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Weak entanglement approximation for nuclear structure
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The interacting shell model, a configuration-interaction method, is a venerable approach for low-lying nuclear
structure calculations, but it is hampered by the exponential growth of its basis dimension as one increases
the single-particle space and/or the number of active particles. Recent, quantum-information-inspired work has
demonstrated that the proton and neutron sectors of a nuclear wave function are weakly entangled. Furthermore,
the entanglement is smaller for nuclides away from N = Z , such as heavy, neutron-rich nuclides. Here we imple-
ment a weak entanglement approximation to bipartite configuration-interaction wave functions, approximating
low-lying levels by coupling a relatively small number of many-proton and many-neutron states. This truncation
scheme, which we present in the context of past approaches, reduces the basis dimension by many orders of
magnitude while preserving essential features of nuclear spectra.
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I. INTRODUCTION

In 1949, Haxel, Jensen, and Suess [1] and Goeppert-
Meyer [2] introduced the noninteracting shell model for
nuclear levels. A decade later, Kurath [3], followed by Hal-
bert and French [4], among others, introduced configuration
mixing, also known as the configuration-interaction method or
shell-model diagonalization. In configuration-interaction, one
expands the nuclear wave function in a basis of many-body
states,

|�〉 =
∑

α

cα|α〉, (1)

computes the matrix elements of the nuclear Hamiltonian
Ĥ in that basis, Hαβ = 〈α|Ĥ |β〉, and then solves the matrix
eigenvalue problem,

∑
β

Hαβcβ = Ecα. (2)

In the 1970s, Whitehead et al. introduced the Lanczos al-
gorithm to the interacting shell model [5], allowing one to
efficiently find extremal eigenstates in basis dimensions for
which full diagonalization would be prohibitive. On today’s
supercomputers one can tackle basis dimensions in the few
tens of billions [6,7].

Even modern supercomputers are not enough, however.
The many-body basis dimension goes like Ns choose Np =
Ns!/Np!(Ns − Np)!, where Ns is the number of available
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single-particle states and Np is the number of active parti-
cles. (Selection rules reduce these dimensions but the scaling
remains the same.) As the factorial leads to an unfavorable
exponential scaling, this motivates alternate methods, such
as coupled clusters [8], which scale polynomially rather than
exponentially.

Nonetheless, configuration-interaction methods see contin-
ued development due to their numerous advantages including:
relative ease of generating excited states, ability to handle
even and odd numbers of particles equally well, relevance to
open-shell nuclides, flexibility with choice of interactions, and
so on. Examples of alternate truncations include the so-called
Monte Carlo shell model [9], truncations based on algebraic
structures [10,11], energy-based importance truncations [12],
and beyond-mean-field-based truncations [13].

A surge in the interest in and applications of quantum in-
formation theory has given new lenses for truncation schemes.
The nucleus can be naturally described as a bipartite sys-
tems with proton and neutron components, and nearly all
shell-model codes utilize such a partitioning [14–16]. Recent
work has indicated that the proton and neutron components
are only weakly entangled [17], and in fact among different
partitioning schemes, proton-neutron partitioning leads to the
smallest entanglement [18].

We use these observations to motivate our weak entangle-
ment approximation, where our lowest-order calculation, gen-
erating the proton and neutron bases independently, implicitly
assumes zero entanglement. This approach can be related
to density-matrix renormalization group calculations [19–21]
as well as the singular-value-decomposition variational
wave-function [22,23] approaches. Our proton and neu-
tron approximate shell-model (PANASh) is, however, more
straightforward than either of those approaches, as we do not
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iterate to optimize the basis. Nonetheless, as we demonstrate
here, our simplified protocol provides a very good description
of nuclear spectra for a variety of different cases.

In Sec. II we briefly review entanglement of bipartite sys-
tems. In Sec. III we outline the PANASh scheme. We then
present results: In Sec. IV we compare against full configu-
ration interaction cases, while in Sec. IV A we demonstrate
the utility of PANASh by presenting an application too large
to tackle in the standard shell model. After comparing in
Sec. V to related methods which rely on singular-value-
decomposition, we briefly outline work yet to be done. In
Appendix we give details of coupling together the proton and
neutron components.

