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Importance of whispering gallery resonances for nuclear scattering
from weakly bound or unstable nuclei
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Internal surface standing wave resonances can occur when either electromagnetic or acoustic waves interact
with cylindrical or spherical material structures. These resonances are often termed whispering gallery res-
onances, a reference to the focusing of sound within a cylindrical gallery. Here, a report is presented of an
investigation to establish the importance of such surface standing wave resonances for nuclear wave scattering
from unstable or weakly bound nuclei. To facilitate the investigation an analytical model, the transitional
rotational model, has been developed to probe the occurrence of whispering gallery phenomena within nuclear
wave scattering. Understanding such phenomena can be relevant when nuclear structure information are derived
from scattering experiments. Moreover, it can also be important for the understanding of nuclear pathways
leading to stellar explosions.
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I. INTRODUCTION

The propagation of wave energy can be strongly influ-
enced by any reflecting and absorbing structures the wave
encounters. Obviously, this is an important consideration, for
example, in the design of auditoria, where sound wave energy
distribution is of prime importance. An interesting example
of sound energy propagation, linked to reflecting structures,
is the so-called whispering gallery phenomenon. When a
whisper is directed near to a circular wall, then someone
on the opposite side of the structure can clearly hear the
whisper, even though the two people may be separated by
a large distance. This phenomenon was first analyzed math-
ematically by Rayleigh in 1878 [1]. Essentially, the sound
wave energy, by reflection, is confined to the circular sur-
face of the gallery wall, undergoing only a small reduction
of the original intensity. How sound waves interact with
different configurations of materials has been of continued
interest, especially the interaction with a spherical shell of
material [2,3].

An analogy of the whispering gallery phenomenon has
also been observed in optical systems, and is now developing
into a whole new area of research. When light encounters
transparent cylindrical or spherical structures, part of the light
can be trapped and concentrated within and outside the struc-
ture [4]. This type of light scattering from spheres or cylinders
is termed Mie scattering, named after the person who first used
Maxwell’s electromagnetic equations to solve the scattering
problem [5]. An illustration of such light scattering from a
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transparent sphere, comprising a core and shell of different re-
fractive indexes, is shown in Fig. 1. This shows standing-wave
structures within the shell produced by wave interference in
the shell. Since this trapping of wave energy is dependent
on how it interacts with symmetrical geometrical structures, it
must be quite general. Therefore, the question arises, could
this trapping phenomenon occur for other types of waves
other than acoustic or electromagnetic? Interestingly, quantum
whispering gallery effects can occur in the case of matter
waves, as in cold neutron scattering by a perfect cylindrical
mirror, with the neutron particle waves affected by a large
centrifugal acceleration [8].

In nuclear physics, the scattering of particle waves of two
interacting nuclei in general involves multinucleon interac-
tions between the constituent nuclei. However, for a simple
reaction process, such as elastic scattering, it is possible to
derive the particle scattering wave function by solving the
Schrödinger equation with a simple effective potential related
to the nuclear mean density profile of the two reacting nuclei.
The mean nuclear density profile for stable nuclei is almost
uniform within the nucleus surface, but rapidly falls off be-
yond. However, for some weakly bound nuclei such as 9Be,
or unstable nuclei such as 9Li, density fall off is less rapid.
Indeed, in some cases this outer core region forms a distinct
surface region called a halo [9–12]. Examples of halo nuclei
are 6He, 11Be, or 11Li. There is a general interest to study
nuclear reactions involving very unstable nuclei, since they
play a critical role in supernova and nova explosions. As a
result, the debris ejected from such stellar events provide one
of the critical paths for element evolution in the universe. So,
investigating such nuclear reactions, either experimentally or
theoretically, has great relevance beyond the field of nuclear
physics [13].
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The consideration of how reacting nuclei are influenced
by their surface regions has been a topic of interest for
many years [14–23]. For example, early investigations of
elastic scattering for reacting systems such as 12C + 12C, and
16O + 16O found large fluctuations in cross section as a func-
tion of incident energy. These resonantlike structures have
been interpreted as transient dinuclear systems formed by the
two reacting nuclei linked by their surface interactions [24],
and there has been a suggestion that these could be related
to whispering-gallery-like phenomena [25]. Other theoretical
and experimental investigations have also interpreted vari-
ous specific elastic scattering reaction data as phenomena
associated with surface interactions [14–23]. Scattering re-
actions involving unstable or weakly bound nuclei (which
have distinct interaction regions between their cores and outer
shells) interacting with a well bound nucleus, is analogous to
light scattering from optical spheres, with shells of different
refractive indexes. This paper attempts to answer the ques-
tion as to whether trapping, i.e., partial orbiting, can occur
within the shell region for this nuclear situation that results
in whispering-gallery-like phenomena and its consequences
on the reaction process and cross section. To help answer the
question as to whether an increase of diffuseness results in
more pronounced outer shell resonance phenomena, a simple
elastic scattering model has been developed that specifically
emphasizes the importance of an extended shell beyond the
core. This model is then used to investigate how the scat-
tering of an α particle, which is a well-bound nucleus with
a sharp surface, will interact with nuclei, which have an
outer low-density shell and, in turn, if data show evidence
of whispering-gallery-like phenomena. In the next section,
Sec. II, the theoretical outline of the model is presented.
In Sec. III the TRM is applied to the 9Li + 4He scattering,
together with a visualization of the reaction dynamics for
an α-nucleus encounter. Section IV presents the results of
using this model to investigate two other reactions involving
α scattering from unstable 6He and weakly bound 9Be nuclei.
A discussion is presented in Sec. V of the potential param-
eters extracted from the TRM analysis of the experimental
data. Section VI reports the conclusions. In the Appendix the
mathematical details of the model are reported.

