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Coupled-channels reactions for charged particles in harmonic traps
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Based on our previous work about Coulomb corrections in the trap method [H. Zhang et al. Phys. Lett. B
850, 138490 (2024)], we extend the Coulomb-corrected Busch-Englert-Rzażewski-Wilkens formula in coupled-
channels nuclear reactions and examine the reliability by taking 4He = [3H +p] + [3He +n] as an example.
The obtained numerical results are generally well consistent with conventional methods. Our work lays some
groundwork for analyzing the coupled-channel reactions involving light charged particles within the trap method.
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I. INTRODUCTION

As an approach converting scattering between particles
into bound-state solutions, the trap method has been success-
fully applied in lattice quantum chromodynamics (LQCD),
atomic physics and nuclear physics. With added artificial
traps, the properties of the scattering between two particles
in free space can be associated with the discrete positive
energy spectrum of the confined system through a closed-form
formula, such as the Lüscher formula [1] in periodic cubic
box, Busch-Englert-Rzażewski-Wilkens (BERW) formula [2]
in harmonic oscillator trap [3–10], and so on. These formulas
have also been extended to coupled-channels and few-body
sectors [11–17]. Generally speaking, for a two-body system
confined in an artificial trap, the formula about scattering
phase shift have a form of:

det[cot (δ(E )) − F trap(E )] = 0, (1)

where δ(E ) represents the scattering phase shifts, and the
analytic matrix function F trap(E ) is determined through the
geometric and dynamic properties of the trap itself.

In the absence of Coulomb potential, the analytic function
F trap(E ) for harmonic oscillator trap is the so-called Busch-
Englert-Rzażewski-Wilkens (BERW) formula:

cot (δl (E )) = (−1)l+1

(
4μω

k2

)l+1/2 �
(

3
4 + l

2 − E
2ω

)
�

(
1
4 − l

2 − E
2ω

) , (2)

where μ is the reduced mass and δl is the scattering phase
shift. This formula holds at the eigenenergies E = k2

2μ
with

the center-of-mass energy already subtracted.
However, dealing with the long-range Coulomb interaction

within various traps has consistently been a significant chal-
lenge. It is known that only in some simple situations, such
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as the spherical hard walls, the Coulomb potential can be an-
alytically incorporated. For more general cases, the Coulomb
corrections are complicated to address. Indeed, some works
have already discussed how to handle the Coulomb potential
and incorporate the Coulomb corrections in the conventional
trap methods [18–25]. In these investigations, the Coulomb-
corrected BERW formula [24,25] for harmonic oscillator traps
can efficiently treat the Coulomb corrections based on the
perturbation expansion.

In our previous work [25] we calculate the proton-proton
s-wave scattering phase shifts using the Coulomb-corrected
BERW formula and validate the reliability of the pertur-
bation expansion approach. Based on these results, in this
work we extend the application of the Coulomb-corrected
BERW formula to coupled-channels reactions, and calcu-
late the phase shifts and inelasticity of 4He = [3H +p] +
[3He +n] two-channel cluster model as an example. Addi-
tionally, we introduce harmonic oscillator traps with different
size in each channel, with such extension of the parame-
ter space the algorithm of the coupled-channels trap method
is improved. The results obtained confirm the validity and
reliability of Coulomb-corrected BERW formula in solving
coupled-channels problems.

The remaining parts are organized as follows. In Sec. II, the
Coulomb corrections in harmonic oscillator trap are formu-
lated by the perturbation expansion. With 4He = [3H +p] +
[3He +n] cluster model as a specific example, we extend
the Coulomb-corrected BERW formula to a general two-
channel reaction. In Sec. III. the numerical results of 4He =
[3H +p] + [3He +n] cluster model are presented and dis-
cussed. Section IV summarizes the paper. Some derivation
about Coulomb-corrected BERW formula in coupled channels
are provided in the Appendix.

