Nz, or equally (λ μ) = (0 0), describes a spherical
configuration, while Nz larger than Nx = Ny (μ = 0) indicates
prolate deformation. A closed-shell configuration has (0 0), so
spherical modes (or no deformation) are a part of the SA basis.
However, most nuclei, from light to heavy, are deformed in the
body-fixed frame (Nz > Nx > Ny), which appear spherical in
the laboratory frame for 0+ ground states.

We emphasize that within the SA-NCSM selected model
spaces, the spurious center-of-mass motion can be exactly
factored out from the intrinsic dynamics [28,29] (see, e.g.,
Ref. [4]). This plays an important role in scattering calcula-
tions since the necessary one-body densities computed in the
SA-NCSM are exactly translationally invariant (without any
center-of-mass spuriousity).

B. A selection procedure for the SA calculations

In the SA-NCSM, all basis states are kept up to a given N ,
while for higher N (N � Nmax), the model space is systemat-
ically selected using Sp(3, R) considerations (as in NCSM,
the model space is truncated at Nmax defined as the maxi-
mum number of HO quanta allowed in a many-particle state
above the minimum for a given nucleus). Hence, the SA
model spaces are labeled as “〈N〉Nmax.” Configurations that
are highly favored in the N model space inform important
configurations in the N + 2 model space, which in turn inform
the N + 4 model space, etc., and those track with larger defor-
mation along the Nz axis. Notably, these N + 4 configurations
can be readily reached from the N + 2 configurations in the
Nz-Nx plane by two excitations in the z direction.

In this paper, we adopt a selection prescription, detailed in
Ref. [26], that has been heretofore tested for structure observ-
ables only. Here, we apply it for the first time to scattering
observables. Namely, we introduce a selection cutoff εmax,
given by the fraction of the model space used, that is,

ε = dimSA(Nmax)

dim(Nmax)
� εmax � 1, (1)

where dim(Nmax) is the dimensionality of the complete
model space for a given Nmax (and “SA” denotes its selected
counterpart). The order in which basis states are included in
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the SA model space is determined according to the weight (see
Ref. [26]),

w(Nx, Ny, Nz + 2) = P(Nx, Ny, Nz )

dim(Nx, Ny, Nz + 2)
, (2)

where P(Nx, Ny, Nz ) is the probability amplitude of the eigen-
function obtained in SA-NCSM calculations in the smaller
N model space (e.g., the ground state, if this is the state of
interest), and dim(Nx, Ny, Nz + 2) denotes the dimensionality
of the configuration in the larger N + 2 model space to be
selected (spin degrees are omitted for simplicity). The pre-
scription is then applied to N + 4 up through Nmax. For ease of
comparing across different N values (since configurations for
large N have much smaller probability amplitudes compared
to those for low N), we normalize w of Eq. (2) to the highest
weight value wmax in a given N :

wnorm(Nx, Ny, Nz + 2) = w(Nx, Ny, Nz + 2)

wmax(Nx, Ny, Nz + 2)
. (3)

Similarly to the NCSM, a measure of convergence for
the results is the degree to which the SA-NCSM obtains
results independent of the model parameters h̄� (the HO
frequency), Nmax, and εmax. Remarkably, even for small
εmax cutoffs, which correspond to drastically reduced model
spaces, observables such as B(E2) values are quite close to the
converged results, a feature that further improves with Nmax

[26]. In this paper, we show that the same selection scheme is
valid for elastic scattering observables.

C. The leading order effective NAinteraction

Calculating elastic nucleon-nucleus scattering observables
in an ab initio fashion requires not only the interaction be-
tween the nucleons within the target but also the interaction
between the projectile and the nucleons in the target. A