II. DYNAMICS OF INTERACTING NUCLEI

The most important consideration in any reaction model
is the nature of the potential interaction between the reacting
participants. For low-energy elastic reactions, where there are
only two strongly bound participants, the interaction potential
is often assumed to be a square well rounded off at the nuclear
surface [26,27]. Another approach, which is less phenomeno-
logical, is to assume that the interaction potential is related to
the product of the nuclear densities of the approaching nuclei.
These so-called folding potentials assume the nuclear density
profiles of the two participant nuclei remain rigid during their
interaction [28]. However, for nuclei that have a central core
surrounded by an outer shell of weakly bound nucleons, the
nuclear density distribution cannot be considered as rigid
when interacting with other nuclei, i.e., the nuclear density
shape will change. This so-called shape polarization has been

FIG. 1. Mie scattering from a core plus shell transparent sphere,
showing the relative amplitude of the electric field. Light is incident
from left to right. The core and shell have different refractive indexes.
Diagram generated from online software [6,7].

known for some time. For example, Vasilevsky et al. [29],
have studied the influence of this shape polarization on the
outcomes of reactions involving weakly bound light nuclei.
One reaction studied was 6Li + p inelastic scattering. From
this study, it is clear that the nuclear density distribution for
6Li evolves continuously as the proton approaches. This will
mean that the shape of the interaction potential also will
continuously evolve. In the absence of knowledge of how
this evolution occurs, in most studies it is assumed that the
shape does not change, e.g., when using a phenomenological
Woods-Saxon (W-S) potential. Essentially, it is being assumed
that this represents an average shape for the potential over
the interaction time. Nevertheless, the W-S potential has been
used quite successfully for reactions involving well-bound
stable nuclei, where the surfaces are well defined. However,
it has been found that for scattering involving weakly bound
nuclei, as for instance the unstable neutron-halo 11Be nucleus,
an extended shell potential had to be added to the volume
W-S potential to be able to describe the unusual shape of the
scattering angular distribution [30].

So, in the present model, for a well-bound α particle scat-
tering from an unstable or weakly bound nucleus, instead
of a single W-S potential, a double W-S potential may be
more appropriate, one associated with the core, the other
with the outer shell. Since the second potential takes account
of the outer shell, in order to further simplify the interaction,
the surface diffusion coefficients of the two potentials are
taken as zero; i.e., the two potentials have a squared form
(see Fig. 2) Solving scattering problems with such square
potentials has the advantage that the scattering wave functions
and cross sections can be derived in analytical form. Since the
model aims to highlight the importance of transient orbiting,
resulting from outer shell nucleon interactions, it is termed the
transitional rotational model (TRM) the analytical formalism
for which is given in the Appendix. This is a simple model,
but it is interesting to see how far it can represent experimental
data.
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FIG. 2. Shows the nuclear core potential, Vc = Vr + iVi, where Vr

is the real part and Vi is the imaginary part of the potential. Vs is the
shell potential, and CP the Coulomb potential. The form of the h1,(2)

functions will strongly depend on the orbital angular momentum
quantum number l. The k symbols represent the wave numbers in
the different regions. The values of the potentials represented here
are deduced from the TRM that best matches the experimental cross
sections for the elastic 9Be(4He, 4He) 9Be reaction. For this reaction,
the angular momentum potential barrier is shown as a dashed line for
l = 6. rc and rs are the corresponding core and shell radii.

