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Nuclear-structure calculations for the description of low-energy neutral-current neutrino scattering off the
stable 203,205Tl isotopes are performed in the context of the nuclear shell model using the model space jj56pn.
Cross-section and event-rate calculations focusing on inelastic solar-neutrino scattering off 203,205Tl are per-
formed. The individual contributions of the various nuclear responses are presented and discussed, and the results
are also illustrated in terms of the nuclear recoil energy. Analytical expressions entering the cross sections are
given in order to achieve a direct connection with experimental observables.
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I. INTRODUCTION

Neutrinos are among the most elusive particles in the stan-
dard model (SM), with little being known concerning their
nature and fundamental properties. Their interactions with
other particles proceed only via the weak interaction, thus the
interactions have tiny cross sections. Neutrinos also interact
with nuclei, with the corresponding cross sections being the
largest in the neutrino sector. By exploiting pion-decay-at-rest
neutrinos, the first observation of coherent elastic neutrino-
nucleus scattering (CEνNS) was reported by the COHERENT
Collaboration in 2017 using a 14.6 kg CsI[Tl] detector [1],
and it was later confirmed in 2020 using a 24 kg liquid argon
detector [2]. These two measurements are consistent with the
SM at 6.7σ and 3.5σ confidence levels, respectively. In 2021
a new measurement on CsI[Tl] was reported with an improved
background determination and double statistics which further
rejected the no-CEνNS hypothesis at 11.6σ [3]. Very recently,
the COHERENT Collaboration reported a new low-statistics
measurement on Ge which, however, reached a notable 3.9σ

consistency with a SM CEνNS excess [4]. Moreover, sug-
gestive evidence for CEνNS observation using a reactor has
been reported by the Dresden-II Collaboration using a Ge
detector [5]. Finally, the first CEνNS observation induced by
8B solar neutrinos was announced in July 2024, independently
by PandaX-4T [6] and XENON [7] Collaborations with a
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2.7σ significance, motivating further our present work. The
field is very active, with several ongoing experiments aiming
to detect neutrino-nucleus scattering events, such as CONNIE
[8], CONUS [9], νGEN [10], MINER [11], RICOCHET [12],
NUCLEUS [13], TEXONO [14], vIOLETA [15], RED-100
[16], NEON [17], NEWS-G [18], and the Scintillating Bubble
Chamber (SBC) [19] (for a recent review see [20]).

From the theoretical point of view, the main source
of uncertainty in the neutrino-nucleus scattering cross sec-
tion comes from nuclear-physics effects. In this direction there
have been a number of works exploring the nuclear-physics
aspects of the CEνNS process, following a phenomenolog-
ical approach [21,22], shell model and Skyme-Hartree-Fock
[23], deformed shell model [24], BCS [25], Hartree-Fock +
BCS [26], coupled-cluster [27], and shell model + chiral
effective field theory [28]. While there have been intense
efforts in probing new physics using CEνNS (see, e.g., [20]
and references therein) there are a limited number of studies
focusing on the subdominant inelastic channels of neutral-
current neutrino-nucleus scattering [29–31]. The latter have
also been studied in the context of advanced nuclear-structure
methods such as the quasiparticle random-phase approxima-
tion [32–35] and the microscopic quasiparticle-phonon model
[36–38].

In this work we perform the required nuclear-structure cal-
culations within the framework of the nuclear shell model. We
mainly consider solar neutrinos for which we expect the bulk
of the inelastic scattering contributions to arise from nuclear
final states in the range 0–4 MeV of excitation. Nevertheless,
we do not neglect states higher in energy and also include
final states up to 10–20 MeV. Despite the focus being on
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FIG. 1. Shell-model-computed spectra compared to the corresponding experimental spectra [45,46] for the nuclei of interest.

solar neutrinos, we also report the inelastic cross sections as
functions of the energy of the incoming neutrino within the
range 0–20 MeV. This information can be utilized by re-
searchers in obtaining theoretical estimates of folded cross
sections for low-energy neutrino sources beyond the solar
neutrinos.

For the nuclei considered in this work, we specifically
focus on the stable thallium isotopes 203,205Tl and present the
expected solar-neutrino-induced event rates for both CEνNS
and inelastic neutrino-nucleus scattering channels. Thallium
isotopes are of key interest since they constitute the dopant
material of several detectors based on CsI[Tl] and NaI[Tl]
crystals. Apart from COHERENT, thallium-doped materi-
als are of particular interest in dark-matter direct detection
searches and are currently in use by several experimental
collaborations such as COSINE [39], DAMA/LIBRA [40],
PICO-LON [41], ANAIS [42], and SABRE [43]. An impor-
tant novelty in the present work is the inclusion of nuclear
recoil energy in the calculations. To this purpose we present,
for the first time, the standard neutrino-scattering formalism
in terms of the nuclear recoil energy for a more convenient
comparison of the results with experimental data.

The paper is organized as follows: in Sec. II we discuss
the details of the nuclear-structure calculations performed,
and we also present the standard formalism to describe in-
elastic neutrino-nucleus scattering as well as introduce the
new formalism in terms of the nuclear recoil energy. Next,
in Sec. III, we discuss our main results and finally, in Sec. IV,
we highlight our concluding remarks.

II. THEORETICAL FORMALISM

A. Nuclear-structure calculations

The nuclear many-body framework utilized in this pa-
per for the nuclear-structure calculations is the nuclear shell
model. For the stable thallium isotopes it is possible to use
this model to derive the needed nuclear wave functions in

large-scale computations. These wave functions are, in turn,
used to construct the transition matrix elements between the
ground state (g.s.) and the excited final states of the target
nucleus. The calculations were conducted by utilizing the
shell-model code NUSHELLX@MSU [44] using the interaction
khhe within the model space jj56pn without any restrictions
or truncations. All states of both parities from J = 3/2 to
J = 11/2, along with the states with Jπ = 1/2+, were initially
included. The 1/2− states were excluded since the valence
space does not contain like-nucleon orbitals that would differ
in total angular momentum by 0 or 1 units and have opposite
parity, so these states cannot be reached through a transition
from the g.s. (Jπ = 1/2+ for both nuclei). Such transitions
would be possible by including orbitals above or below the
shell gaps, but this was judged to be unnecessary for the
purposes of this work due to the hight excitation energy of
these states and the low energy of solar neutrinos, leading to
an expected negligible contribution of the 1− multipole to the
scattering cross section.