multiple scattering expansion provides a framework to
organize these interactions in a tractable way. For example,
the spectator expansion [12,30] organizes the scattering of a
nucleon from a nucleus consisting of A nucleons in terms
of active nucleons. In the leading order of the spectator ex-
pansion, there are two active nucleons, the projectile and
one target nucleon. The next-to-leading order will have three
active nucleons, the projectile and two target nucleons, and
so on. Thus, by construction, the leading order term only
contains the two-nucleon force between the projectile and the
struck target nucleon. A scalar one-body density and a spin-
projected momentum distribution represent the struck nucleon
in the target, here calculated by employing ab initio many-
body methods. For the current work, we use the SA-NCSM,
which has been applied up to medium-mass nuclei, i.e.,
masses up to A ≈ 48 [10,13]. This nonlocal, translationally in-
variant one-body density [31] is then folded with off-shell NN
amplitudes given in the Wolfenstein parametrization [32,33].
To ensure that the two-nucleon interactions are treated con-
sistently in the structure and reaction calculation, the spin
of the struck target nucleon must be considered. This leads
to a folding with the well-known scalar one-body density
matrix and a spin-projected one-body momentum distribution.
This ensures that central, spin-orbit, and tensor parts of the
NN interaction enter the effective NA interaction. We refer
interested readers to Ref. [5] for the formal derivation of the
leading order NA effective interaction.

For the densities considered in this work, we concentrate
on proton scattering from nuclei with Jπ = 0+ in leading
order in the spectator expansion. In this case, the effective
interaction of the proton projectile with a single target nucleon
can be written as a function of the momentum transfer q
and the average momentum KNA, where the subscript NA
refers to the nucleon-nucleus (NA) frame. The effective NA
interaction in the leading order of the spectator expansion is
given as

Ûp(q,KNA; ε) =
∑

α=n,p

∫
d3K η(q,K,KNA)Apα

(
q,

1

2

[
A + 1

A
KNA − K

]
; ε

)
ρKs=0

α (P ′,P )

+ i(σ (0) · n̂)
∑

α=n,p

∫
d3Kη(q,K,KNA)Cpα

(
q,

1

2

[
A + 1

A
KNA − K

]
; ε

)
ρKs=0

α (P ′,P )

+ i
∑

α=n,p

∫
d3Kη(q,K,KNA)Cpα

(
q,

1

2

[
A + 1

A
KNA − K

]
; ε

)
Sn,α (P ′,P ) cos β

+ i(σ (0) · n̂)
∑

α=n,p

∫
d3Kη(q,K,KNA)(−i)Mpα

(
q,

1

2

[
A + 1

A
KNA − K

]
; ε

)
Sn,α (P ′,P ) cos β, (4)

where the subscript p indicates the projectile as being a pro-
ton. The energy ε is taken in the impulse approximation as
half of the projectile energy. The momentum vectors in the
problem are given as

q = p′ − p = k′ − k,

KNA = 1

2
(k′ + k),

p̂ = 1

2
(p′ + p),

n̂ = KNA × q
|KNA × q| ,

K = p̂ + KNA/AP = K + A − 1

A

q
2
,

P ′ = K − A − 1

A

q
2
. (5)
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The momentum of the incoming proton is given by k, its
outgoing momentum by k′, the momentum transfer by q, and
the average momentum KNA. The struck nucleon in the target
has an initial momentum p and a final momentum p′ with
average momentum p̂. When defining the integration variable
K, the recoil of the nucleus is taken into account. The two
quantities representing the structure of the nucleus are the
scalar one-body density ρKs=0

α (P ′,P ) and the spin-projected
momentum distribution Sn,α (P ′,P ). Both distributions are
nonlocal and translationally invariant. Lastly, the term cos β in
Eq. (4) comes from projecting n̂ from the NN frame to the NA
frame. For further details, see Ref. [5]. The term η(q,K,KNA)
is the Møller factor [34] describing the transformation from
the NN frame to the NA frame.

The functions Apα , Cpα , and Mpα represent the NN inter-
action through Wolfenstein amplitudes. Since the incoming
proton can interact with either a proton or a neutron in the
nucleus, the index α indicates the neutron (n) and proton
(p) contributions, which are calculated separately and then
summed up. Concerning the nucleus, the operator i(σ (0) · n̂)
represents the spin-orbit operator in the momentum space of
the projectile. As such, Eq. (4) exhibits the expected form of
an interaction between a spin- 1

2 projectile and a target nucleus
in a J = 0 state [35].