A. Formulation of the TRM

To formulate the TRM, the nuclear interaction potentials
between the α particle and the core and shell regions of the
colliding nucleus, are taken as constant negative radial po-
tentials, as shown in Fig. 2. The stationary scattering wave
function, �(r, θ, φ), for the radial potential can be determined
from the usual Schrödinger’s equation:

− h̄2

2μ
∇2�(r, θ, φ) + V (r)�(r, θ, φ) = E�(r, θ, φ), (1)

where r is the radial separation between the centers of the
target nucleus and the α particle; θ, φ are the angular compo-
nents of the separation vector; μ is the reduced mass between
the two nuclei; E is the center-of-mass channel energy. Since
it is assumed that V (r) only has radial dependence, the wave
function can be expanded in a sum of components of angular
momentum quantum numbers, l , each weighted with a radial
wave function R(l, r).[

− h̄2

2μ

(
∂

∂r2
+ 2

r

∂

∂r
− l (l + 1)

r2

)
+ V (r)

]
R(l, r)

= ER(l, r). (2)

The advantage of using constant nuclear potentials is that
the R(l, r) functions can be expressed using the well-known
spherical Hankel functions. The spherical Hankel functions,
h1(l, kr), h2(l, kr) are the outgoing and incoming components

of the wave functions in the nuclear core and shell regions,
and k0 and k1 are the wave numbers within the core and shell.
The functions hc1(l, kir), hc2(l, kir) are the components of the
Coulomb wave function beyond the nuclear potentials, where
ki is the wave number at r → ∞. For the scattering situation
shown in Fig. 2, the wave function in the three radial regions
have different characteristics, but the amplitudes and slopes
must match at the two boundaries. These boundary conditions
define a set of equations that can be used to determine the
amplitude of the outgoing Coulomb wave relative to the input
Coulomb wave. From this outgoing amplitude, the elastic
scattering matrix element can be determined in analytical
form, and so the differential elastic cross section. By varying
these geometrical parameters of the potentials, and compar-
ing the calculated cross sections to experimental values, the
optimum parameters of the potentials can be obtained for a
particular reaction. From this parameter set, it is then possible
to calculate the probability amplitude in the shell region to
investigate the occurrence of possible resonances within the
shell, i.e., the analog of the whispering gallery phenomena.
The mathematical form of the elastic S matrix element, in
terms of the physical parameters of the nuclear core and shell,
is quite complicated. So, to emphasise the physics in the
main text, the mathematical details have been assigned to the
Appendix.

III. TRM INTERPRETATION OF ELASTIC DATA
FOR 4He SCATTERING FROM 9Li

Using the analytical approach mentioned above (see the
Appendix for a detailed description), three sets of published
experimental cross section data of α (4He) scattering from
weakly bound 9Be, unstable 9Li, and halo 6He nuclei have
been used to investigate the applicability of the TRM. In
particular, to determine if evidence can be established that
suggests shell resonances can occur that can be related to the
whispering gallery phenomenon in nuclear scattering.

The first reaction considered is: 4He(9Li, 9Li) 4He. Struc-
ture calculations of the neutron rich 13B nucleus by Kanada-
En’yo et al. [31], indicate that at medium excitation energies,
states could be identified that resemble a two-cluster con-
figuration, for example, 9Li plus 4He. Since these states are
well above the energy threshold for α decay, they will have
large energy widths. This strongly suggests that inversely,
if an α particle is incident on a 9Li nucleus, at excitation
energy near the cluster states in 13B, transient molecular or-
biting may occur. The excitation functions for the reaction
4He(9Li, 9Li) 4He have been measured at TRIUMF [32] for
three angular regions and are shown in Fig. 3. There are
two broad resonance structures between center of mass, c.m.,
energies, Ec.m., 4.7–6.7 MeV and 7–9.5 MeV.

Efforts to interpret this data set, within the compound nu-
cleus (CN) picture, using conventional R-matrix analysis [33],
or a single nuclear optical model scattering potential, proved
unsuccessful. Since Kanada-En’yo et al. [31] structure cal-
culations for 13B indicated that molecular orbiting could be
occurring, was the reason why the TRM was introduced that
specifically allowed the possibility for orbiting in the extended
two-neutron skin of 9Li.
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FIG. 3. Left: Differential cross-section data for the reaction
4He(9Li, 9Li) 4He [32], expressed as a function of reaction Ec.m..
(a) Corresponds to data collected between c.m. angles, θc.m: 175◦–
178◦, (b) 162◦–174◦, (c) 156◦–171◦. The dashed curve is an optical
model fit as explained in the text. Right: TRM calculations at the
corresponding mean c.m. angles of (d) 176.5◦, (e) 168◦, and (f)
163.5◦.