For 205Tl there were a total of 1393 final states in the
chosen model space, whereas for 203Tl that number was nearly
100 000. To alleviate the computational burden of calculat-
ing the cross sections for scatterings off 203Tl, the number
of final states included in the calculations was reduced con-
siderably, i.e., we selected the first 1000 most contributing
states. We also verified that, under this approximation, our
cross section results agree up to two decimal points with the
full calculation assuming the complete set of final states. The
details of this procedure are discussed in the following section.
Some of the lowest states of the obtained spectra of the two
nuclei, along with the corresponding experimental spectra for
comparison, are illustrated in Fig. 1. The agreement between
theory and experiment in the low-energy end of the spectra is
good for both nuclei of interest, which is particularly impor-
tant in low-energy solar-neutrino scattering where most of the
contributions come from a small number of the low-energy
states.
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FIG. 2. Reaction kinematics illustrated in the lowest order Feyn-
man diagram for the processes of interest. An incoming solar
neutrino νe (four-momentum kμ) scatters off the nucleus 203Tl or
205Tl (four-momentum Kμ), which is in its ground state prior to
the scattering. The nucleus is left in an excited state denoted by an
asterisk. The processes are mediated by an exchange of a Z0 boson
and the four-momentum transfer is qμ = kμ − k′

μ = K ′
μ − Kμ.

B. Scattering cross section

The scattering cross sections as functions of the energy of
the incoming neutrino were calculated by using the standard
Donnelly-Walecka formalism. The semileptonic nuclear pro-
cesses

νe + 203/205Tl(ground state) −→ νe + 203/205Tl∗(excited state)

(1)

proceed via an exchange of the neutral Z0 boson, illus-
trated in the lowest order by a Feynman diagram of Fig. 2.
This complicated process can be simplified by neglecting
the propagator of the intermediate vector boson and treating
the scattering as a pointlike current-current interaction with

the effective Hamiltonian

Ĥeff = G√
2

∫
d3x jμ(x)J μ(x), (2)

where G ≡ GF = 1.1664 × 10−5 GeV is the Fermi constant
and ( jμ) Jμ is the (lepton) hadron current. This approximation
is appropriate when the transferred 4-momentum qμ = kμ −
k′
μ = K ′

μ − Kμ is sufficiently small. Here (kμ/k′
μ) Kμ/K ′

μ

is the four-momentum of the initial/final state (neutrino)
nucleus. The matrix element of the effective Hamiltonian
connecting the initial (i) and final ( f ) states can be written
as

〈 f |Ĥeff|i〉 = G√
2

∫
d3x e−iq·xlμ〈 f |J μ(x)|i〉, (3)

where we denote

〈 f | jμ(x)|i〉 ≡ e−iq·xlμ, (l0, l) = lμ (4)

for the lepton matrix element.
The differential cross section is related to the Hamiltonian

matrix element through Fermi’s golden rule [47]

dσ

d�
= |k′|Eν ′

(2π )2
V 2|〈 f |Ĥeff|i〉|2, (5)

where (k) k′ and (Eν) Eν ′ are the three-momentum and total
energy of the (initial-) final-state neutrino respectively, and V
is the quantization volume when the lepton fields are treated as
box-normalized plane waves. The latter is related to the Dirac
spinors by

V lμ = u(k′)γμ(1 − γ5)γμu(k). (6)

In the case of unobserved and unpolarized targets the matrix-
element part of the differential cross section can shown to be
[48,49]

1

2Ji + 1

∑
Mi,M f

|〈 f |Ĥeff|i〉|2 = G2

2

4π

2Ji + 1

⎧⎨
⎩

∑
J�1

[
l · l∗ − l3l∗

3

2

(|〈Jf |T̂ mag
J (q)|Ji〉|2 + |〈Jf |T̂ el

J (q)|Ji〉|2
)

− i
l × l∗

2
2 Re

(〈Jf |T̂ mag
J (q)|Ji〉〈Jf |T̂ el

J (q)|Ji〉∗
)] +

∑
J�0

[l3l∗
3 |〈Jf |L̂J (q)|Ji〉|2

+ l0l∗
0 |〈Jf |M̂J (q)|Ji〉|2 − 2 Re(l3l∗

0 〈Jf |L̂J (q)|Ji〉〈Jf |M̂J (q)|Ji〉∗)]

⎫⎬
⎭, (7)

where q ≡ |q|, and M̂J , L̂J , T̂ el
J , and T̂ mag

J are the Coulomb,
longitudinal, and transverse operators defined in terms of
the hadron current Jμ. We suppress the magnetic quantum
number M of said operators throughout this paper, i.e., we
denote, in the case of the Coulomb operator for example,
M̂JM ≡ M̂J . These operators have both a vector (V) and
an axial-vector (A) part, e.g. M̂J = M̂V

J − M̂A
J , meaning that

there are a total of eight operators. The operators are dis-
cussed in more detail in, e.g., [48–50], and it is through them
and their matrix elements that the chosen nuclear many-body

framework enters into the scattering cross-section calcula-
tions. These matrix elements and their values are discussed
in more detail in Sec. III and the Appendix.

The double-differential scattering cross section to a final
nuclear state with excitation energy ω = EK ′ − EK = Eν −
Eν ′ can be shown to be [48–50]

d2σi→ f

d� dω
= G2|k′|Eν ′

π (2Ji + 1)

⎛
⎝∑

J�0

σ J
CL +

∑
J�1

σ J
T

⎞
⎠, (8)
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which is written in terms of the Coulomb-longitudinal

σ J
CL = (1 + cos θ )|(Jf ||M̂J (q)||Ji )|2

+
(

1 + cos θ − 2
EνEν ′

q2
sin2 θ

)
|(Jf ||L̂J (q)||Ji )|2

+ Eν − Eν ′

q
(1 + cos θ )

× 2 Re[(Jf ||L̂J (q)||Ji )(Jf ||M̂J (q)||Ji )
∗] (9)

and transverse

σ J
T =

(
1 − cos θ + EνEν ′

q2
sin2 θ

)

× [|(Jf ||T̂ el
J (q)||Ji )|2 + |(Jf ||T̂ mag

J (q)||Ji )|2
]

− (Eν − Eν ′ )

q
(1 − cos θ )

× 2Re
[
(Jf ||T̂ mag

J (q)||Ji )(Jf ||T̂ el
J (q)||Ji )

∗] (10)

contributions to the cross section. Integrating over the angular
coordinates � and summing over the individual final nuclear
states yields the total cross section σ (Eν ) as a function of the
energy of the incoming neutrino. The origin of the incoming
neutrino is taken into account in the form of a normalized
energy distribution dN

dEν
(Eν ), and the folded cross section 〈σ 〉 is

obtained by integrating dN
dEν

(Eν )σ (Eν ) over all Eν . The energy
distributions for the different types of solar neutrinos used in
this work are discussed in Sec. III.