II. THEORETICAL FORMALISM

A. Coulomb-corrected BERW formula

For the general case involving the Coulomb interaction, the
analytic matrix function F trap(E ) in Eq. (1) can be formulated
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as the following general form [13]:

F trap
l (E ) = 1

2μk2l+1C2
l (η)

×
(�[

GC
l (r, r′, k)

]
(rr′)l

|r,r′→0

− GC,trap
l (r, r′, E )

(rr′)l
|r,r′→0

)
, (3)

where CL(η) = 2L |�(L+1+iη)|
(2L+1)! e− π

2 η is the Sommerfeld factor,

GC
l (r, r′, k) is the Coulomb Green’s function, GC,trap

l (r, r′, E )
is the Coulomb force modified Green’s function in a trap.
Both GC

l (r, r′, k) and GC,trap
l (r, r′, E ) are ultraviolet divergent,

however, after cancellation between two terms a finite and
well-defined function can be obtained.

The Coulomb Green’s function in a trap GC,trap satisfies the
Dyson equation:

GC,trap
l (r, r′, E ) = Gtrap

l (r, r′, E ) +
∫ ∞

0
dr′′r′′2Gtrap

l (r, r′′, E )

× VC (r′′)GC,trap
l (r′′, r′, E ), (4)

where VC (r) = Z1Z2e2

r is the Coulomb potential.
For harmonic oscillator potential 1

2μω2r2, trap Green’s
function Gtrap

l (r, r′, E ) can be written as Gω
l (r, r′, E ) [26]:
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where Ma,b(z) and Wa,b(z) are the Whittaker functions [27],
r< and r> denote the lesser and greater of (r, r′), respectively.

In order to make sure the divergences canceled out prop-
erly order by order, GC

l (r, r′, E ) is also expanded through the
following Dyson equation:

GC
l (r, r′, k) = Gfree

l (r, r′, k) +
∫ ∞

0
dr′′r′′2Gfree

l (r, r′′, k)

× VC (r′′)GC
l (r′′, r′, k)

Gfree
l (r, r′, k) = −2iμk jl (kr<)h(+)

l (kr>), (6)

where jl and h(+)
l are regular spherical Bessel and Hankel

functions. r< and r> denote the lesser and greater of (r, r′),
respectively.

According to the Dyson equations above, the perturba-
tion expansion of the Green’s functions GC

l (r, r′, k) and
GC,trap

l (r, r′, E ) can be expressed by operator form as:

ĜC = Ĝfree

1 − V̂CĜfree
=

∞∑
n=0

Ĝfree(V̂CĜfree)n,

ĜC,trap = Ĝtrap

1 − V̂CĜtrap
=

∞∑
n=0

Ĝtrap(V̂CĜtrap)n, (7)

where Ĝfree = 1
E−Ĥ0

, Ĝtrap = 1
E−Ĥtrap

and Ĥ0 = − h̄2

2μ
∇2, Ĥtrap

= Ĥ0 + 1
2μω2r2.

Therefore, for harmonic oscillator trap, the leading-order
(zeroth-order) and n-order perturbation results for F trap(E )

can be expressed formally as:
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where corrections �Gnth
l can be obtained with n-dimensional

integral according to Eq. (7).
It is noteworthy that there exists a divergent behavior

at some particular points E
ω

= 3
2 + l + 2N, N = 0, 1, 2, . . . ,

which correspond to the eigenenergies of noninteracting par-
ticles in the harmonic trap. When nearing these anomalous
points, the convergence of Coulomb-corrected BERW for-
mula will become slow or even fail [25]. Indeed, this kind of
divergence is a common problem within the trap method. If we
define the eigenenergies of noninteracting particles in the trap
as the trap’s eigenenergies, the trap method will completely
fail when the eigenenergies of the trapped system coincide
with the trap’s eigenenergies.

In practice, on account of the internal structure of the
particles, the effective Coulomb potential is usually written
in a form of the error function:

V eff
C = Z1Z2e2

r
erf (

√
βr), (9)

where β > 0 is a parameter determined by reproduce some
important properties of the considered system, such as the
charge radius and so on. In order to apply the above proce-
dure of the Coulomb corrections in such cases, the effective
Coulomb interaction can be rewritten as:

V eff
C = Z1Z2e2

r
[erf (

√
βr) − 1] + Z1Z2e2

r
, (10)

the first term becomes a short-range interaction, which can
be included in the original short-range interactions. Similarly,
for other forms of effective Coulomb potential V eff

C , once it
can quickly converge to VC , the Coulomb corrections can be
achieved as the same as the case of bare Coulomb potential.