The corresponding excitation functions calculated by the
TRM, also indicate that there should be two broad resonances
near the energy regions where the resonances appear. For this
TRM calculation, the radial size of both the core and shell po-
tentials were taken from Kanada-En’yo et al. [31]; the strength
of the core and shell potentials were varied to reproduce,
as near as possible, the magnitude of the experimental cross
sections. This optimization resulted in a reasonable agreement
between the magnitude of the calculated and experimental
cross section as can be seen in Fig. 3, thus confirming that
the observed resonances are not core resonances, i.e., coming
from the CN. Guided by the TRM philosophy of using two
distinct potential regions for the core and shell, a nuclear op-
tical model calculation, using the code FRESCO [34], with two
distinct W-S potentials, produced a reasonable fit to the data
shown as dashed line in Figs. 3(a)–3(c). The parameters of this
nuclear optical model fit are similar to the TRM parameters,
except the radius of the shell potential for the nuclear optical
model fit is somewhat larger than that needed by the TRM.
An important point to note here is that using a single potential
with a diffused surface did not produce a satisfactory fit to
the data using the code FRESCO [34]. This therefore seems to
support the posit that two distinct potential regions are needed
for the nuclear core and outer shell nucleons.

A. Probability density and flux

Since the TRM specifically highlights the importance of
the outer shell in trapping and transient orbiting, the question
then arises: do resonances occur in the outer shell, similar
to the whispering gallery phenomena in acoustic and optical
systems? The TRM formalism provides a complete descrip-
tion of the wave nature of the scattering process. Therefore, it
is possible to calculate the probability intensity of the scat-
tered wave within the core and shell, i.e., |�(r, θ, φ)|2. In

addition, using this wave function, the flux of probability can
also be calculated, which can give additional insight into the
reaction mechanism, and in particular, to investigate if whis-
pering gallery resonances are occurring. Since the TRM gives
a reasonable representation of the experimental cross section
data, the model can be used to investigate the possibility of
outer shell resonances leading to partial orbiting, since the
experimental data at backward angles show rapid changes in
cross sections with incident kinetic energy, Fig. 3. These rapid
changes could be associated with such resonances in the shell.
The TRM that best fits the data can be used to derive analytical
functions for the probability intensity, P(r, θ, φ) [Eq. (3)],
and probability flux, F (r, θ, φ) [Eq. (4)]. These two physical
quantities are related to the TRM wave function �(r, θ, φ) by
the relationships:

P(r, θ, φ) = |�(r, θ, φ)|2 (3)

F(r, θ, φ) = ih̄

2μ
(�∇�∗ − �∗∇� ). (4)

For a situation where all scattering potentials are
zero, �(r, θ, φ) = ei(r̄·k̄), so P(r, θ, φ) = 1.0 and F (r, θ, φ) =
1 × kh̄

μ
= probability × velocity, i.e., the probability intensity

and flux have constant values over spatial dimensions. This is
an important check for any scattering theory.

B. TRM probability density and flux results
for 4He(9Li, 9Li) 4He

As discussed above, the experimental measurement of
the 4He(9Li, 9Li) 4He excitation function at backward angles
shows a resonancelike structure corresponding to Ec.m. = 8.7
MeV (see Fig. 3). The TRM parameters for this reaction have
been determined in a previous work [32] and are listed in
Table I. The Appendix provides also formalism as to how to
calculate values of the wave function from these parameters.
From this, the probability amplitude P(r, θ, φ), and probabil-
ity flux F (r, θ, φ) have been calculated for this reaction at the
resonance energy corresponding to Ec.m. = 8.7 MeV [32].

Figure 4 shows the TRM results for P(r, θ, φ) and
F (r, θ, φ) using these potential parameters. Figures 4(a)
and 4(b) are the TRM results when the calculation includes
Coulomb and nuclear core potentials, but the shell potential
is set to zero; Figs. 4(c) and 4(d) are the TRM results when
the calculation includes all Coulomb, nuclear shell, and core
potentials.

Figure 4 shows various interesting phenomena. Focusing
on the top two diagrams, where there is no shell potential,
it shows the incoming α wave interacting with the deep po-
tential of the core, located inside the inner red circle. The
probability intensity P(r, θ, φ) rises to over 1.6 units for the
strong upstream reflected wave. As noted above for a null
scattering situation, the probability intensity, P(r, θ, φ), will
be unity at all positions. The dashed lines show the location
of the crests for these reflected waves. The separation of these
crests is equal to λ/2, where λ is the incoming wavelength
just outside the core. This demonstrates that these are standing
waves produced by the reflected wave interfering with the
incoming wave. This reflection, in addition, creates a shadow
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TABLE I. The TRM potential parameters for the reactions considered in this paper. The parameters a and b are discussed below.

