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Uncertainty quantification in (p, n) reactions
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Charge-exchange reactions are versatile probes for nuclear structure. In particular, when populating isobaric
analog states, these reactions are used to study isovector nuclear densities and neutron skins. The quality of
the information extracted from charge-exchange data depends on the accuracy of the reaction models and their
inputs; this work addresses these two points. First, we quantify the uncertainties due to effective nucleon-nucleus
interactions by propagating the parameter posterior distributions of the recent global optical model KDUQ [C. D.
Pruitt, J. E. Escher, and R. Rahman, Phys. Rev. C 107, 014602 (2023)] to (p, n) reaction observables populating
the isobaric analog state, at beam energies in the range of 25–160 MeV. Our analysis, focusing on 48Ca, shows
that the total parametric uncertainties on the cross sections are around 60–100%. The source of this uncertainty
is mainly the transition operator as the uncertainties from the distorted waves alone are less than about 15%.
Second, we perform a comparison between two- and three-body models that both describe the dynamics of the
reaction within the DWBA. The predictions from these two models are similar and generally agree with the
available data, suggesting that one-step DWBA is sufficient to describe the reaction process. Only at a beam
energy of 25 MeV are there possible signs that a one-step assumption is not fully correct. This work provides
motivation for the quantification of uncertainties associated with the transition operator in three-body model. It
also suggests that further constraint of the optical potential parameters is needed for increased model precision.
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I. INTRODUCTION

One of the most exciting open questions in our field today
concerns the equation of state of nuclear matter as it evolves
from symmetric nuclear matter to neutron rich matter [1]. The
key element in this equation of state is the symmetry energy,
a term that relates directly to neutron/proton asymmetry in
the system. The quest to constrain the symmetry energy en-
compasses a variety of projects from theory, experiment, and
observations (e.g., Refs. [2–6]).

One way to explore the evolution of nuclear structure with
neutron/proton asymmetry is through charge-exchange reac-
tions. In particular, charge-exchange reactions populating the
isobaric analog state (IAS) of the original nucleus through a
�S = 0, �L = 0 Fermi transition, probe the isovector com-
ponent of the transition operator. It has long been understood
that this component of the mean field is responsible for phe-
nomena such as neutron skins [2,7], and that it provides a
direct handle on the symmetry energy around nuclear densi-
ties. For example, in Ref. [8] Danielewicz and collaborators
studied charge-exchange reactions to the IAS and obtained
information on the isovector component of the optical poten-
tial, which in turn informed the symmetry energy. While there
are many types of charge-exchange reactions that are used
for a variety of studies of the isovector response of nuclei,
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in this work we focus solely on (p, n) reactions that populate
the IAS.

The interpretation of (p, n) charge-exchange measure-
ments relies on a reaction model. There are two main
approaches available in the field, one that is based on a
two-body theory (sometimes referred to as the macroscopic
approach) [8] and another one that is based on a three-body
framework (often referred to as a microscopic approach)
[9,10]. The latter approach is most commonly used for in-
terpretations of the isovector response of charge-exchange
reactions. For the purpose of studying the IAS, both ap-
proaches are adopted and the two-body approach provides
a direct and simple connection to the isovector compo-
nent of the optical potential. In either case, the inputs are
effective potentials to describe the initial and final dis-
torted waves and the transition operator, all of which carry
uncertainties.

Recent work [11] assessed the magnitude of uncertainties
in the two-body model for specific charge-exchange reactions,
namely (p, n) reactions on 14C, 48Ca, and 90Zr at beam ener-
gies E = 25, 35, 45 MeV. In that study, neutron and proton
elastic-scattering data were independently used to constrain
the parameters of the relevant proton- and neutron-target opti-
cal potentials, and, from the parameter posterior distributions
obtained from the neutron and proton separate Bayesian cal-
ibrations, credible intervals for the charge-exchange cross
sections were determined. The errors obtained were surpris-
ingly large, due to the assumption that the neutron and proton
optical potentials were assumed to be independent. In reality,
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these potentials are related and their respective parameters are
strongly correlated.

In this work, we revisit the uncertainties in charge-
exchange reactions to IAS using a global optical potential
for which full Bayesian uncertainty estimation has been
performed (KDUQ) [12]. Because KDUQ is a global
parametrization, including a wide range of neutron and proton
data on mostly stable nuclei, the correlation between neutron
and proton optical potentials are intrinsic by construction.
Also included in KDUQ is the energy dependence across a
wide range of beam energies. In this way, KDUQ provides
an excellent starting point to study the effect of optical model
uncertainties in charge-exchange observables.