The application of the trap method requires interaction-
independent modeling. For a harmonic oscillator trap, the
frequency ω should be restricted to be small (further details
can be found in the Appendix), therefore large size of the
harmonic trap requires much more basis functions to repro-
duce the correct long-range behavior of the wave functions.
Moreover, each additional order in the perturbation expansion
increases the dimension of the integrals by one. In order to
obtain convergent phase shifts, it often requires expanding to
a high number of orders, sometimes up to the tenth order or
even higher, especially in regions where convergence is slow
(close to the divergent points). This significantly raises the
computational time because of the high-dimensional integrals.
Even with Monte Carlo integration methods, the numeri-
cal burden is already quite evident in two-body problems.
These disadvantages will significantly limit the application
of coupled-channels Coulomb-corrected BERW formula in ab
initio calculations.
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B. Coupled-channel system in traps

For a general coupled-channels (two-channels) system, the
Schrödinger equation can be written as:[

− h̄2

2μ1
∇2 + V11(r) + E1

]
φ1(r) + V12φ2(r) = Eφ1(r),

[
− h̄2

2μ2
∇2 + V22(r) + E2

]
φ2(r) + V21φ1(r) = Eφ2(r),

(11)

where E1 and E2 represent the threshold energies of two chan-
nels, respectively.

In the following, we apply the coupled-channels Coulomb-
corrected BERW formula to coupled-cluster system 4He =
[3H +p] + [3He +n] as an example.

1. 4He = [3H +p] + [3He +n]

We denote the 3H +p channel as channel 1, and the 3He +n
channel as channel 2. The experimental threshold energy dif-
ference between 3He +n and 3H +p channels is used as:

E2 − E1 = 0.763 MeV, (12)

where threshold E1 is set to be the zero point of the energy.
The diagonal potential and the coupling potential are con-

structed from T = 1 and T = 0 components:

V11(r) = erf (
√

βr)
e2

r
+ 1

2
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)2]
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,
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2

{
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[
−

(
r
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)2]
+ VT =0 exp

[
−

(
r

bT =0

)2]}
,

V12(r) = V21(r)

= 1

2

{
VT =1 exp

[
−

(
r

bT =1

)2]
− VT =0 exp

[
−

(
r

bT =0

)2]}
, (13)

where β is taken to be 0.66 fm−2 from the observed r.m.s.
radius of 3H. In the following calculations, we take 3P1 state
as an example. The parameters in the potential can be found
in Refs. [28,29]. The reduced masses are taken as μ1 = μ2 =
3
4 mN , where mN = 938.918 MeV is the nucleon mass.

2. Coupled-channel Coulomb-corrected BERW formula

In the case of a two-channel problem, the diagonal har-
monic oscillator potential is

VH.O.(r, ω1, ω2) =
(

1
2μ1ω

2
1r2 0

0 1
2μ2ω

2
2r2

)
, (14)

what should be noted here is that parameters ω1 and ω2 can be
distinct. Similarly, for more general multichannel systems, the
parameters ω in the harmonic oscillator traps for each channel
can also be different. Furthermore, for other forms of traps,
the parameters in traps in each channel can also be taken
with different values. For instance, in a spherical hard wall
trap, one can consider various radii, while in a periodic cubic
box, different side lengths can be considered. By introducing
the different ω the parameter space of the harmonic traps is
expanded, based on which the computational approach can be
improved. We will make a detailed discussion about this in the
subsequent sections.

Similar to the single-channel case, the Coulomb-corrected
BERW formula for coupled channels can also be derived
through the corresponding quantization condition. Here, we
provide the compact form of the determinant condition, and
the detailed derivation can be found in the Appendix or

Ref. [30].