When calculating NA elastic scattering amplitudes, the
leading order term of Eq. (4) does not directly enter a
Lippmann-Schwinger type integral equation for the tran-
sition amplitude. To obtain the Watson optical potential
Up(q,KNA; ε), an additional integral equation needs to be
solved [12],

Up = Ûp − ÛpG0(E )PUp, (6)

where, for simplicity, the momentum variables are omitted.
Here, G0(E ) is the free NA propagator and P a projector on
the ground state. As pointed out in Ref. [12], for solving the
scattering problem the reference energy separating bound and
continuum states is chosen such that the ground state energy
is set to zero, implying that the energies referring to the target
Hamiltonian in G0(E ) are excitation energies of the target.
For the proton-nucleus scattering calculations the Coulomb
interaction between the projectile and the target is included
using the exact momentum space formulation described in
Ref. [36].

III. RESULTS AND DISCUSSION

A. Examining the selection procedure with 6He observables

To study the effect the symmetry-adapted selection proce-
dure described in Sec. II B has on reaction observables, we
first examine a light nucleus, where calculations in complete
model spaces are currently available and can be used for
validations. As shown in the third column of Table I, the
dimension of the 6He, 0+

gs model space grows by three orders
of magnitude from Nmax = 4 to Nmax = 12 (from a dimension
of less than 103 to over 106). This offers a good opportunity
to explore the effect of different selection criteria in more
detail. The dimensions of the model spaces resulting from
various selection cutoffs εmax values are shown in Table I,
where we have adopted the notation 〈N〉Nmax to signify that

TABLE I. Model space dimensions for the 0+ ground state of
6He. The complete model space dimensions are provided and iden-
tified as εmax = 1, consistent with Eq. (1). Selected model space
dimensions are also provided. This table uses the notation 〈N〉Nmax,
where 〈N〉 signifies all contributions up to N are included (here
N = Nmax − 2), and SA selections are made in model spaces from
N + 2 to Nmax. The εmax values describe different model spaces based
on a probability weight. See text for further discussion.

wnorm

Nmax threshold Dimension εmax

4 905 1

〈4〉6 10−1 1 121 0.14
10−2 2 189 0.28
10−3 3 477 0.44
10−4 5 182 0.66
10−5 5 611 0.71

6 7 854 1

〈6〉8 10−1 8 083 0.16
10−2 12 972 0.26
10−3 23 064 0.47
10−4 34 624 0.70
10−5 38 969 0.79
10−6 40 131 0.81

8 49 248 1

〈8〉10 10−1 49 742 0.20
10−2 62 898 0.26
10−3 91 417 0.37
10−4 162 196 0.66
10−5 202 435 0.83
10−6 211 522 0.86
10−7 212 039 0.87

10 245 082 1

〈10〉12 10−1 246 043 0.24
10−2 296 552 0.29
10−3 385 576 0.38
10−4 680 062 0.66
10−5 837 611 0.82
10−6 905 918 0.88

12 1 024 654 1

the complete basis is included up to N and SA selections
are included from N to Nmax, based on normalized weights
wnorm, as mentioned above. This results in a selection process
where we construct 〈Nmax − 2〉Nmax SA model spaces consist-
ing of basis states in the Nmax subspace with wnorm weights
from 1 to 0.1 (wnorm > 10−1), 1 to 0.01 (wnorm > 10−2), and
so on.

As can be seen in Table I, each model space may have a dif-
ferent range of selectable wnorm values. For example, the 〈4〉6
model space has included all N + 2 configurations by wnorm =
10−5, but the 〈6〉8 model space has N + 2 configurations with
normalized weights as small as 10−6, though their contribu-
tions to the results shown later are negligible. Note that the
difference in basis dimension from, e.g., wnorm > 10−5 in 〈4〉6
to 〈6〉 comes from new configurations at Nmax = 6 that are
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not connected to those in Nmax = 4 through the prescription
of Eq. (2).

Using these SA model spaces in a structure calculation, the
value of the corresponding structure observables is shown in
Fig. 1, with Fig. 1(a) showing the ground state energy, and
Fig. 1(b) showing the root-mean-square (rms) matter radius.
The red squares correspond to calculations in the complete
model spaces, while the black dots correspond to symmetry-
adapted model spaces at different εmax values. The black dots
are placed along the x axis such that they indicate the percent
of the model space included, e.g., a black dot near Nmax = 5
corresponds to a 〈4〉6 model space with a dimension roughly
50% the size of the complete Nmax = 6 model space. Note that
the bands indicate the variation in the results at nearby h̄� val-
ues. The line for the center h̄� value was selected according to
h̄� ≈ 41/A

1
3 , which typically yields the fastest convergence

of rms radii. For 6He, this corresponds to h̄� ≈ 20 MeV,
which also emerges as the variational minimum in the ground
state energy as Nmax increases [Fig. 1(a)].