This work expands the study of Ref. [11] to include a
comparison between the two-body and the three-body mod-
els. Preliminary steps toward such a comparison was done in
Ref. [13]; however, this work is the first study in which a full
comparison is performed including uncertainty quantification.
Finally, we also expand the energy range of the reactions to
include energies up to E = 160 MeV, given the potential in-
terest of exploring these reactions on rare isotopes produced in
fragmentation facilities such as RIKEN and FRIB. We focus
on the 48Ca(p, n) reaction, populating the IAS in 48Sc.

The paper is organized in the following way: Sec. II
provides a brief summary of the theoretical framework for
both the two-body and three-body approaches; in Sec. III we
present the results; and conclusions are drawn in Sec. IV.

II. THEORETICAL FRAMEWORK

In this work, we focus on A(p, n)B charge-exchange re-
actions populating the isobaric analog state B of the nucleus
A. The charge-exchange cross section can be obtained from
the corresponding T -matrix, which in the distorted wave born
approximation (DWBA) reads

T DWBA = 〈ψ f |Ô|ψi〉 (1)

where Ô is the transition operator, and ψi and ψ f are the
incoming A-p and outgoing B-n distorted waves, respectively.
In principle, the operator Ô and the scattering waves are
many-body objects. However, such many-body descriptions
are unfeasible for reactions involving medium- and heavy-
mass nuclei and energies above a few MeV. In this work, we
simplify this many-body problem into a few-body one and we
adopt a two- or three-body description.

In the two-body model, internal degrees of freedom of
the nuclei in the entrance (A) and exit (B) channels are not
explicitly included, as opposed to the three-body approach
where these nuclei have single-particle structure. This few-
body simplification comes at a cost, since the interactions
between the nucleon projectile and the target cluster(s) are
simulated through optical potentials, which includes an imag-
inary part modeling effectively the inelastic channels [14–16].
In both the two- and three-body models, the scattering waves
are obtained from p-A and n-B optical potentials, respectively
ÛpA and ÛnB. The main difference between the two- and three-
body models lies in the construction of the operator. It is
noted that in both models the transition strengths are equal

and exhaust the Fermi sum rule [17], B(F ) = (N − Z ) = 8
for the case of 48Ca studied here.

A. Two-body charge-exchange model

In the case of (p, n) charge-exchange reactions to the iso-
baric analog state, the two-body transition operator is directly
related to the isovector part of these optical potentials,

Ô2B =
√|N − Z|
N − Z − 1

[ÛnB − ÛpA], (2)

where N is the number of neutrons and Z is the number of pro-
tons in the nucleus A. Because this two-body operator depends
on the difference of optical potentials, its uncertainties are
strongly reduced if optical potentials are expressed in terms
of isoscalar and isovector components [11]. The two-body
calculations are performed with the code CHEX [11].

B. Three-body charge-exchange model

In the three-body model, the operator Ô3B is calculated
as a form factor, in which a suitable nucleon-nucleon (NN)
interaction TNN is folded over the transition densities of the
target-residue and projectile-ejectile system. In the case of the
(p, n) reaction, a single folding over the transition density of
the target-residue system, ρAB, is required [10,18,19]:

Ô3B ∝
∫

dr ρAB TNN . (3)

The transition densities ρAB can be calculated in various
models, but, for light and medium-heavy nuclei, shell-model
calculations are often used. For the excitation of the IAS of the
48Ca(0+) ground state in 48Sc, one-body transition densities
were calculated in the p f shell-model space with the GX1A

interaction [20–22] using the code NUSHELLX [23]. The ex-
citation of the IAS is almost completely due to 0 f7/2-0 f7/2

proton-particle, neutron-hole excitations.
The nucleon-nucleon interaction most commonly used,

as is the case in this work, is the Love-Franey TNN matrix
[24,25], since it has the attractive feature that the different
components of the interaction can easily be attributed to
specific properties of a reaction, such as spin and isospin
transfer. In addition, the Love-Franey interaction has proved
to accurately represent key features of charge-exchange re-
actions; see, e.g., [10,18,19]. The TNN matrix was originally
developed for beam energies of 50 MeV and above. Re-
cently, new parametrizations for beam energies of 50 MeV
and below became available [26,27]. Since in this work we
study (p, n) charge-exchange reactions for Ep = 25 MeV to
Ep = 160 MeV, both sets of interactions are used.