B(δl1 (E ), δl2 (E ), η(E ), ω1, ω2)

= η
(
1 + Fω1

l1
Fω2

l2

)
cos

(
δl1 − δl2

)
+ (

1 − Fω1
l1

Fω2
l2

)
cos

(
δl1 + δl2

)
− η

(
Fω1

l1
− Fω2

l2

)
sin

(
δl1 − δl2

)
− (

Fω1
l1

+ Fω2
l2

)
sin

(
δl1 + δl2

)
= 0, (15)

where Fω
i (i = 1, 2) represent the analytic matrix functions

of two channels with angular momentum li (i = 1, 2), respec-
tively. δi(E ) (i = 1, 2) are two scattering phase shifts with
E being center-of-mass energy. η is the inelasticity intro-
duced by the parametrization of coupled-channels scattering
matrix S:

S =
(

ηe2iδ1 i
√

1 − η2ei(δ1+δ2 )

i
√

1 − η2ei(δ1+δ2 ) ηe2iδ2

)
. (16)

For the three unknowns: phase shifts δ1 and δ2, and in-
elasticity η, only Eq. (15) imposes a constraint. Hence, to
determine these three quantities, multiple energy-degenerate
states are required, each corresponding to different parameters
(ω1, ω2). For example, one can solve nonlinear equations us-
ing three energy-degenerate states, or more generally, one can
select more than three energy-degenerate states to minimize∑

(ω1,ω2 ) B
2(δ1(E ), δ2(E ), η(E ), ω1, ω2).
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FIG. 1. Illustration for 4He = [3H +p] + [3He +n] cluster model
in harmonic traps. On the left is the 3H +p system (channel 1) in a
harmonic trap, while on the right is the 3He +n system (channel 2)
in another harmonic trap. Since only channel 1 involves Coulomb
interactions, we utilize the Coulomb-corrected BERW formula for
channel 1 and the BERW formula for channel 2. As illustrated, the
ω parameters for the harmonic traps can be different in different
channels.

III. NUMERICAL RESULTS

We use 4He system (illustrated in Fig. 1) as an example
to discuss the application of the Coulomb-corrected BERW
formula in coupled-channels calculations. In this case, we
only need to consider the Coulomb corrections in 3H +p chan-
nel (channel 1). When the total energy exceeds the threshold
energy of channel 2 at 0.763 MeV, Eq. (15) is employed
to compute the scattering phase shifts and inelasticity, while
below the threshold channel 2 is closed and thus δ2 and
inelasticity all vanish, the phase shift for channel 1 can be
obtained by the single-channel Coulomb-corrected BERW
formula [Eq. (8)].

First, we employ the coupled-channels trap method in
the absence of Coulomb potential and different parameters
ω1 �= ω2 are utilized in determining degenerate states. The
obtained scattering phase shifts and inelasticity are displayed
in Fig. 2. The solid lines represent the results obtained us-
ing the coupled-channels R-matrix method [31], while solid
square, circle, and triangle markers correspond to δ1, δ2, and
η obtained through Eq. (15). Hollow square markers below
the threshold represent results obtained using Eq. (2). The
results obtained from the coupled-channels trap method show
good agreement with those from the R-matrix method, which
provides initial validation of the reliability and accuracy of
calculations with different ω parameters. Next, we will focus
on discussing the case with Coulomb potential, and highlight
the necessity of using different ω parameters in this situation.

First, if considering the case where ω1 = ω2, we can obtain
the energy spectrum in the presence of Coulomb potential
as shown in Fig. 3. The results for the first eight eigenstates
from solving the coupled-channels Schrödinger equation are
displayed, with ω ranging from 0.25–1. The horizontal axis
represents the eigenenergy E , and the vertical axis represents
the ratio of eigenenergy E to ω. We have also indicated the
positions of divergent points by horizontal shaded regions,
which denote the range of ±0.05 around divergent points
2.5, 4.5, 6.5, 8.5, 10.5. Following the previously mentioned
minimization of

∑
(ω1,ω2 ) B

2(δ1(E ), δ2(E ), η(E ), ω1, ω2), at
least three degenerate states are required for a specific

FIG. 2. In the absence of Coulomb potential, the calculated scat-
tering phase shifts and inelasticity of the 3P1 state. The solid square,
circle, and triangle markers represent the phase shifts for channel 1
and channel 2 and inelasticity obtained through the coupled-channels
trap method, respectively. The solid lines correspond to the results
obtained using the coupled-channels R-matrix method. The thresh-
old energy E2 − E1 = 0.763 MeV is marked with dashed line. To
distinguish between the coupled trap method and the single-channel
trap method, hollow square markers are used for the phase shifts of
channel 1 below the threshold.