C. The recoil-energy formalism

One of the main purposes in this work is to perform
nuclear-structure calculations that take into account detector-
specific quantities such as nuclear recoil thresholds Tthres.
Although in principle the latter can be taken into account in
the cross section given in Eq. (8), a clear disadvantage of the
formalism presented in Sec. II B is the absence of a direct
connection with experimental observables. Therefore, in this
subsection we devote an effort to express our results in terms
of the nuclear recoil energy T in order to have a clear link

of the present calculations with experimentally measurable
quantities.

We begin our discussion by expressing the three-
momentum transfer in terms of the nuclear recoil energy. In
that case, the kinematics of the process imply that

|q|2 = (Eν − Eν ′ )2 + 2EνEν ′ (1 − cos θ ) = 2MT + T 2,

(11)

where Eν − Eν ′ = ω + T , with M being the nuclear mass and
ω the nuclear excitation energy. By equating the two expres-
sions above and working in the limit M 	 Eν , we get

T ≈ Eν (Eν − ω)(1 − cos θ ) + ω2/2

M
, (12)

in agreement with Ref. [29]. The minimum and maximum
recoil-energy limits can be readily obtained by noting that the
scattering angle is taking values in the range −1 � cos θ � 1,
as

Tmin = ω2

2M
, Tmax = (2Eν − ω)2

2M
. (13)

Notice also that in the limit of elastic scattering, i.e., ω → 0,
the usual CEνNS recoil-energy limits are recovered.

In the next step our aim is to express the cross section given
in Eq. (7) in terms of the nuclear recoil energy. In that
case, the following change of variables is appropriate: dσ

dT =
dσ

d cos θ
| d cos θ

dT |, where the Jacobian can be immediately obtained
using Eq. (12), and reads∣∣∣∣d cos θ

dT

∣∣∣∣ = M

Eν (Eν − ω)
. (14)

The differential cross section with respect to the nuclear recoil
energy is then given by1

dσ

dT
= dσ

d cos θ

M

Eν (Eν − ω)
. (15)

Analytical expressions for the relevant lepton traces appearing
in Eq. (7) can be derived, and they take the forms

∑
spins

l0l∗
0 = 4E2

ν − 4Eν (T + ω) − 2MT + ω(2T + ω)

2Eν (Eν − ω)
, (16)

∑
spins

l3l∗
0 = (T + ω)

[
4E2

ν − 2MT − 4Eν (T + ω) + ω(2T + ω)
]

2
√

2Eν (Eν − ω)
√

MT
, (17)

∑
spins

l3l∗
3 = (T + ω)2

[
4E2

ν − 2MT − 4Eν (T + ω) + ω(2T + ω)
]

4EνMT (Eν − ω)
, (18)

1The cross section is further modified by a factor of EK ′
M [1 + Eν

M (1 − Eν′
|k′ | cos θ )]−1 ≈ [1 + T −ω2/(2M )

Eν−ω
]−1 when the effect of the nuclear recoil

K′ = k′ − k on the phase space is taken into account [49]. To a good approximation we have EK ′/M ≈ 1, and for the neutrinos considered
in this paper we also have Eν, ω � M, so the first-order correction to the cross section arising from this phase-space distortion is vanishingly
small and can be safely neglected.
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∑
spins

1

2
(l · l∗ − l3l∗

3 ) = [2MT − ω(2T + ω)]
[
4E2

ν + 2MT − 4Eν (T + ω) + ω(2T + ω)
]

8EνMT (Eν − ω)
, (19)

∑
spins

−i

2
(l × l∗)3 = (2Eν − ω)[2MT − ω(2T + ω)]

2
√

2Eν (Eν − ω)
√

MT
, (20)

under the approximations of T � Eν and T � M. It is worth
noticing that the above expressions in the limit ω → 0 are
reduced to those obtained in Ref. [28] for the case of CEνNS.
Note also that the positive sign appearing in the leading term
of l3l∗

3 given in Ref. [28] should be corrected by a minus sign.
A few comments are in order. By observing the latter ex-

pressions, interesting relations between the lepton traces can
be obtained, offering insight into their relative contributions
to the cross section. In particular, it holds that

l3l∗
0 = T + ω√

2MT
l0l∗

0 ≈
(

T + ω

q

)
l0l∗

0 ,

l3l∗
3 = (T + ω)2

2MT
l0l∗

0 ≈
(

T + ω

q

)2

l0l∗
0 . (21)

Evidently, the term l3l∗
0 (l3l∗

3 ) is suppressed (doubly sup-
pressed) compared to l0l∗

0 since for actual calculations it
holds that T � ω and ω/q ≈ 10% or less.2 Therefore, in
the neutrino-nucleus scattering cross section given in Eq. (7)
one expects the corresponding terms that are proportional to
l3l∗

0 and l3l∗
3 to have a minor contribution. For the sake of

completeness, at this point it should be mentioned that for
very tiny recoil energies, i.e., T → Tmin, it holds that ω ≈ q,
which implies that l3l∗

0 ≈ l3l∗
3 ≈ l0l∗

0 . However, the latter case
is practically irrelevant in view of the typical recoil thresh-
olds involved in neutrino-scattering experiments. On the other
hand, the leptonic trace (l · l∗ − l3l∗

3 ) can also be written in
terms of l0l∗

0 as

(l · l∗ − l3l∗
3 ) =

(
1 − ω(2T + ω)

2MT

)(
l0l∗

0 + 2MT

Eν (Eν − ω)

)
,

(22)

which further simplifies to

(l · l∗ − l3l∗
3 ) ≈

(
1 − ω2

q2

)(
l0l∗

0 + q2

Eν (Eν − ω)

)
. (23)

For the typical order keV recoil energies, detectable in
neutrino-scattering experiments, as explained previously, it
holds that 1 − (ω/q)2 ≈ 1, and hence (l · l∗ − l3l∗

3 ) ≈ l0l∗
0 +

q2

Eν (Eν−ω) , i.e., it is always larger than l0l∗
0 , with the only excep-

tion being the case of extremely tiny recoil energies for which
one has (l · l∗ − l3l∗

3 ) � l0l∗
0 .