As shown by the structure observables in Fig. 1(a)
and Fig. 1(b), in most cases, only a third of the model
space (εmax ≈ 0.26–0.29, constructed from wnorm > 10−2) is
already sufficient to reproduce the results of the complete
model space. This is particularly true at the larger Nmax val-
ues. Notably, this pattern continues when examining scalar
reaction observables. Namely, the reaction cross section for
proton scattering at 100 MeV laboratory energy, σreac, shown
in Fig. 1(c), has a convergence pattern almost identical to
that of the rms radius. From each of these results, it is worth
noting that the variation in each observable with respect to h̄�

is larger than the variation with respect to the model space
selection; that is, the width of the bands is larger than the
difference between neighboring black points in Fig. 1.

With an understanding of how the scalar observables
converge for different model space selections, we can also
examine functional observables, as shown in Figs. 2 and
3, which shows the differential cross section and analyzing
power for proton scattering on 6He at 100 MeV. Comparing
the Nmax = 8 and Nmax = 10 results (Fig. 2), small differences
can be seen at large momentum transfers q, where previous
work has already shown that these observables are slower to
converge with respect to Nmax [11]. Focusing on these two
Nmax results, the inset shows the differences, where the solid
black line shows how the results change from Nmax = 8 to
Nmax = 10, and the other lines show the differences in the
Nmax = 10 and a selection of the 〈8〉10 model spaces. Simi-
larly to the structure observables, by approximately wnorm >

10−2 (or ε = 0.26, roughly 26% of the model space), the dif-
ferences for the scattering observables in the SA and complete
spaces are quite small. While not shown here, the convergence
pattern for the spin rotation function Q is the same as the
analyzing power Ay.

Similarly, Fig. 3 shows the same observables but compares
against a broader span of Nmax, namely Nmax = 4 and Nmax =
12. In this case, more significant differences are noticeable,
as the Nmax = 12 results are much closer to convergence than
Nmax = 4. We see similar behavior as in the previous examples
by applying the same process to construct SA model spaces.

FIG. 1. Plots of (a) the ground state energy of 6He, (b) the
rms matter radius of the ground state of 6He, and (c) the re-
action cross section for proton scattering on 6He at 100 MeV
laboratory projectile kinetic energy. All results are shown as a
function of Nmax, where the red squares correspond to calcu-
lations performed with complete model spaces, and the black
dots correspond to calculations performed with SA-selected model
spaces given by εmax, both at h̄� = 20 MeV. The bands indi-
cate differences between h̄� = 16–24 MeV. See text for further
discussion.
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FIG. 2. Elastic scattering observables for 6He(p, p) 6He at
100 MeV laboratory energy. The top plot shows the differential cross
section divided by the Rutherford cross section, and the bottom plot
shows the analyzing power Ay. Both plots illustrate the difference
between Nmax = 8 and Nmax = 10 calculations—labeled as 〈8〉 and
〈10〉, respectively—with insets showing the differences between the
different SA-selected model spaces given by εmax. The formatting is
the same across both insets. See text for further discussion.

Namely, a well-constructed SA model space can reproduce
the complete space results to within a few percent, which is
typically smaller than the uncertainty from the h̄� variation
or choice of the realistic interaction [11,37].

B. Applying the selection procedure
to proton scattering from 20Ne and 40Ca

Acknowledging the convergence behavior of the observ-
ables for 6He as discussed in the previous section, we now turn
to heavier nuclei, namely, the doubly open-shell nucleus 20Ne
and the closed-shell 40Ca, where complete model spaces for
sufficiently large Nmax are not feasible due to the rapid growth
of the model space dimensions. Applying the same selection
procedure for the ground state of 20Ne, we construct a 〈2〉6
model space and compute the nonlocal scalar densities ρKs=0