scattering energy E . However, due to the presence of diver-
gence in the Coulomb-corrected BERW formula at certain
singular points, the convergence might become notably slow
for states near the divergent points. Therefore, such method of
selecting degenerate states has some limitations. For example,
the vertical dashed line in Fig. 3 corresponds to scattering
energy E = 3 MeV, we can observe that apart from the

FIG. 3. Plot of the ratio E
ω

as a function of the eigenenergy E .
Solid lines represent the results for the first eight eigenstates. Hor-
izontal shaded regions denote the range of ±0.05 around divergent
points 2.5, 4.5, 6.5, 8.5, 10.5.
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intersections with the curves of the second and fourth eigenen-
ergies, the other intersections are quite close to the divergent
points. Such limitations will lead to extensive computational
time when using Coulomb-corrected BERW formula, or even
cause the failure of convergence.

In order to avoid such problems, expanding the parameter
space of the harmonic traps is necessary and effective. When
we introduce different ω in two channels, we can obtain the
energy surface and contour plots for ratio E

ω1
presented in

Fig. 4 (for the second eigenstate), where the positions of
divergent points are marked with red lines. With the help
of the extra degree of freedom by an added ω, the pos-
sibilities for selecting degenerate states after avoiding the
divergent points are significantly increased. Undoubtedly, this
approach allows for better achievement of the minimiza-
tion goal for

∑
(ω1,ω2 ) B

2(δ1(E ), δ2(E ), η(E ), ω1, ω2), while
effectively reducing the computational load of Coulomb cor-
rections.

Here, we take the energy point E = 3 MeV as an ex-
ample to demonstrate the usage of our method. At first,
we select four degenerate states (belonging to the sec-
ond eigenstate) as shown in Fig. 3. In the selection, the
points are chosen away from red lines as much as pos-
sible to avoid divergent points in Coulomb correction, of
course, ω should not be too large. Next, by minimizing∑

(ω1,ω2 ) B
2(δ1(E ), δ2(E ), η(E ), ω1, ω2) we can obtain the

unknowns δ1, δ2, and η. Additionally, to display the conver-
gence of the Coulomb corrections, we present the scattering
phase shifts and inelasticity at different Coulomb correction
orders in Fig. 5. It is evident that as the correction order
increases, δ1, δ2, and η tend to stabilize. In our actual calcu-
lations for the E = 3 MeV energy point, we choose results
with the sixth-order correction. For other scattering energies,
our calculation approach remains similar. It is noteworthy that
in the calculation for E = 3 MeV, four degenerate states are
all belong to the second eigenstate. However, the degenerate
states from the eigenstates with different indices can also be
incorporated.

Figure 6 displays the phase shifts and inelasticity obtained
using the coupled-channels Coulomb-corrected BERW for-
mula for the 3P1 state of 4He system. The solid square and
circular markers represent the phase shifts of channel 1 and
channel 2, respectively, while the solid triangle markers rep-
resent the inelasticity. The solid lines correspond to the results
obtained by coupled channel R-matrix method. It is evident
that the calculations using the Coulomb-corrected BERW for-
mula in coupled channels are in good agreement with the
traditional method.

IV. CONCLUSIONS

As an extension of the application of the Coulomb-
corrected BERW formula, we employ it to investigate the
coupled-channels reactions involving light charged particles.
By taking 4He = [3H +p] + [3He +n] system as an example,
we compute the corresponding scattering phase shifts and
inelasticity. Additionally, we employ different ω parameters in
harmonic oscillator potentials for each channel, which allows
us to expand the parameter space to avoid the anomalous

FIG. 4. (a) The energy contour of the second eigenstate in the
parameter space (ω1, ω2). (b) The ratio E

ω1
in the parameter space

(ω1, ω2). As channel 1 contains the Coulomb potential, we only
plotted the contour map for E