The calculated form factor is inserted in a DWBA cal-
culation [Eq. (1)] to obtain the differential cross sections.
The three-body calculations were performed with the code
DW81 [28]. It is noted that the inclusion of knock-on ex-
change amplitudes, which interfere with the direct amplitudes,
is necessary when using the TNN matrix. In the calculations
presented in this work with the code DW81, the treatment of
these exchange amplitudes was done exactly, rather than using
the a short-range approximation usually used for reactions
with composite particles [24,25].
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C. Optical potential parameters

For the p- 48Ca and n- 48Sc optical potentials needed in
both few-body models, we use the global optical potentials
fit by Koning and Delaroche (KD) and its recent version
with quantified uncertainties (KDUQ), which are valid for
24 � A � 209 and 1 keV � E � 200 MeV. These two global
parametrizations are both expressed in terms of isoscalar and
isovector components, which have been fitted on the same
corpus of data, including elastic scattering angular distribu-
tions and analyzing power, as well as total and reaction cross
section data for stable nuclei. The KDUQ parameter posterior
distributions and their correlations were built using a Bayesian
framework. In this work, we use the 416 samples provided in
Ref. [12] to evaluate the parametric uncertainties in charge-
exchange cross sections.

III. RESULTS

In this section, we aim to quantify the uncertainties in the
differential charge-exchange cross sections due to the underly-
ing parametric uncertainty in the optical model potential. Let
us clarify that these uncertainties represent a lower bound as
model uncertainties resulting from the simplified treatment of
the DWBA have not been quantified in this analysis.

A. Full parametric uncertainty quantification
in the two-body model

We first perform a full quantification of parametric un-
certainties, associated with both the distorted waves and the
operator, for 48Ca(p, n) 48Sc(0+; IAS) at 25, 35, 45, 135, and
160 MeV (Fig. 1). Such complete uncertainty quantification
can only be done consistently in the two-body framework,
in which the scattering waves and the operator are derived
from the same optical potentials. The 68% (dark shaded blue)
and 95% (light shaded blue) credible intervals, obtained by
propagating the 416 samples of the KDUQ posteriors [12], are
compared to the cross section obtained with the original KD
parametrization (solid blue line) [29]. Although the predicted
uncertainties are large, they are considerably smaller than
those predicted in Ref. [11] due to the inclusion of the ap-
propriate correlations between the neutron and proton optical
potentials.

We now turn to the comparison between our predictions
and the charge-exchange data (represented by the black dots in
Fig. 1). At the lower energies [Figs. 1(a)–1(c)], the 1σ credible
intervals do not capture the data at the peak nor at backward
angles. The difficulty in describing the angular distribution
data for energies in the E = 25–45 MeV range was discussed
in [8,13]. We show here, with uncertainty quantification, that
agreement is obtained only at the 2σ level. In contrast to
the lower energy results, the model predictions reproduce the
experimental angular distributions within 1σ for the higher
beam energies [Figs. 1(d) and 1(e)] both in magnitude and in
the dependence with angle. This suggests that, even at these
higher energies, the two-body model is effective. Neverthe-
less, here again the widths of the credible intervals are much
larger than the experimental errors (around 100%). In Table I,
we show the absolute and relative theoretical uncertainties at

FIG. 1. Charge-exchange cross sections 48Ca(p, n)
48Sc(0+; IAS) at (a) 25 MeV, (b) 35 MeV, (c) 45 MeV, (d) 135 MeV,
and (e) 160 MeV calculated within the two-body framework (2). The
dark and light shaded blue bands correspond to the 68% and 95%
credible intervals, obtained by propagating the KDUQ posteriors
[12] consistently to the two-body operator and the scattering waves
(2). The solid blue line represents the cross section computed from
the original Koning-Delaroche parametrization. The data (black
points) were taken from Ref. [30].

the peak of the charge-exchange angular distribution, corre-
sponding to angle θmax.1 In the fourth column (“Full UQ”)
we can see that the relative uncertainties increase from 62%
at 25 MeV to 99% at 160 MeV. This enhancement at larger
beam energies may be related to a larger sensitivity of charge-
exchange observables to the optical potentials and/or by larger
uncertainty in the KDUQ potentials at higher energy (as illus-
trated in the volume integrals in Fig. 12 of Ref. [12]).

1The absolute uncertainties at the peak of the cross section are
defined between the limit of the uncertainty interval and its mean
value. The relative ones are simply calculated from the absolute
uncertainties normalized by the mean value.
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TABLE I. Half width of the 68% credible intervals at the peak
θmax (in degrees) of the 48Ca(p, n) 48Sc(0+; IAS) charge-exchange
angular distributions (in mb/sr) for the various beam energies stud-
ied. The absolute (abs.) widths of these intervals and their relative
(rel.) importance are given for the different cases: when the uncer-
tainties in the operator and the distorted wave are considered (Full
UQ, see Fig. 1) and when only the uncertainties in the distorted
waves are accounted for in both the two- and three-body reaction
models (UQ DW, see Fig. 4).