2Indeed, q is in the ballpark of 10–40 MeV, ω ranges 1.1–11.8 MeV
for 205Tl (1.3–19.2 MeV for 203Tl), while T is of the order of a few
keV.

III. RESULTS

The performed shell-model calculations in the present
work are optimized for the computation of inelastic neutrino-
nucleus cross sections induced by solar neutrinos. To be
concrete, the computed excitation spectra cover all the final
states up to about ω ≈ 11 MeV for 205Tl and ω ≈ 19 MeV
for 203Tl, which is more than adequate for even hep and 8B
neutrinos. Therefore, the following results are also applicable
to inelastic neutrino-nucleus cross-section calculations for any
neutrino source with similar energy range. Typical such exam-
ples include reactor neutrinos and geoneutrinos. Moreover, the
present calculations can cover partly and may be relevant also
to further neutrino sources such as diffuse supernova-neutrino
background, supernova bursts, and primordial black holes.

A. Results for cross sections in terms of the energy
of the incoming neutrino

We begin our discussion by presenting the inelastic
neutrino-nucleus cross section as a function of the energy
of the incoming neutrino in Fig. 3, where the left and right
graphs illustrate the results for the cases of 203Tl and 205Tl,
respectively. The results are demonstrated for the different
J-transition contributions, neglecting recoil-energy thresh-
olds. For both 203Tl and 205Tl isotopes, we expectedly find
that the allowed J = 1+ transitions dominate the inelastic
cross section for low neutrino energies (up to around Eν ≈
43 MeV), while for higher energies of the incoming neu-
trino the J = 2+ transitions have the dominant contribution
(see the discussion below regarding the parities). For a review
of the allowed approximation in inelastic neutrino scattering
we refer the reader to [48,49]. It is interesting to notice that in
the high-energy regime the J = 1, 3, 4, 5, 6 transitions tend
to have similar contributions to the inelastic cross section,
with the remaining J = 2 and J = 0 having the largest and
lowest contributions, respectively. For comparison purposes,
the corresponding CEνNS cross sections are also given, from
where we conclude that CEνNS dominates over the inelastic
cross section by up to four orders of magnitude. Although not
shown here, it is worth noting that we have performed a com-
parison of our inelastic cross section results with those coming
out from the analytical formula presented in [29]. In agree-
ment with Ref. [31] we conclude that the formalism presented
in [29] leads to an overestimation of the cross section by up to
four orders of magnitude, especially for neutrino energies that
are much larger than the nuclear excitation energy.

To avoid overcrowding Fig. 3, in the depicted results we
have added the two parity contributions when plotting the
inelastic cross sections for a given J transition, i.e., we show
the J+ and J− contributions together. Therefore, we wish to
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FIG. 3. Integrated inelastic neutrino-nucleus cross sections as functions of the energy of the incident neutrino for 203Tl (left) and 205Tl
(right). In both cases the results are given for the transitions of angular momentum J , adding up the J+ and J− parity contributions. The
corresponding CEνNS cross sections are also shown for comparison.

devote a separate paragraph for discussing the impact of the
different parity contributions for a given J transition. Specif-
ically, the J = 0, 1 multipole transitions proceed only via
positive-parity contributions for both nuclei of interest, since
the final states with Jπ = 1/2− were omitted as explained in
Sec. II A. The J = 2+ multipole is dominant in comparison
to J = 2− in the full energy range 0 � Eν � 100 MeV of
the incoming neutrino. Similarly, the J = 3+ multipole dom-
inates over the J = 3− multipole in the full range of neutrino
energy. On the other hand, the J = 4− multipole dominates
over the J = 4+ one in the energy region 0 � Eν � 55 (50)
MeV for the case of 203 (205)Tl isotope, while for Eν > 55 (50)
MeV their behavior is reversed. A similar behavior is found
regarding the J = 5 multipole, i.e., the positive parity domi-
nates over the negative parity in the region 0 � Eν � 75 (55)
MeV, while for higher neutrino energies the J = 5− multipole
becomes dominant. Finally, the J = 6− multipole dominates
over the J = 6+ in the full neutrino-energy range 0 � Eν �
100 MeV, for both thallium isotopes. It is also interesting to
note that the J = 5− and J = 6− multipoles have identical
contributions to the inelastic cross section for both 203 (205)Tl.
For a visual illustration of these results, see Fig. 10 in the
Appendix.

Next, in Fig. 4 we present the relative contribution of the
Coulomb-longitudinal (CL) and transverse (T) operators to
the total inelastic cross sections for 203Tl (left panel) and 205Tl
(right panel). As previously, the results assume vanishing
recoil threshold and are given in terms of the energy of the
incident neutrino. Similar results are found for both isotopes.
At very low energies, i.e., 0 � Eν � 5 MeV, CL and T opera-
tors have similar contributions, whereas for Eν � 5 MeV the
transverse operators dominate the total inelastic cross section,
with CL being always subdominant, especially in the low
and intermediate energy range 5 � Eν � 80 MeV. Finally, it
is interesting to notice that for higher neutrino energies, e.g.
Eν � 80 MeV, CL and T contributions tend to be of similar
size, especially in the case of 203Tl.

In Tables I and II we present the individual contributions to
the total inelastic cross sections, corresponding to pure vector
(σV), axial-vector (σA), and interference (σI) components. For
completeness, the total cross section (σTot.) along with the
Coulomb-longitudinal (σCL) and transverse (σT) contributions
are also tabulated. To enable a refined analysis in the context
of the different solar neutrinos, the two tables show the cross
sections as functions of the neutrino energy in the ranges
0–2 MeV and 1–20 MeV, respectively. It becomes evident

FIG. 4. Same as Fig. 3, but with the results given for the individual Coulomb-longitudinal (CL) and transverse (T) contributions to the
inelastic cross section.
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TABLE I. Total inelastic neutral-current scattering cross sections σTot. off 203Tl and 205Tl as functions of the energy Eν of the incoming
neutrino. The contributions to the total cross section from the vector σV, axial-vector σA, and interference σI parts along with the Coulomb-
longitudinal σCL and transverse σT parts are also given. The format in which the data is presented is R(e), and the cross sections are obtained
by σ (Eν ) = R × 10e × D, the units being D = 10−50 cm2.