ω1
. For channel 2, any point (ω1, ω2)

not located the divergence points is acceptable. Here, we marked
the ω parameters corresponding to divergence points with red lines.
Avoiding these parameter points in calculations can contribute to
a faster convergence of Coulomb corrections. The four states with
degenerate energy E = 3 MeV used in the calculations are marked
with red dots in the figure.

points and reduce the calculation amount in the Coulomb
correction computations. The numerical results obtained by
our method provide good validation of the reliability of
Coulomb-corrected BERW formula in coupled-channels cal-
culations. This work lays some groundwork in studying the
coupled-channels problems involving light charged clusters
within the trap method. The application of our approach in
ab initio computations is limited by shortcomings of small ω
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FIG. 5. Top panel: Phase shifts for different orders of Coulomb
correction with E = 3 MeV. Circle and square markers correspond
to the phase shifts for channel 1 and channel 2, respectively. Bottom
panel: Inelasticity for different orders of Coulomb correction with
E = 3 MeV.

and complicated perturbation expansion. In the future we will
investigate how to overcome these disadvantages and attempt
to handle both neutral and charged particle scattering within
ab initio frameworks.
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APPENDIX: QUANTIZATION CONDITION IN
COUPLED-CHANNEL REACTION

For single-channel two-body system in the presence of
Coulomb potential, the original Hamiltonian H and the
Hamiltonian of the trapped system H∗ can be written as

Ĥ = − h̄2

2μ
∇2 + V̂ + V̂C = Ĥ0 + V̂ + V̂C,

Ĥ∗ = Ĥ0 + V̂ + V̂C + Û = Ĥtrap + V̂ + V̂C, (A1)

where V is the short-range interaction, VC is the Coulomb
interaction, and U is the artificial potential well. The scat-
tering properties in infinite space can be expressed with the
Lippmann-Schwinger equation,

T̂ (E ) = −V̂ + V̂ ĜC (E )T̂ (E ), (A2)

where T̂ is the T matrix, E is the center-of-mass energy
and ĜC (E ) = 1

E−(Ĥ0+V̂C )
is the Green’s function within the

Coulomb potential. T matrix can be solved formally from the
Lippmann-Schwinger equation,

T̂ (E ) = −[V̂ −1 − ĜC (E )]−1. (A3)

In order to perform an interaction-independent modeling,
the range bV of the short-range interaction V should be much
smaller than the spatial size bU of the artificial potential well
U . In other words, we can find a region within the potential
well where the short-range interaction can be neglected. In
this case, a connection between the asymptotic form of the
scattering wave function with the wave function of bound
state can be constructed. For the harmonic oscillator trap,
two spatial scales need to satisfy bV 	 bω = h̄√

μω
, namely the

frequency ω should be as small as possible.
With the artificial potential well U , which satisfies the

above interaction-independent modeling, we can define an-
other Ttrap matrix for the trapped system,

T̂trap(E ) = −V̂ + V̂ ĜC,trap(E )T̂trap(E ), (A4)

where ĜC,trap = 1
E−(Ĥ0+V̂C+Û )

is the Green’s function within
the Coulomb potential and the artificial potential U .

Similarly, T matrix in the trap can also be solved formally,

T̂trap(E ) = −[V̂ −1 − ĜC,trap(E )]−1, (A5)

and the bound states with energy Eb in the trap are determined
by the poles of T̂trap(E ), therefore we can obtain a determinant
condition for any Eb,

det[V̂ −1 − ĜC,trap(Eb)] = 0. (A6)

Therefore, by considering both Eqs. (A3) and (A6) one can
obtain the quantization condition in determinant form as,

det[T̂ −1(Eb) + ĜC,trap(Eb) − ĜC (Eb)] = 0. (A7)

In the following we provide a concise derivation of
Eq. (15). Here, we consider a two-channel reaction, each
channel composed of two distinguishable particles. Namely,
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we can represent this reaction as: A + B → C + D. We
label the left-hand side as channel 1 and the right-hand side
as channel 2. The orbital angular momenta of the two chan-
nels are denoted as l1 and l2. The quantization condition of
two-channel two-body system has the same determinant form
as Eq. (A7) in the single-channel case. The difference is that
T̂ , ĜC,trap, and ĜC all become 2 × 2 matrices in two-channel
reactions.