Two-body Three-body

E θmax Full UQ UQ DW UQ DW

(MeV) (deg) abs. rel. abs. rel. abs. rel.

25 0 0.7 62% 0.3 13% 0.30 15%
35 26 1.1 95% 0.4 11% 0.47 11%
45 26 1.1 99% 0.4 12% 0.62 13%
135 0 12.2 97% 0.5 10% 0.78 14%
160 0 17.8 99% 0.5 10% 0.49 10%

It may seem surprising that the charge-exchange cross
section predictions with the original KD potential do not lie
within the 1σ intervals of KDUQ (solid blue lines in Fig. 1).
This is especially true for the three lowest energies. To inspect
the reason for this mismatch, we provide in Fig. 2 the operator
Ô2B responsible for the charge-exchange transition in the two-
body framework: the real and imaginary parts of the original
KD potential (solid blue and dashed green lines respectively)
should be compared with real and imaginary KDUQ interval
(the yellow band with single hatching and magenta band with
crosshatching respectively). Figure 2 shows that the operator
obtained with the original KD potential falls just outside the
operator 68% credible interval obtained from KDUQ for the
lowest beam energies which explains the features seen in
Fig. 1. This mismatch is no longer present for the highest
energies where the uncertainty intervals become larger.

Finally, for the transition operators plotted in Fig. 2, we
compute the first moments of the volume integrals, shown in
Fig. 3. We find that the uncertainties on the moments are large
and the uncertainty of J2 is of similar magnitude as that for J0.
These uncertainties increase with beam energy which imprints
directly on the charge exchange cross sections.

B. Comparing two- and three-body models

In this section, we compare the simpler two-body approach
with the more complex three-body model. Please note that,
in the latter case, uncertainties in TNN are not evaluated at
present, thus we include only the uncertainties emerging from
the ambiguities in the optical potentials used to generate the
initial and final distorted waves, which are needed in both the
two- and three-body models. In Fig. 4, the results obtained
when including the parametric uncertainties arising only from
the optical potentials propagated to the distorted waves are
shown, keeping the transition operator fixed. For the two-body
calculations (UQ DW 2B, blue band with single hatching),
we consider the operator (2) built from the original KD
parametrization. For the three-body calculations (UQ DW 3B,

FIG. 2. Real and imaginary part of the two-body transi-
tion operator in the s wave for charge-exchange reactions
48Ca(p, n) 48Sc(0+; IAS) at (a) 25 MeV, (b) 35 MeV, (c) 45 MeV,
(d) 135 MeV, and (e) 160 MeV as a function of the nucleon-nucleus
relative coordinate r. The 68% credible intervals (shaded yellow
band with single hatching and magenta band with crosshatching) are
obtained from the KDUQ posteriors [12] while the solid blue and
dashed green lines are calculated using the KD potential [29].

FIG. 3. Real and imaginary parts of the zeroth (top) and second
(bottom) moments of the volume integrals of the transition operators
in the s wave (Fig. 2) as a function of the beam energy. These
moments are obtained with KD [29] (black points and crosses) and
KDUQ [12] (red and blue error bars).
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FIG. 4. 68% credible intervals for charge-exchange cross sec-
tion 48Ca(p, n) 48Sc(0+; IAS) at (a) 25 MeV, (b) 35 MeV, (c) 45 MeV,
(d) 135 MeV, and (e) 160 MeV obtained within the two-body (UQ
DW 2B, blue band with single hatching) and three-body (UQ DW
3B, red band with crosshatching) frameworks. These are obtained by
propagating the KDUQ posteriors [12] to just the scattering waves
and using the KD potentials [29] for the operators. The inset shows
the comparison of the theoretical predictions with the data at large
angles on a logarithmic scale.

red band with crosshatching), we use the inputs as described
in II B. The bands displayed in Fig. 4 correspond to the 1σ

(68%) credible intervals. The insets in Fig. 4 correspond to
the same angular distributions in log scale.

The 68% credible intervals obtained in both
frameworks agree overall reasonably well with the
48Ca(p, n) 48Sc(0+; IAS) data at all energies, indicating
that both reaction models and operators are appropriate.
There are small differences between the two calculations,
and the three-body calculations do perhaps slightly better
in reproducing the experimental data, in particular at large
angles. We note that some of the components of TNN ,
including the central isospin (τ ) component, have a strong
dependence on beam energy for Ep � 100 MeV [24,25].