Elab rc rs Vc Vi Vs b
Reaction (MeV) (fm) (fm) (MeV) (MeV) (MeV) a (rad)

α(9Li, 9Li)α 32 3.40 5.1 −148.0 −33.0 −13.16 0.0 0.0
α(6He, 6He)α 29 3.54 4.51 −174.20 −15.59 −20.55 0.4420 2.2262
9Be(α, α) 9Be 10 3.79 5.26 −103.56 −44.33 −14.17 0.1433 3.3920
9Be(α, α) 9Be 11 3.58 4.96 −145.66 −15.18 −17.73 0.1588 3.5402
9Be(α, α) 9Be 12 4.02 5.27 −152.25 −18.84 −20.61 0.0291 1.9162
9Be(α, α) 9Be 14 3.80 5.41 −168.32 −25.19 −8.27 0.0486 6.0517
9Be(α, α) 9Be 17.5 4.23 5.34 −112.03 −12.85 −20.23 0.0783 5.5516
9Be(α, α) 9Be 20 3.91 5.32 −129.64 −10.06 −12.83 0.0989 1.0241

downstream of the core (it is interesting to note that similar
upstream standing waves can often be seen from small objects
that interrupt the flow of a slow smooth shallow river). The
corresponding flux diagram for this scattering situation shows
that, as the flux penetrates into the core, it diminishes. This is
expected since the core potential has an imaginary component
(see Table I), the value of which will decrease the flux by over
95% by the time it reaches the core center. It is important to
emphasize that the TRM does not account for resonances that

can originate from core absorption, i.e., compound nucleus
resonances.

The bottom two diagrams show that the scattering pattern
dramatically changes when a shell potential is present. The
location of the shell is between the two red circles. There
are still upstream standing waves caused by reflection of
the incoming wave, but now a component of the incom-
ing wave becomes trapped in the shell and rotates around
it. Further, there appears to be a standing wave within the

FIG. 4. TRM probability intensity, P(r, θ, φ), and probability flux, F (r, θ, φ), calculated for the 9Li(4He, 4He) 9Li, corresponding to
Ec.m. = 8.7 MeV. (a) P(r, θ, φ) and (b) F (r, θ, φ) when the TRM includes the Coulomb and only the nuclear core potential. (c) P(r, θ, φ)
and (d) F (r, θ, φ) when the TRM includes all potentials (see text for details). The inner red circle radius (rc = 3.4 fm) corresponds to the core
potential radius, and outer circle radius (rs = 5.1 fm) corresponds to the shell radius; the outer circle has no relevance when the shell potential
is zero. P(r, θ, φ) is plotted as contours of equal intensity at (r, θ ) points. The beam is going from left to right. F (r, θ, φ) is represented by
vectors at (r, θ ) points, the vector length corresponding to the flux magnitude along the vector direction.
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l 

l

FIG. 5. Angular momentum plane intensity profiles of the mod-
ulus of the elastic scattering matrix element at the resonant energies
shown in Figs. 3(d)–3(f). (a) Corresponds to a pole at Ec.m. = 2.4
MeV, l = 3; (b) Corresponds to a pole at Ec.m. = 5 MeV, l = 4;
(c) corresponds to a pole at Ec.m. = 8.7 MeV, l = 5 [32].

shell, likely caused by the fluxes on opposite shell sides
constructively interfering. Previous work [32], indicated that
the resonance at Ec.m. = 8.7 MeV has a most likely angular
momentum quantum number l = 5 (see Fig. 5). This would
seem to be consistent with the pattern of P(r, θ, φ) shown
in the diagram, since the number of peaks or nodes around
the shell is 2×5; this indicates a coherent linkage between
Fig. 4 and Fig. 3. There are components of flux being drawn
into the core from the shell, but equally that there is flux
being drawn back from the core, and ejected into the forward
mode where P(r, θ = 0, φ) gains a large value of 10 units.
This is an interesting observation since similar focusing at
the shell exit region has been observed in similar geomet-
rical configurations for optical (so-called nanojets, [4]), and
acoustic systems [2,3]. Hence, such a concentration of wave
intensity created by spherical objects seems to be a generic
wave phenomenon. Interestingly, this concentration of prob-
ability intensity within the shell region, with a modal-like
resonance structure, is similar but not identical to Fig. 1, corre-
sponding to the optical case, where the electric field strength
at a point is expressed as a ratio to the mean electric field
strength. To draw the similarity as close as possible, the Mie
calculation for Fig. 1, used the same relative ratio between
radii and wavelength as for the nuclear case in Fig. 4. Further,
for Fig. 1, the refractive indices used for the core and shell
regions, produced the same relative reduction in wavelength
within the core and shell, as for the nuclear case in Fig. 4. The
electric field intensity pattern shown in Fig. 1, is sensitive to
the refractive indexes used, so that there is not an exact match
is not too surprising, nevertheless, the similarity is striking.