α

FIG. 3. Elastic scattering observables for 6He(p, p) 6He at
100 MeV laboratory energy. The top plot shows the differential cross
section divided by the Rutherford cross section, and the bottom plot
shows the analyzing power Ay. Both plots illustrate the difference
between Nmax = 4 and Nmax = 12 calculations—labeled as 〈4〉 and
〈12〉, respectively—with insets showing the differences between the
different SA-selected model spaces given by εmax. The formatting is
the same across both insets. See text for further discussion.

and the spin-projected momentum distributions Sn,α (where
α refers to the separate proton or neutron distributions) that
enter the expression Ûp(q,KNA; ε) of Eq. (4) for the effective
proton-nucleus interaction. Since experimental information
for proton scattering from 20Ne in the energy regime above
≈60 MeV is limited, we show in Fig. 4 elastic scattering
observables at 65 MeV calculated with three different values
of the oscillator parameter h̄� indicated by the shaded band.
The magnitude of the differential cross section (divided by
the Rutherford cross section) is slightly underpredicted by the
calculation, as is the first diffraction minimum. This small
shift in the minimum corresponds to a slightly smaller rms
matter radius from the theory calculation—here, 2.6(1) fm—
compared to the experimental value of 2.87(3) fm [38]. This is
consistent with the slightly smaller rms matter radii obtained
by NNLOopt in light nuclei [11]. Additionally, the calculation
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FIG. 4. The angular distribution of the differential cross sec-
tion ( dσ

d�
) divided by the Rutherford cross section, the analyzing

power (Ay), and spin rotation function (Q) for elastic proton scat-
tering from 20Ne at 65 MeV laboratory projectile energy. The
calculations use the NNLOopt interaction in the SA-NCSM with
〈2〉6 model spaces and εmax = 0.06, and in the leading order in the
effective NA interaction. The band indicates the differences between
calculations performed with h̄� from 13 to 17 MeV. The data are
taken from Ref. [40].

deviates from the data for momentum transfers larger than
2 fm−1. However, at the higher momentum transfers (or larger
angles), the leading order in the spectator expansion should
not be expected to be sufficient. Similarly, in addition to the
slight radius discrepancy, rescattering terms may contribute to
the first minimum in the differential cross section, as studies
in few-body systems within the Faddeev framework [39] sug-
gest. The calculation of the analyzing power Ay follows the
general shape of the data but does not describe them well.
This should also be taken as an indication that this energy is
at the lower limit of applicability of the leading order term in
the spectator expansion. The spin rotation function is shown
as a prediction, as no experimental data exist.

Turning to 40Ca, we employ the same procedure for com-
puting the nonlocal scalar densities and the spin-projected
momentum distributions. Unlike the dimensions of the 6He
model spaces, the 40Ca model spaces grow significantly faster,
with the complete Nmax = 6 space for J = 0 having a dimen-
sion of 327 125 599. As a result, the important states provided
by the same wnorm values (wnorm > 10−2) give smaller εmax

values (a model space fraction of only 3%) than for 6He.
Elastic proton scattering from 40Ca is well measured in
the energy regime between 65 and 200 projectile energy.
Figure 5 shows the calculations for h̄� values between 11 and
13 MeV at 65 MeV laboratory projectile energy compared

FIG. 5. The angular distribution of the differential cross section
( dσ

d�
) divided by the Rutherford cross section, analyzing power (Ay),

and spin rotation function (Q) for elastic proton scattering from 40Ca
at 65 MeV laboratory projectile energy. The calculations use the
NNLOopt interaction in the SA-NCSM with 〈4〉6 model spaces and
εmax = 0.03 (constructed from wnorm > 10−2), and in the leading or-
der in the effective NA interaction. The band indicates the difference
between calculations performed with h̄� between 11 and 13 MeV.
The cross section and Ay data are taken from Ref. [40] and those for
the spin rotation function from Ref. [42].

to the experimental data. In contrast to the calculations for
20Ne, the underpredection of the differential cross section for
small momentum transfers is larger, while the first diffraction
minimum corresponds to the experimental one. Considering
the diffraction pattern given by the first few minima, we see
that it is wider than the experiment suggests. This may be
related to the smaller calculated rms radius than the measured
one. For the model spaces used here, this corresponds to an
rms matter radius of 3.1(1) fm, compared to the experimental
charge radius of 3.4776(19) fm [41].