Nucleus

Eν

203Tl 205Tl

(MeV) σV σA σI σCL σT σTot. σV σA σI σCL σT σTot.

0.1 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)
0.2 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 2.024(−8) 3.227(−3) −1.348(−5) 9.661(−4) 2.248(−3) 3.214(−3)
0.3 2.256(−6) 4.226(−1) 1.399(−3) 8.198(−2) 3.420(−1) 4.240(−1) 3.417(−6) 1.526(−1) −1.226(−3) 2.595(−2) 1.255(−1) 1.514(−1)
0.4 2.399(−5) 1.802(0) 8.760(−3) 2.259(−1) 1.585(0) 1.811(0) 2.802(−5) 5.238(−1) −6.230(−3) 5.876(−2) 4.588(−1) 5.176(−1)
0.5 1.093(−4) 4.145(0) 2.654(−2) 3.651(−1) 3.806(0) 4.171(0) 1.187(−4) 1.114(0) −1.757(−2) 9.046(−2) 1.006(0) 1.097(0)
0.6 3.522(−4) 7.458(0) 5.922(−2) 4.883(−1) 7.029(0) 7.517(0) 3.676(−4) 1.920(0) −3.776(−2) 1.201(−1) 1.762(0) 1.883(0)
0.7 9.339(−4) 1.175(1) 1.113(−1) 5.950(−1) 1.127(1) 1.186(1) 9.424(−4) 2.936(0) −6.926(−2) 1.483(−1) 2.720(0) 2.868(0)
0.8 2.173(−3) 1.704(1) 1.876(−1) 6.873(−1) 1.654(1) 1.723(1) 2.126(−3) 4.158(0) −1.145(−1) 1.757(−1) 3.870(0) 4.045(0)
0.9 4.605(−3) 2.333(1) 2.925(−1) 7.673(−1) 2.286(1) 2.363(1) 4.392(−3) 5.577(0) −1.757(−1) 2.034(−1) 5.202(0) 5.406(0)
1.0 9.160(−3) 3.065(1) 4.312(−1) 8.379(−1) 3.025(1) 3.109(1) 8.531(−3) 7.187(0) −2.552(−1) 2.325(−1) 6.708(0) 6.941(0)
1.1 1.740(−2) 3.960(1) 6.063(−1) 1.086(0) 3.913(1) 4.022(1) 1.581(−2) 8.980(0) −3.550(−1) 2.646(−1) 8.376(0) 8.641(0)
1.2 3.180(−2) 5.399(1) 8.072(−1) 2.523(0) 5.231(1) 5.483(1) 2.868(−2) 1.531(2) −4.957(−2) 4.338(1) 1.097(2) 1.531(2)
1.3 5.620(−2) 9.595(1) 1.083(0) 1.151(1) 8.558(1) 9.709(1) 5.284(−2) 7.132(2) 2.106(0) 1.914(2) 5.239(2) 7.153(2)
1.4 9.649(−2) 2.118(2) 1.638(0) 3.904(1) 1.745(2) 2.136(2) 9.566(−2) 2.228(3) 7.742(0) 5.792(2) 1.656(3) 2.235(3)
1.5 1.622(−1) 6.935(2) 3.337(0) 1.701(2) 5.269(2) 6.970(2) 1.693(−1) 6.050(3) 2.075(1) 1.525(3) 4.546(3) 6.071(3)
1.6 2.668(−1) 2.142(3) 7.908(0) 5.504(2) 1.600(3) 2.150(3) 2.887(−1) 1.232(4) 4.377(1) 2.917(3) 9.442(3) 1.236(4)
1.7 4.278(−1) 4.694(3) 1.676(1) 1.159(3) 3.552(3) 4.711(3) 4.725(−1) 2.108(4) 7.929(1) 4.654(3) 1.650(4) 2.116(4)
1.8 6.682(−1) 8.562(3) 3.136(1) 2.005(3) 6.589(3) 8.594(3) 7.435(−1) 3.245(4) 1.299(2) 6.682(3) 2.590(4) 3.258(4)
1.9 1.017(0) 1.408(4) 5.378(1) 3.134(3) 1.101(4) 1.414(4) 1.133(0) 4.833(4) 2.029(2) 9.502(3) 3.903(4) 4.853(4)
2.0 1.515(0) 2.171(4) 8.751(1) 4.618(3) 1.718(4) 2.180(4) 1.679(0) 6.963(4) 3.045(2) 1.321(4) 5.673(4) 6.994(4)

TABLE II. Same as Table I, but for higher energies of the incoming neutrino and in units of D = 10−43 cm2.

Nucleus

Eν

203Tl 205Tl

(MeV) σV σA σI σCL σT σTot. σV σA σI σCL σT σTot.