Given that the TRM provides some guidance to the reaction
mechanism, it is possible to inspect the analytical structure
of the elastic S-matrix element in the complex angular mo-
mentum plane. Resonances will appear as distinct singularity
poles in this complex plane, where the value of the imaginary
component of a pole is related to the lifetime of the resonance.
Inspection of the TRM elastic S-matrix element that best
represents the data (Fig. 5), shows two distinct singularity
poles whose properties are l = 5, lifetime 1.68 × 10−22 s for
the upper 8.7 MeV resonance, and l = 4, 1.94 × 10−22 s for
the 5 MeV lower resonance. For these lifetimes, and using a
semiclassical treatment of the rotating flux within the outer
shell, the rotating 9Li + 4He system breaks apart before half a
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rotation is completed. This is consistent with the information
that can be deduced from Fig. 4.

IV. TRM INTERPRETATION OF DATA
FOR α SCATTERING FROM 6He AND 9Be

As a further test for the model, two other reactions have
been considered involving 9Be and 6He targets, since both
6He and 9Be nuclei have extended neutron shells outside 4He
structured cores. Therefore, the TRM has been used to inter-
pret experimental data for 4He scattering from these nuclei.
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FIG. 8. The strength of the nuclear potentials for the best fits of
the TRM to the angular distribution data shown in Fig. 7.

The results are shown in Figs 6 and 7. It can be seen that
the TRM, with reasonable potential parameters, discussed in
the next paragraph, provides a good representation of the cross
sections at the majority of data points for these two reactions.
This gives some confidence concerning the value of the TRM
approach to interpret reactions of this type.

The TRM potential parameters that have been derived to
best match the data for the three reactions considered in this
paper are given in Table I. For 9Be(4He, 4He) 9Be and for
9Li(4He, 4He) 9Li reactions, the spin-orbit interaction was not
considered. This, as discussed in Refs. [32,37], could play
a role, adding an additional shell potential, which is angular
momentum dependent.

V. TRM POTENTIAL PARAMETERS

The potential parameters for the three reactions discussed
in this paper are given in Table I, and in Fig. 8 and Fig. 9.

In the case of the 4He(6He, 6He) 4He reaction, testing if the
simple TRM model can provide some description of the dy-
namics, it is important to consider the two-neutron exchange
which, if direct, is equivalent to the incoming α particle (in
the center of mass), exchanging with the α within the 6He
target. Some account of this exchange can be implemented
by coherently adding the scattering amplitudes, f (θ ), of these
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FIG. 9. Potential core and shell radii for the best fits of the TRM
to the angular distribution data shown in Fig. 7.

FIG. 10. Comparison of the real and imaginary W-S potential
(black line) from Ref. [36], to the TRM potential (red line) for the
reaction 4He(6He, 6He) 4He. Laboratory 6He beam energy equals 29
MeV.

two components:

f(θ ) = fel(θ ) + aeib fel(π − θ ), (5)

where a, b are determined by the probability of exchange [38].
For 4He + 4He scattering a = 1, b = 0. For the 6He + 4He
case, a and b could be angle and channel energy dependent,
but for this initial study only the channel energy dependence
was considered. The values of a and b for each energy were
determined by the best fit to the data for the 6He and 9Be
reactions.

For the 9Li reaction, the TRM values for the radii of the
core and shell potentials are taken from Ref. [31]. The mag-
nitude of the potentials shown in Table I, corresponds to the
best TRM fit to the data shown in Fig. 3. For this analysis no
exchange component of the scattering amplitude was needed.
Further discussions of this reaction can be found in Ref. [32].

For the 6He reaction, it is interesting to contrast the TRM
parameter results with the ones from the analysis of Raabe
et al. [36]. These authors used the distorted wave Born approx-
imation (DWBA) formalism with W-S potentials to calculate
the differential cross section; the parameters of the potential
were varied until the calculated values best matched the exper-
imental measurements. Figure 10 shows a comparison of this
W-S potential, real and imaginary components, with the TRM
potential shown in Table I. The TRM square potentials seem
to follow the general trend of the W-S potential, although
there are obvious differences especially in the surface region.
The value of the complex W-S potential for radii >3.5 fm is
significantly above that which is required by the TRM. For
the TRM if a complex potential greater than |0.04| MeV is
introduced to the shell potential then the shell potential reso-
nance structure rapidly disappears. From a TRM perspective,
this means that the wave component that mostly is confined
to the shell region, is reemitted outside the shell before it
inelastically scatters to other channels.