Comparing the differential cross section for 40Ca, Fig. 5,
to the one for 20Ne at the same energy of 65 MeV, Fig. 4, we
observe that the description of the neon data at higher mo-
mentum transfer is better. This may be related to 20Ne being a
deformed, doubly open-shell nucleus, sometimes considered
to have an 16O core with two extra protons and neutrons in
the outer shell (see, e.g., Ref. [43] for the projection of the
20Ne ground state on the s-wave 16O +α, and Ref. [10] for the
cluster substructure revealed in the one-body density profile).
If the nuclear density probed with proton scattering is less
dense, rescattering, i.e., the next order in the multiple scat-
tering expansion, may contribute less. Therefore, the leading
order term gives a better description of the data. A similar
effect has been seen in Ref. [5] in the very good description
of the differential cross section for proton scattering from 6He
and 8He.
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FIG. 6. Same as Fig. 5 for proton scattering from 40Ca at 200
MeV laboratory projectile energy. The cross section and Ay data are
taken from Refs. [45,46] and those for the spin rotation function from
Ref. [47].

At 65 MeV, the analyzing power Ay and the spin rotation
function Q are also measured for proton scattering from 40Ca.
For small momentum transfers, Ay is overpredicted by the
calculation, while Q is more consistent with the data. As men-
tioned earlier, 65 MeV projectile energy is at the lower limit
of the validity of the leading order in the spectator expansion,
and corrections to the leading order should become visible.
In Ref. [44], a modification of the many-body propagator due
to the nuclear medium was introduced in a mean-field frame-
work. In this work, calculations of the same observables for
40Ca show that those modifications improve the description
of the spin observables at 65 MeV while having no effect at
higher energies.

In Fig. 6, the observables for elastic proton scattering
from 40Ca for 200 MeV projectile energy are shown for the
same variation of h̄� and the same model space. Here, the
pattern of both spin observables is very well described. The
differential cross section is slightly overpredicted for small
momentum transfers, and the first calculated diffraction min-
imum is shifted toward higher momentum transfers. Only the
next minima line up better with the experiment. This slight
shift of the first minimum is also seen in Ay and Q.

To study the energy dependence of elastic scattering
observables, we show in Fig. 7 the differential cross sec-
tion divided by the Rutherford cross section between 65 and
200 MeV projectile energy. The bands indicate the variation in
h̄� for the many-body structure calculations. The dependence
on h̄� observed for large angles suggests that larger model
spaces may be needed to describe the data in this region. It is
interesting to observe that, for 100 MeV, the overall agreement
for q � 1.5 fm−1 is remarkable, whereas the deviations at

FIG. 7. The angular distribution of the differential cross section
( dσ

d�
) divided by the Rutherford cross section for elastic proton scat-

tering on 40Ca from 65 to 200 MeV laboratory projectile energy.
The cross sections are multiplied by the powers of 10 indicated at
the energies listed in the figure. The calculations use the NNLOopt

interaction in the SA-NCSM with 〈4〉6 model spaces and εmax = 0.03
(constructed from wnorm > 10−2), and in the leading order in the
effective NA interaction. The band indicates variations in the re-
sults from h̄� = 11–13 MeV. The cross-section data are taken from
Ref. [40] for 65 MeV, Ref. [48] for 80 and 160 MeV, Ref. [49] for
100 MeV, Ref. [50] for 180 MeV, and Refs. [45,46] for 200 MeV.

other energies may stem from rescattering effects not included
at leading order (at lower energies) and properties of the
NN interaction (at higher energies). Indeed, for the energies
lower than 100 MeV, the differential cross section for small
momentum transfers is slightly underpredicted, while for en-
ergies higher than 180 MeV, the experiment is overpredicted.
This could point to an issue with the energy dependence of
leading order term of the spectator expansion derived from
the NNLOopt interaction, since for small momentum transfers
rescattering effects should be small. In addition, while for the
lower energies the location of the first minimum corresponds
exactly to the experimentally observed one, at energies higher
than 100 MeV the calculated first minimum shifts towards
larger angles. This shift of the first diffraction minimum to-
wards higher angles as a function of projectile energy was also
observed in Ref. [21]. Although in the Born approximation
and when treating the nucleus as a black disk the first mini-
mum is directly related to the radius of the nucleus, the full
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FIG. 8. The angular distribution of the analyzing power (Ay) for
elastic proton scattering on 40Ca from 65 to 200 MeV laboratory
projectile energy. The additive offset for Ay is given adjacent to
the energies listed in the figure. The calculations use the NNLOopt