Since parametrizations of TNN were available at Ep =10, 20,
30, 40, 50, 100, 140, and 175 MeV, we used the ones closest
to the experimental beam energies, and which best reproduced
the experimental data. For Ep = 25 and 35 MeV, the TNN

from Refs. [26,27] at 30 MeV was used. For the case of
Ep = 45 MeV, the available interactions from Refs. [26,27]
at 40 MeV and 50 MeV did about equally well, and the
results for TNN at 40 MeV are shown in Fig. 4. When using
the interaction at 50 MeV from Refs. [24,25], the results
were significantly worse. For Epp = 135 and 160 MeV,
the TNN parametrizations at 140 MeV and 175 MeV from
Refs. [24,25] were used, respectively.

The angular distributions vary strongly as a function of
beam energy. Only at the highest beam energies are the
distributions clearly forward peaked as expected for a low-
momentum-transfer transition involving no change of angular
momentum. At these higher energies, the cross sections are
strongly dominated by the central isospin (τ ) component of
TNN and the contributions from other (noncentral) components
of TNN are negligible. Therefore, at these energies, the op-
erator used in the three-body model most closely resembles
the operator used in the two-body model, and one expects the
closest correspondence, which is consistent with the results
shown in Fig. 4.

For beam energies below 50 MeV, it was observed that
the non-central tensor component and, to a lesser degree, the
spin-orbit component of TNN are important for obtaining good
consistency with the data. At the lowest beam energy, the
angular distribution at forward scattering angles is not well
reproduced by the three-body theory. This could be an indica-
tion that the reaction process is more complex than assumed,
and that in-medium effects and/or multistep contributions are
starting to play significant roles at this energy.

For both the two-body and three-body calculations the
uncertainty bands obtained in Fig. 4 are strongly suppressed
compared to the one in Fig. 1. This can also be observed in
Table I by comparing the relative uncertainties at the peak
obtained in the two-body model in the cases of “Full UQ”
and “UQ DW 2B.” At all energies, the relative uncertainties
stemming from the distorted waves are around 10–15%. This
indicates that the two-body transition operator is responsible
for the larger part of the uncertainties.

IV. CONCLUSIONS

In this work, we quantify uncertainties associated with
charge-exchange reactions to isobaric analog states deriving
from the optical potentials. We use the recently devel-
oped KDUQ global parametrization [12], which is obtained
from a Bayesian analysis of the original KD potential [29].
Pulling from the KDUQ parameter posterior distributions, we
obtain credible intervals for the charge-exchange cross sec-
tions. As an illustrative example, we consider reactions
48Ca(p, n) 48Sc(0+; IAS) for a wide range of beam en-
ergies E = 25–160 MeV. We make predictions for the
charge-exchange angular distributions using either the macro-
scopic two-body model or the more microscopic three-body
approach, both based on one-step DWBA.
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In the two-body model, we are able to fully quantify the
interaction uncertainties by including the uncertainties in the
initial and final distorted waves as well as in the transition
operator. The resulting uncertainties in the cross sections at
the peak of the distributions span 60–100%. The credible
intervals obtained for the charge-exchange cross sections are
wider at the highest beam energies because the parameter
posteriors for the imaginary part of KDUQ at the higher ener-
gies is broader. Note that, in KDUQ, the correlations between
neutron and proton optical potentials are taken into account
and, therefore, our estimated uncertainties are not artificially
inflated as was the case in Ref. [11]. Our study shows that
it is the uncertainty coming from the transition operator that
dominates the uncertainty in the predicted charge-exchange
cross sections. The uncertainties on the cross section from the
distorted waves alone are less than about 15%. This work sug-
gests that information about the isovector part of the potential
and the symmetry energy that may be extracted from these
cross sections will carry large parametric uncertainties.

We also compare directly the two-body and three-body
model predictions for the charge-exchange angular distri-
butions. To our knowledge, this is the first time such a
comparison is done using the standard codes in experimen-
tal analyses. For the three-body model, we only include the
uncertainties coming from the distorted waves, since the tran-
sition operator is obtained in a separate procedure for which
no uncertainty quantification has been performed. If we only
consider the uncertainties in the distorted waves, the angular

distributions obtained within the two-body model are similar
to those in the three body model, although the latter has
a slight edge in describing the data. For the example here
chosen, the agreement with the data may suggest that, even for
such a wide range of energies, one-step DWBA is sufficient to
describe the process, except perhaps for the data taken at the
lowest beam energy of 25 MeV.

An obvious way to reduce the uncertainties in predictions
of charge-exchange is to include charge-exchange data in the
calibration of optical potential parameters. Such an approach
is currently being implemented.
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