The TRM potential parameters for the 9Be reaction, are
shown in Figs. 8 and 9. There is obviously a variation of
the parameter values with beam energy. There is a small
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indication that the complex potential is slowly decreasing with
energy, while the shell potential does not. Interestingly, the
size of the outer shell, (rs − rc), remains approximately con-
stant with beam energy. Another interesting point from Table I
is the magnitude of the exchange component of the scattering
amplitude. The highest magnitude at a = 0.44 is found for
the 6He reaction. It is smaller for the 9Be reaction, and tends
to decrease with beam energy. Since the configuration of
6He is close to 4He, then the exchange component for the
6He would be expected to be close to the reaction 4He + 4He,
where a = 1.0. For the reaction involving 9Be, this nucleus is
obviously more complex than 4He, so the exchange potential
is expected to be less, as seems to be the case. In summary,
the analysis reported here exhibits evidence that, indeed, the
TRM provides a reasonable representation of scattering of
α particles from light nuclei characterized by an outer shell
structure, at least for the three reactions considered here.

VI. CONCLUSIONS

The main theme of this paper is to report on an investiga-
tion to understand if resonant surface phenomena like those
seen in optical and acoustic systems, can occur for nuclear
systems especially if they have extended diffuse surfaces, i.e.,
a shell outside the core. The understanding of these dynamic
effects can be important in the analysis of scattering data with
the aim of extracting nuclear structure information.

We know stable nuclei are either spherical or elliptically
shaped, with rapid falloff of nuclear density at the nuclear
surface, whereas unstable nuclei can have a similar core shape
but valence nucleons may travel beyond the surface of the
central core, forming a halo or a skin [10,11]. For the scat-
tering of two particles, the potential is related to the nuclear
density; in particular, elastic scattering is a peripheral process,
hence, very sensitive to the nuclear density at the surface.
Indeed, important effects, related to the diffuse nuclear shell
of halo nuclei have been observed in elastic scattering of such
nuclei [30]. Consequently, quasimolecular resonances could
occur in peripheral partial waves and the resonance could be
considered as a decaying shell wave propagating around the
region of strong absorption, in such a way that is analogous to
light scattering from optical spheres, with shells of different
refractive indexes.

Over the years, there has been an impressive development
of models to describe nuclear reaction outcomes, ranging from
phenomenological models, to models which are based on
fundamental multiple nucleon-nucleon interactions between
reacting nuclei. Although many of these models are successful
in describing reaction data, it is often difficult to acquire a
physical picture of the underlining reaction mechanism. The
main reason behind the development of the simple TRM
model has been to address this problem. The TRM model
is simple enough that exact algebraic expressions can be ob-
tained for the reaction scattering amplitude, and the density of
the scattering wave function in the various reaction regions.
This then can lead to insight into the reaction mechanism.

Although the model is simple in its foundation, it never-
theless can provide a good representation of the differential
cross section for the three reactions considered in this

paper. Further, by inspection of the wave function for
the 4He(9Li, 9Li) 4He reaction, using the TRM potential
parameters derived from experimental data, for the cross sec-
tion resonance at reaction energy Ec.m. = 8.7 MeV, it has
been demonstrated that there is clear evidence of a resonance
structure within the shell that is very similar to that seen in
optical systems. We would like to emphasize that TRM is used
to identify resonances within the shell rather than core reso-
nances. Moreover, these shell resonances can be as large and
as relevant in enhancing the cross section as the compound
nucleus ones.

During supernova and nova explosions, light elements such
as H, He, C, N, O are rapidly transformed to heavier elements,
by nuclear reactions, which involve nuclei, which are ex-
tremely proton rich or neutron rich [13]. Many of these nuclei
have very short lifetimes, and so are expected to have extended
low-density nucleon tail beyond a dense nuclear core. Today,
one of the reasons for building accelerator facilities to produce
short-lived radioactive beams, is to measure in the laboratory
some of these nuclear reactions [39,40]. While no doubt it will
be possible to measure some of these important reactions, it
might not be possible, due to the extreme short lifetimes of
the nuclei of interest, to measure others. Therefore, there is
an important incentive to understand in general the reaction
mechanisms of such nuclei, and in particular, the importance
of the extended nuclear surface. This has been the main moti-
vation behind the work reported in this paper.
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APPENDIX: MATHEMATICAL DETAILS OF THE TRM

The scattering situation relevant to the TRM is illustrated
in Fig. 2. The amplitudes of the spherical Hankel components
within the nuclear core and shell, and the outgoing Coulomb
component, can be related to the amplitude of the incoming
Coulomb component by the boundary conditions: (i) the radial
wave function must remain finite at r = 0; (ii) the value of the
amplitude of the wave functions must agree on each side at
the boundaries at rc and rs; (iii) the derivative of the wave
functions on each side of the boundaries must be equal.