1.0 9.160(−10) 3.065(−6) 4.312(−8) 8.379(−8) 3.025(−6) 3.109(−6) 8.531(−10) 7.187(−7) −2.552(−8) 2.325(−8) 6.708(−7) 6.941(−7)
2.0 1.515(−7) 2.171(−3) 8.751(−6) 4.618(−4) 1.718(−3) 2.180(−3) 1.679(−7) 6.963(−3) 3.045(−5) 1.321(−3) 5.673(−3) 6.994(−3)
3.0 3.196(−6) 3.691(−2) 2.208(−4) 6.493(−3) 3.064(−2) 3.713(−2) 3.052(−6) 7.179(−2) 4.574(−4) 9.978(−3) 6.227(−2) 7.225(−2)
4.0 2.482(−5) 2.081(−1) 1.657(−3) 3.201(−2) 1.778(−1) 2.098(−1) 2.047(−5) 2.510(−1) 2.221(−3) 2.764(−2) 2.256(−1) 2.532(−1)
5.0 1.122(−4) 5.753(−1) 5.973(−3) 7.133(−2) 5.101(−1) 5.814(−1) 8.389(−5) 5.712(−1) 6.547(−3) 5.120(−2) 5.266(−1) 5.778(−1)
6.0 3.679(−4) 1.147(0) 1.483(−2) 1.157(−1) 1.046(0) 1.162(0) 2.577(−4) 1.038(0) 1.468(−2) 7.700(−2) 9.755(−1) 1.052(0)
7.0 9.805(−4) 1.920(0) 2.983(−2) 1.613(−1) 1.789(0) 1.951(0) 6.556(−4) 1.647(0) 2.778(−2) 1.029(−1) 1.572(0) 1.675(0)
8.0 2.262(−3) 2.890(0) 5.246(−2) 2.070(−1) 2.738(0) 2.945(0) 1.461(−3) 2.395(0) 4.695(−2) 1.285(−1) 2.315(0) 2.443(0)
9.0 4.687(−3) 4.049(0) 8.412(−2) 2.527(−1) 3.886(0) 4.138(0) 2.950(−3) 3.276(0) 7.319(−2) 1.538(−1) 3.198(0) 3.352(0)
10.0 8.945(−3) 5.390(0) 1.261(−1) 2.989(−1) 5.226(0) 5.525(0) 5.515(−3) 4.283(0) 1.074(−1) 1.792(−1) 4.217(0) 4.396(0)
11.0 1.598(−2) 6.903(0) 1.794(−1) 3.468(−1) 6.751(0) 7.098(0) 9.692(−3) 5.411(0) 1.504(−1) 2.052(−1) 5.365(0) 5.571(0)
12.0 2.706(−2) 8.577(0) 2.452(−1) 3.976(−1) 8.451(0) 8.849(0) 1.619(−2) 6.650(0) 2.029(−1) 2.328(−1) 6.636(0) 6.869(0)
13.0 4.379(−2) 1.040(1) 3.242(−1) 4.531(−1) 1.032(1) 1.077(1) 2.591(−2) 7.994(0) 2.655(−1) 2.629(−1) 8.023(0) 8.286(0)
14.0 6.820(−2) 1.237(1) 4.172(−1) 5.156(−1) 1.234(1) 1.285(1) 3.999(−2) 9.436(0) 3.388(−1) 2.967(−1) 9.518(0) 9.815(0)
15.0 1.028(−1) 1.446(1) 5.247(−1) 5.877(−1) 1.450(1) 1.509(1) 5.979(−2) 1.097(1) 4.231(−1) 3.356(−1) 1.111(1) 1.145(1)
16.0 1.505(−1) 1.667(1) 6.472(−1) 6.726(−1) 1.680(1) 1.747(1) 8.697(−2) 1.258(1) 5.188(−1) 3.815(−1) 1.281(1) 1.319(1)
17.0 2.149(−1) 1.900(1) 7.851(−1) 7.739(−1) 1.922(1) 2.000(1) 1.234(−1) 1.427(1) 6.264(−1) 4.363(−1) 1.459(1) 1.502(1)
18.0 3.000(−1) 2.142(1) 9.388(−1) 8.959(−1) 2.176(1) 2.266(1) 1.715(−1) 1.603(1) 7.460(−1) 5.024(−1) 1.645(1) 1.695(1)
19.0 4.105(−1) 2.393(1) 1.109(0) 1.043(0) 2.440(1) 2.545(1) 2.335(−1) 1.786(1) 8.781(−1) 5.822(−1) 1.839(1) 1.897(1)
20.0 5.515(−1) 2.652(1) 1.295(0) 1.221(0) 2.715(1) 2.837(1) 3.126(−1) 1.975(1) 1.023(0) 6.787(−1) 2.041(1) 2.108(1)
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FIG. 5. Same as Fig. 3, but with the results given in terms of the nuclear recoil energy.

that the axial-vector contribution dominates the inelastic cross
sections, followed by the interference contribution, which is
by about two orders of magnitude suppressed with respect
to the former. The vector contribution is found to be further
suppressed by about three to four (two) orders of magnitude
compared to the axial-vector contribution in the range 0 �
Eν � 10 MeV (Eν � 10 MeV).

B. Cross sections in terms of the nuclear recoil

We now turn our discussion to the inelastic cross sec-
tions calculated by taking into account also the nuclear recoil
energy, T . After integrating over the energies of the incoming
neutrino, we obtain the cross sections as functions of the
nuclear recoil energy, as depicted in Fig. 5. As previously,
the left and right panels correspond to 203Tl and 205Tl, while
the individual contributions for the various J transitions are
also given. For both cases the J = 1 transition dominates
the cross section for very low recoil energies, while above
T ≈ 10 keV the J = 2 contribution becomes the most rel-
evant one. The remaining transitions behave similarly for
both isotopes, with the only exception being the J = 0 one,
which is relevant for very low recoil energies in the case of
203Tl only. We furthermore superimpose the corresponding
CEνNS-integrated cross section for the sake of comparison.
The latter, as expected, dominates over the inelastic channels.
However, it is interesting to notice the dip occurring at about
T = 40 keV, which reflects the loss of coherence that is taken
into account via the ground-state nuclear form factor. In this
particular region the inelastic channel becomes dominant and
precise neutrino-nucleus cross-sections measurements could
shed light on such subtle occurrences of coherence and inco-
herence.

C. Folded solar-neutrino cross sections

To take into account the origin of the incoming neutrino,
we have folded our computed neutrino-nucleus cross sections,
given as functions of the neutrino energy, over energy distribu-
tions corresponding to different types of solar neutrinos. The
distributions of pep and 7Be neutrinos are monochromatic
with energies of 1.442 MeV and 862 keV, respectively. The
e− + 7Be → νe + 7Li reaction that produces 7Be neutrinos

can also leave the 7Li nucleus in its first excited state, in which
case the energy of the produced neutrino will be 384 keV. We
will denote the higher-energy 7Be neutrinos as 7Be(high) and
the lower-energy neutrinos as 7Be(low).

The energy distributions of the other solar neutrinos are
continuous. For the pp, 13N, 15O, and 17F neutrinos we have
utilized the spectra [51]

dN

dEν

(Eν ) = N0(Q + me − Eν )E2
ν

√
(Q + me − Eν )2 − m2

e ,

(24)

where Q is the Q-value of the weak reaction producing the
neutrino and N0 is a normalization constant which guarantees
that ∫ ∞

0
dEν

dN

dEν

(Eν ) = 1. (25)

For 8B and hep we have similarly used

dN

dEν

(Eν ) = N0E2
ν (Q − Eν )11/4 (26)

and

dN

dEν

(Eν ) = N0E48/25
ν (Q − Eν )9/5, (27)

respectively. The Q-values of the reactions that produce neu-
trinos with continuous spectra are tabulated in Table III. To
relate the reaction cross sections obtained by folding σ (Eν )

TABLE III. The Q-values (MeV) of the reactions that produce
solar neutrinos with continuous energy spectra.