II. PROTON-NEUTRON ENTANGLEMENT

In this section we briefly review the theory of entanglement
and what we mean by “weak” entanglement. Entanglement
starts by considering two independent Hilbert spaces, which
here we write as P,N to reflect the proton and neutron spaces
relevant to the shell model. One then constructs a product
Hilbert space H = P ⊗ N . This can be done explicitly by
writing basis states {|α〉} of H as simple tensor products
of basis states from the component spaces, {|p〉} ∈ P and
{|n〉} ∈ N , so that each |α〉 = |p〉 ⊗ |n〉. The dimension of the
bipartite Hilbert space H is multiplicative:

dim H = dim P × dim N . (3)

(In practice quantum number selection rules, such as on total
Jz, can make the Hamiltonian block-diagonal and thus reduce
the working dimension.) For configuration-interaction calcu-
lations, one then simply expands in the basis as in Eq. (1), or,
explicitly representing the bipartite nature of the space,

|�〉 =
∑
p,n

ψp,n|p〉 ⊗ |n〉. (4)

Any interaction which couples two systems will generate
an entangled state. An entangled state can no longer be writ-
ten as a simple product |�〉 = | p̃〉 ⊗ |ñ〉, but will necessarily
involve a superposition (sum) of product states, as in Eq. (4).
This relationship can be formalized using density operators.
A system with a density operator ρ̂ is said to be entangled if
its von Neumann entropy,

S(ρ̂ ) = −tr(ρ̂ ln ρ̂ ), (5)

is nonzero. The density operator for any wave function is ρ̂ =
|�〉〈�| and the elements of the density matrix are

ρpn,p′n′ = ψ∗
pnψp′n′ . (6)

We often compute Eq. (5) using the eigenvalues of ρ̂. For
an isolated system, the density matrix has unit trace if the
wave function is normalized, and as the density matrix is
idempotent (ρ̂2 = ρ̂) the eigenvalues of the density matrix are
either 0 or 1. Therefore, its entanglement entropy S(ρ) is iden-
tically 0. However, we can consider the entanglement between
partitions within our isolated system which are interacting.
This is done using reduced density matrix which is found by
tracing over one of the subspaces: ρ(x) = tryρ

(xy). For exam-
ple, tracing over the neutron partition yields a reduced density

matrix with proton indices:

ρ
(p)
p,p′ =

∑
n

ρpn,p′n =
∑

n

ψ∗
pnψp′n. (7)

The reduced density matrix still has unit trace, but its eigenval-
ues can be between 0 and 1, inclusive. This happens whenever
there is an interaction coupling the two partitions. If any
eigenvalues are not zero or 1, then the two partitions are
entangled, and the entropy S(ρ̂x ) > 0.

By the singular-value decomposition theorem, the eigen-
values of the reduced density matrix do not depend on which
partition index is summed over. Indeed, one can simply
view entanglement through the lens of singular-value de-
composition (SVD), also called Schmidt decomposition. The
proton-neutron coefficients of Eq. (4) form a matrix on which
we can perform a SVD: � = USV T , which can be seen as a
transformation of the proton and neutron basis factors using
the orthogonal matrices U and S to one in which the � matrix
is diagonal (S). This is equivalent to using the eigenvectors of
the proton density matrix ρ (p) = US2U T as the proton basis
factors and the eigenvectors of ρ (n) = V S2V T as the neutron
basis factors; simultaneously we see that the eigenvalues of
the reduced density matrix are nothing but squares of the
singular values.

Now we can summarize the relation between entangle-
ment, SVD, and wave-function factorization: a state with zero
entanglement has singular values of only 1s and 0s, and thus
can be written as a single term, a simple product of one proton
factor and one neutron factor. Not coincidentally, both density
matrix renormalization group calculations [19–21] and varia-
tional wave-function truncations [22,23] rely on SVD.