In addition, with the introduction of the separable
form of the potential [30], T matrix can be written as

Tl (k, k′) = (kk′)l tl (E ), and therefore when it is on-shell, the
Coulomb modified scattering amplitude matrix tl is usually
parameterized by phase shifts, δl1 , δl2 and inelasticity η as:

t (E )

(4π )2
=

⎛
⎜⎜⎜⎝

−i(ηe
2iδl1 −1)

4μ1k
2l1+1
1

√
1−η2e

i(δl1
+δl2

)

4μ1k1k
l1
1 k

l2
2

√
1−η2e

i(δl1
+δl2

)

4μ2k2k
l2
2 k

l1
1

−i(ηe
2iδl2 −1)

4μ2k
2l2+1
2

⎞
⎟⎟⎟⎠. (A8)

Through quantization conditions, we can obtain the deter-
minant condition in coordinate space as:

det

[
1

C2
l (η)

GC,trap
l (r, r′, E ) − GC

l (r, r′, k)

(rr′)l

∣∣∣∣
r,r′→0

+ (4π )2t−1(E )

]
= 0. (A9)

For the first term in determinant, we use l to denote the angular momentum. In fact, this term can be written as 2 × 2 matrix:⎛
⎜⎜⎜⎝

1
C2

l1
(η)

GC,trap
l1

(r,r′,E )−GC
l1

(r,r′,k)

(rr′ )l1

∣∣∣∣
r,r′→0

0

0 1
C2

l2
(η)

GC,trap
l2

(r,r′,E )−GC
l2

(r,r′,k)

(rr′ )l2

∣∣∣∣
r,r′→0

⎞
⎟⎟⎟⎠. (A10)

Here, we present the general form that includes the Coulomb potential. It is noteworthy that Eq. (A9) remains valid even
if some channels do not include the Coulomb potential. Clearly, when the Coulomb potentials are absence in some channels,
the corresponding diagonal elements in (A10) naturally reduces to the case of BERW formula. It is also worth noting that the
procedure is similar for multichannel cases.

We have already known that

1

C2
l (η)

�[
GC

l (r, r′, k)
]

(rr′)l

∣∣∣∣
r,r′→0

= −2μk2l+1,

F trap
l (E ) = 1

2μk2l+1C2
l (η)

(�[
GC

l (r, r′, k)
]

(rr′)l

∣∣∣∣
r,r′→0

− GC,trap
l (r, r′, E )

(rr′)l

∣∣∣∣
r,r′→0

)
. (A11)

Therefore, the determinant condition (A9) becomes:

det

[
C1,2

( −i(ηe2iδl2 − 1)μ1k2l1+1
1 −

√
1 − η2ei(δl1 +δl2 )μ2kl2+1

2 kl1
1

−
√

1 − η2ei(δl1 +δl2 )μ1kl1+1
1 kl2

2 −i(ηe2iδl1 − 1)μ2k2l2+1
2

)
+

(
2μ1k2l1+1

1

( − Fl1 + i
)

0

0 2μ2k2l2+1
2

( − Fl2 + i
)
)]

= 0, (A12)

where C1,2 = 4
η(e

2iδl1 +e
2iδl2 )−e

2i(δl1
+δl2

)−1
.

After computation we can obtain:

−η(1 + F1F2) cos(δ1 − δ2) + (−1 + F1F2) cos(δ1 + δ2) + η(F1 − F2) sin(δ1 − δ2) + (F1 + F2) sin(δ1 + δ2)

−η cos(δ1 − δ2) + cos(δ1 + δ2)
= 0.

(A13)
Namely the formula in Eq. (15):

−η(1 + F1F2) cos(δ1 − δ2) + (−1 + F1F2) cos(δ1 + δ2) + η(F1 − F2) sin(δ1 − δ2) + (F1 + F2) sin(δ1 + δ2) = 0.

(A14)

It is straightforward to verify that when inelasticity η equals 1 (complete elastic), the above equation degenerates into the
noncoupled form. Equation (15) provides a clear and unified way to describe coupled-channels systems. Whether or not there is
a Coulomb potential, we only need to substitute the F function corresponding to each channel into Eq. (A14).
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