Neutrino Reaction Q-value

pp p + p → νe + 2H + e+ 0.420
13N 13N → νe + 13C + e+ 1.199
15O 15O → νe + 15N + e+ 1.732
17F 17F → νe + 17O + e+ 1.740
8B 8B → νe + 8Be∗ + e+ 15.1
hep 3He + p → νe + 4He + e+ 18.77
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FIG. 6. Contributions from individual nuclear final states, with excitation energy ω, to the total folded 8B solar-neutrino scattering cross
sections for both nuclei under discussion. Individual contributions are normalized to the total folded cross section and thus represent the
fraction which scattering to that particular nuclear final state contributes to the total folded cross section.

over the above neutrino-energy distributions to experimen-
tally observable scattering cross sections, we must take into
account the fluxes of different types of solar neutrinos, which
we do in the form of appropriate flux normalization factors
[52].

The contributions to the total 8B solar-neutrino scattering
cross section from individual final nuclear states are illustrated
in Fig. 6. These contribution profiles are quite similar for both
considered nuclei. Some of the most strongly contributing
states are labeled in the figure, and all of them are reached
from the ground states (Jπ

g.s. = 1/2+
1 for both nuclei) through

an allowed transition. As discussed previously, the forbidden
transitions have an almost negligible contribution for such
low-energy neutrino sources. This is further demonstrated in
Fig. 7 for 205Tl. Due to the low energy of the neutrinos,
the contributions from individual final states come mostly
from a relatively small number of states scattered in energy
in the range ≈1–4 MeV. This is in contrast with higher-

energy astrophysical neutrinos such as supernova neutrinos,
for example, for which evidence exists that indicates that the
neutral-current scattering cross section comes mostly from
spin-flip M1 giant resonances [38].

Next, in Fig. 8, we evaluate the differential number of
events due to inelastic neutrino-nucleus scattering off 203Tl
(left panel) and 205Tl (right panel) induced by solar neutrinos,
as

dRi

dT
= E

∑
ω

∫ Emax
ν

Emin
ν (T,ω)

dNi

dEν

(Eν )
dσ

dT
(Eν, T, ω) dEν, (28)

where i refers to the various solar-neutrino sources, and the
exposure is set at E = 1 ton yr. The upper integration limit is
obtained from the endpoint of the ith solar-neutrino source,
while the lower one is taken by inverting the expression in
the right-hand side of Eq. (13). The results are illustrated in
terms of the nuclear recoil energy, while individual rates are

FIG. 7. Reaction cross-section contributions for 8B neutrino scattering off 205Tl, with the neutrino flux normalized to 1, from different
transition multipoles decomposed into vector, axial-vector, and interference parts (left), and into Coulomb-longitudinal and transverse parts
(right).
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FIG. 8. Differential number of events as a function of the nuclear recoil energy for the case of 203Tl (left) and 205Tl (right). Individual
spectra are shown for the different solar-neutrino sources. Thick (thin) curves correspond to the inelastic (CEνNS) rates.

given for the various solar-neutrino sources. As expected, the
induced recoil signal is very tiny and up to a few keV. Let
us also stress that in view of the current detector technology
a nuclear recoil signal below 0.1 keV is challenging to be
achieved, while most dark matter direct detection detectors
are sensitive in the region of a few keV and above. Hence,
the most relevant spectra are those induced by 8B neutrinos.
Compared to the corresponding CEνNS rates which are also
shown here and highlighted with the same color code (thin
curves), one concludes that the inelastic scattering channel
leads to a suppressed signal. It is interesting to note that unlike
the CEνNS case, the individual signal induced by the 8B
neutrino flux is the most pronounced among the various in-
elastic rates. This is because of the numerous excited nuclear
states that lie within the energy range of 8B neutrinos. On
the other hand, for the case of CEνNS the rates are mostly
driven by the neutrino-flux normalizations and much less by
the nuclear-physics aspects. Indeed, recalling Fig. 5, it can
be seen that for nuclear-physics effects to become relevant in

FIG. 9. Total number of events induced by solar neutrino-nucleus
scattering as a function of the nuclear recoil energy for the cases of
203Tl (red color) and 205Tl (blue color). The inelastic (CEνNS) rates
are shown with solid (dashed) curves.

the CEνNS rates, a neutrino source of higher energy, such as
atmospheric neutrinos, is required to trigger recoil energies in
the ballpark of few tens of keV.

In Fig. 9, the integrated event rates above threshold are
depicted. In the nuclear recoil region of interest the CEνNS
signal dominates by four orders of magnitude. An interesting
feature concerning the inelastic rates is that the signal remains
constant for a low recoil threshold, and hence there is no need
to achieve even lower recoil thresholds for getting enhanced
rates as in the case of CEνNS. As already explained previ-
ously, comparable rates are expected for higher recoil energies
which, in turn, require more energetic neutrino sources such as
pion-decay-at-rest, diffuse supernova, and atmospheric neutri-
nos. The latter will also lead to recoil features in the regime
of a few tens of keV where the corresponding CEνNS signal
suffers from loss of coherence. Since the present shell-model
calculations are not optimized to describe highly excited nu-
clear final states, this exercise is left for a future study. Before
closing this discussion we would like to stress, however, that
although the present inelastic rates are quite suppressed, they
may be comparable to new-physics effects which are tradi-
tionally probed using only the CEνNS channel. Hence for a
more accurate sensitivity extraction the present calculations
are relevant.

IV. CONCLUSIONS

In this work we focused on low-energy neutral-current
neutrino-nucleus scattering off stable thallium isotopes.
Specifically, our computed results involve inelastic cross sec-
tions and event rates of solar neutrinos scattering off 203,205Tl.
From the experimental point of view, these isotopes are
of particular interest, being the dopant material in several
dark-matter direct-detection experiments such as COSINE,
DAMA/LIBRA, PICO-LON, ANAIS, and SABRE. Based on
extensive shell-model calculations, we performed a thorough
study of all accessible nuclear final states covering the energy
range of solar neutrinos. The inelastic neutrino-203,205Tl cross
sections as well as the corresponding event rates were found
to be dominated by axial-vector interactions. Concerning op-
erators, the transverse ones dominate the cross section across
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FIG. 10. Same as Fig. 3, but with the results given separately for the different J± transitions.