interaction in the SA-NCSM with 〈4〉6 model spaces and εmax = 0.03
(constructed from wnorm > 10−2), and in the leading order in the
effective NA spectator interaction. The band indicates variations in
the results from h̄� = 11–13 MeV. The data are taken from Ref. [40]
for 65 MeV, Ref. [51] for 80, 160, and 180 MeV, Ref. [49] for
100 MeV, and Refs. [45,46] for 200 MeV.

calculation reveals an energy dependence of the location of
the first minimum. Considering that the leading order term
in the spectator expansion dominates the elastic scattering at
higher energies, the predicted first minimum at 200 MeV be-
ing shifted to slightly larger angles is most likely related to the
NNLOopt properties that are responsible for underpredicting
the rms radius.

For a careful study of the energy dependence of the elastic
scattering observables, we show in Fig. 8 the analyzing pow-
ers at the same energies given in Fig. 7. Here, we observe
that the calculations match the minima and maxima of the
experimental data well in the entire energy range shown in the
figure. However, for the energies from 100 MeV and below,
the experiment shows almost no analyzing power for small
angles (momentum transfers), a feature that is not captured
by the calculations, while above 100 MeV the calculations
describe the experiment very well. Similarly to the differential

cross section, the agreement of the analyzing power with the
experiment is almost perfect at 100 MeV.

IV. CONCLUSIONS AND OUTLOOK

In this work, we concentrate on pursuing the theoretical
description of the leading order term of the spectator expan-
sion of the multiple scattering theory that employs SA-NCSM
structure calculations and the first explorations of the SA-
NCSM model space selection for scattering observables. This
allows the consideration of heavier nuclei. In this selection
procedure, all basis states are kept up to a given N , while for
higher N the model space is up-selected systematically using
Sp(3, R) symmetry considerations. This procedure was suc-
cessfully applied in considering structure phenomena across
intermediate- and medium-mass nuclei and is now applied
in the context of the construction of ab initio leading order
effective interactions for elastic NA scattering. This effective
interaction treats the NN interaction in the reaction part of
the calculation on the same footing as in the structure part.
This means that the leading order of the spectator expansion
takes into account not only the spin of the projectile nucleon
but also that of the struck target nucleon [5]. Since this work
concentrates on advancing the theoretical description towards
heavier nuclei, we only use a single chiral potential, namely,
NNLOopt [14].

Because our work is the first application of the selection
procedure in the SA-NCSM calculations to scattering, we first
thoroughly tested it by calculating scattering observables for
6He. We chose this nucleus because scattering calculations us-
ing NCSM results with large model spaces have been studied
previously [5]. In addition, 6He is a light nucleus, but not
closed-shell one as is 4He. After establishing the selection
procedure, we calculate elastic proton scattering observables
for 20Ne and 40Ca. Although for 20Ne scattering observables
are only available for 65 MeV, it appears that for the chosen
NNLOopt chiral NN interaction the open-shell 20Ne is overall
slightly better described than the closed shell 40Ca at the
same energy. This may be an indication that for deformed
nuclei rescattering contributions are less important than for
closed-shell spherical nuclei. For 40Ca we study observables
in the energy range from 65 to 200 MeV. Our calculations
for differential cross sections and spin observables compare
mostly favorably to the experiment. We find that the leading
order term in the spectator expansion inadequately captures
the energy dependence of the differential cross section in
the forward direction as well as the energy dependence of
the first diffraction minimum. The latter was also observed
in Ref. [21]. The diffraction pattern can be influenced by
higher order terms in the multiple scattering series. There-
fore, including those would be constructive for theoretical
advances. Summarizing, our study paves the way for applying
the SA-NCSM together with a selection procedure that only
includes the non-negligible configurations from the larger
model spaces to calculations of the leading order effective NA
interaction for nuclei with masses around A ≈ 40–50. Further
investigation of medium mass open-shell nuclei may give a
clearer indication of limitations or successes of the leading
order term of the spectator expansion.
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