These boundary conditions are sufficient to determine the
amplitude of the wave function components within the shell,
as well as the value of the elastic scattering matrix element, S.
To use these conditions, it is necessary to specify the mathe-
matical form of the radial functions.

The spherical Hankel functions are connected to the Han-
kel functions by the relationships [41]:

h1(l, ρ) =
√

π

2ρ
H {1}

(
l + 1

2
, ρ

)
, (A1)

h2(l, ρ) =
√

π

2ρ
H {2}

(
l + 1

2
, ρ

)
, (A2)
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for a specific angular momentum quantum number l , and
where ρ = kr.

The Coulomb functions [42] are related to the confluent
hypergeometric functions of the second kind, U +and U −:

hc2(l, ρ) = (−2)l+1ρ l e
πη

2 −i(ρ+σl )U − (l + 1 − iη, 2l

+ 2,−2iρ), (A3)

hc1(l, ρ) = (−2)l+1ρ l e
πη

2 +i(ρ+σl )U + (l + 1 + iη, 2l

+ 2,−2iρ), (A4)

where σl is the Coulomb phase shift, and η the Sommerfeld
parameter.

In order to determine the elastic scattering matrix element,
the following expressions need to be numerically evaluated at
the two potential boundaries. At rc, these functions are

F (l, rc) =
[ d (h2(l,k0r))

dr

]
rc

+ [ d (h1(l,k0r))
dr

]
rc

[h2(l, k0r)]rc
+ [h1(l, k0r)]rc

, (A5)

β(l, rc) =
F (l, rc)[h2(l, k1r)]rc

− [ d (h2(l,k1r))
dr

]
rc

F (l, rc)[h1(l, k1r)]rc
− [ d (h1(l,k1r))

dr

]
rc

. (A6)

At rs, the following functions are needed:

[Lc2]rs
=

[ d (hc2(l,kir))
dr

]
rs

[hc2(l, kir)]rs

, (A7)

[Lc1]rs
=

[ d (hc1(l,kir))
dr

]
rs

[hc1(l, kir)]rs

, (A8)

[Rc12 (kir)]rs
= [hc2(l, kir)]rs

[hc1(l, kir)]rs

. (A9)

Finally, the value of the elastic scattering matrix element can
be calculated from these expressions:

Snum(l, ki ) = [Rc12 (kir)]rs

([
d (h2(l, k1r))

dr

]
rs

− [Lc2]rs
[h2(l, k1r)]rs

− β(l, rc)

([
d (h1(l, k1r))

dr

]
rs

− [Lc2]rs
[h1(l, k1r)]rs

))
, (A10)

Sdem(l, ki ) =
([

d (h2(l, k1r))

dr

]
rs

− [Lc1]rs
[h2(l, k1r)]rs

− β(l, rc)

([
d (h1(l, k1r))

dr

]
rs

− [Lc1]rs
[h1(l, k1r)]rs

))
, (A11)

S(l, ki ) = −Snum(l, ki )

Sdem(l, ki )
. (A12)

The elastic scattering cross section can be immediately calcu-
lated using this expression for the scattering matrix element.

The probability intensity and probability flux are calcu-
lated from the scattering wave function. To specify the radial
component of the wave function in the three potential regions,
three constants, A(l ), B(l ), C(l ) are needed. These are

A(l ) = hc2(l, kirs) + S(l, ki )hc1(l, kirs)

h2(l, k1rs) − β(l )h1(l, k1rs)
, (A13)

B(l ) = −A(l )β(l ), (A14)

C(l ) = A(l )

(
k0

k1

) 1
2

×
[
H {2}(l + 1

2 , k1rc
) − β(l )H {1}(l + 1

2 , k1rc
)]

[
H {2}(l + 1

2 , k0rc
) + H {1}(l + 1

2 , k0rc
)] .

(A15)

The l wave component between 0 � r � rc, R0(l, r), is
given by:

R0(l, r) = C(l )

(
π

2k0r

) 1
2
[

H {2}
(

l + 1

2
, k0r

)

+ H {1}
(

l + 1

2
, k0r

)]
. (A16)

The l wave component between rc � r � rs, R1(l, r), is
given by:

R1(l, r) = A(l )

(
π

2k1r

) 1
2
[

H {2}
(

l + 1

2
, k1r

)

−β(l )H {1}
(

l + 1

2
, k1r

)]
. (A17)

The l wave component between rs �r, Ri(l, r), is given by:

Ri(l, r) = hc2(l, kir) + S(l, ki )hc1(l, kir). (A18)

The total wave function in the three regions may be obtained
by summing over all l components, e.g., in the region 0 �
r � rc:

�0(r, θ ) = 1

2

∞∑
l=0

il (2l + 1)R0(l, r)Pl [cos(θ )]. (A19)
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