FIG. 11. The Coulomb matrix elements as functions of the three-momentum transfer q for 203Tl. Upper (lower) panels show the M̂V (M̂A)
component of M̂. The results are presented for transitions to the first ten most contributing final nuclear states of the inelastic 8B neutrino-203Tl
scattering cross section from the ground state to the final state Jπ

n , i.e., from 1/2+
1 → Jπ

n . Left (right) panels correspond to the transitions with
J = Jπ

n − 1/2 (J = Jπ
n + 1/2). For details see the text.
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all energies in the range 0–100 MeV. The most important tran-
sitions are determined to be of multipolarity J = 1+ (J = 2+)
in the low (high) energy regime. For solar neutrinos, in partic-
ular, the allowed J = 1+ transition is the most relevant one.

In our effort to achieve a direct connection between our
present calculations and experimental observables, our com-
puted cross sections and corresponding event rates take into
account the nuclear recoil energy, i.e., a key quantity that
is traditionally ignored in previous similar studies. For the
first time, we expressed the inelastic neutrino-nucleus cross-
section formalism in terms of the nuclear recoil energy instead
of the scattering angle. We furthermore focused our atten-
tion on the various lepton traces that are proportional to
the respective matrix elements entering the generic inelastic
neutrino-nucleus cross-section formula. By expressing these
quantities in terms of the energy of the incoming neutrino,
nuclear excitation energy and nuclear recoil energy, we ended
up with insightful relations between them. This allowed us to
draw conclusions regarding the relative contribution of each
term in the inelastic neutrino-nucleus cross section.

We finally discussed how the inelastic neutrino-nucleus
cross sections explored here compare to the dominant CEνNS
channel. Although the CEνNS-induced solar-neutrino rates
are found to be by up to four orders of magnitude larger, we
nonetheless stressed that the inelastic channel may be relevant
in analyses involving scenarios beyond the standard model
physics. We also remarked that the inelastic rates can be com-
parable or even exceed the CEνNS ones. For the thallium iso-
topes studied here, this corresponds to a recoil energy of about
40 keV, i.e., a region of the momentum transfer around the first
dip of the vector ground-state-to-ground-state nuclear form
factor where a sharp loss of coherence is occurring. This will
be more relevant for more energetic neutrino sources, such as
pion-decay-at-rest, supernova, and atmospheric neutrinos.
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FIG. 13. Same as Fig. 11 but for the transverse electric matrix elements T̂ el,V and T̂ el,A.
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APPENDIX

In this Appendix we reproduce Fig. 3, but now we demon-
strate the individual contributions of positive or negative
parities for the given J transitions. The results are shown in
Fig. 10 for both 203,205Tl isotopes. For details see Sec. III.

We also provide the matrix elements of M̂J , L̂J , T̂ el
J ,

and T̂ mag
J , for both vector and axial-vector components, as

functions of the three-momentum transfer. The respective
results are given in Figs. 11–14 for the case of 203Tl and
correspond to the J transitions to the ten most contributing
final nuclear states in 8B neutrino scattering. Although not
shown here, the matrix elements of 205Tl are rather similar.
The matrix elements are given for transitions between the ini-
tial nuclear state (ground state) of multipolarity Jπ

g.s. = 1/2+
1

to final nuclear states denoted as Jπ
n , where π = ± denotes

the parity and n enumerates the final states. The left (right)
panels correspond to the J = Jπ

n − 1/2 (J = Jπ
n + 1/2) tran-

sition in each case, by noting that since the nuclear ground
state is 1/2+ there are only two possible transitions (e.g.,
the red plot on the top left panel of Fig. 11 corresponds
to the matrix element of the MV

J (q) operator of a transition
with Jπ = 1+ from the g.s. to the excited state Jπ

n = 3/2+
29,

and the same graph on the top right panel corresponds to
the same matrix element for the Jπ = 2+ transition). For
203Tl, the first ten most contributing states in descending
order are 1/2+

1 → Jπ
n = {(3/2)+29, (3/2)+5 , (1/2)+28, (1/2)+12,

(3/2)+22, (3/2)+52, (3/2)+33, (1/2)+27, (3/2)+19, (3/2)+9 }. Similarly
for 205Tl, the first ten most contributing states in descending
order are 1/2+

1 → Jπ
n = {(3/2)+7 , (3/2)+3 , (1/2)+6 , (3/2)+19,

(1/2)+11, (1/2)+9 , (3/2)+2 , (1/2)+3 , (1/2)+10, (1/2)+7 }. The inter-
ested reader is referred to Fig. 6.

There are a number of points worth discussing regarding
the plots of the matrix elements. First, certain transitions
vanish entirely. This is due to the selection rules of the
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FIG. 14. Same as Fig. 11 but for the transverse magnetic matrix elements T̂ mag,V and T̂ mag,A.

multipole operators. The operators M̂V
J , L̂V

J , T̂ el, V
J , and T̂ mag, A

J

have parity (−1)J whereas the operators M̂A
J , L̂A

J , T̂ el, A
J , and

T̂ mag, V
J have parity (−1)J+1. Because of this, either the transi-

tion with J = Jπ
n − 1/2 or the one with J = Jπ

n + 1/2 has to
necessarily vanish since they cannot both fulfill the selection
rule. Whether the higher or the lower J transition vanishes is
entirely determined by the final state Jπ

n angular momentum
and parity.

Second, for low three-momentum transfers only the L̂A
1

and T̂ el, A
1 operators produce nonvanishing contributions. This

is just the allowed limit where these two operators are

proportional to the Gamow-Teller operator and the identity
T̂ el

1 = √
2L̂1 holds. As the states considered were selected

based on their contribution to the relatively low energy 8B
neutrino scattering, their order from the most contributing
to the least contributing can be readily seen by the matrix
elements of these two operators at low q values. As the
transferred three-momentum increases the matrix elements
of these two operators decrease, while those of the other
six which obey selection rules increase. The behavior of
the matrix elements as a function of q is similar for both
nuclei of interest, and we have thus included figures for
only 203Tl.
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