In recent work [17] we found empirical evidence that
low-lying shell-model states have weak proton-neutron en-
tanglement, that is, entanglement much smaller than the
maximum; furthermore nuclei with N > Z have systemat-
ically lower entanglement that their N = Z counterparts.
These results suggest that a truncation scheme based on
proton-neutron factorization may be even more effective
for neutron-rich nuclei, where the need for reduced dimen-
sions is greatest. It has also been shown that among orbital
equipartitions, the proton-neutron bipartition has the weakest
entanglement [18]. In the limit of zero entanglement, an eigen-
state can be written as a simple tensor product of one proton
wave function times one neutron wave function. In such a
case, the effective dimension of the joint model space would
be greatly reduced to an additive one:

lim
entanglement→0

dim H = dim P + dim N . (8)

It is this effective reduction of dimensionality that drives our
method. We surmise that our method should therefore out-
perform other orbital-partitioning truncation schemes such
as [24].

In this paper we present the proton and neutron approx-
imate shell model which builds on the weak entanglement
limit. In simple terms, we first solve the Hamiltonian in the
zero-entanglement limit [setting Ĥ (pn) to zero]. This leaves us
with the uncoupled proton and neutron wave functions which
we call the proton and neutron factors. Second, we couple
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these factors together, now in all combinations suitable to
form basis states with good total angular momentum. The
number of factors from each subspace is truncated to suit a
chosen reduction in overall basis dimension (generally limited
by computer resources). Third, the full interaction including
Ĥ (pn) is diagonalized in this truncated basis.

III. PROTON AND NEUTRON APPROXIMATE
SHELL MODEL

We now explain how the weak entanglement limit is
used with a proton-neutron factorization to approximate exact
shell-model states. The shell-model Hamiltonian represents
a system of interacting single-particle harmonic oscillator
states with a mean-field (one-body) and effective two-body
interaction:

Ĥ =
∑

i

εiâ
†
i âi + 1

4

∑
i jkl

Vi jkl â
†
i â†

j âk âl . (9)

The creation/destruction operators â†
i /âi create/destroy par-

ticles in the valence space orbital i, which has harmonic
oscillator labels ni, li, ji (and magnetic quantum number mi

for single-particle states).
With two species of particles, protons and neutrons, we

have the following Hamiltonian:

Ĥ = Ĥ (p) + Ĥ (pp) + Ĥ (n) + Ĥ (nn) + Ĥ (pn), (10)

where the superscript in parenthesis indicates the type of
operator: (p) is a one-body proton operator, (pp) is a two-
body proton operator, and equivalently for neutrons (n), (nn);
and finally there is the remaining proton-neutron two-body
interaction (pn). The proton-only and neutron-only operators,

P̂ ≡ Ĥ (p) + Ĥ (pp) (11)

N̂ ≡ Ĥ (n) + Ĥ (nn), (12)

each have the form of Eq. (9). Furthermore, each is an operator
constrained to its own subspace: P̂ : P → P and N̂ : N →
N . The direct product of these two subspaces is the bipartite
proton-neutron space H = P ⊗ N , which is where the total
Hamiltonian acts:

Ĥ = P̂ + N̂ + Ĥ (pn). (13)

Each subspace operator has its own eigenstates and eigenen-
ergies:

P̂|p〉 = Ep|p〉 (14)

N̂ |n〉 = En|n〉. (15)

The dimensions of these subspaces are orders of magnitude
smaller than the full space, and often can be solved with-
out any truncation. In the weak entanglement limit, these
subspace eigenstates approximate the optimal basis factors
| p̃ j〉, |ñ j〉, i.e., eigenstates of the exact reduced density matrix.
This motivates us to use these proton and neutron eigenstates
directly as factors for a basis:

[|p〉 ⊗ |n〉]Jπ = |pn; Jπ 〉. (16)

We work in the J scheme so that any truncation of this basis
will produce wave functions with well-defined J . [This is
similar to the methodology of the J-scheme (fixed total J)
configuration-interaction code NuShellX [25], except, cru-
cially, we carry out an energy truncation on the proton and
neutron components.]

We can write the matrix elements of the Hamiltonian in this
basis as

〈p f n f ; Jπ |Ĥ |pini; Jπ 〉 = δn f ni Ep + δp f pi En

+ 〈p f n f ; Jπ |Ĥ (pn)|pini; Jπ 〉, (17)

where the matrix elements of Ĥ (pn) are expressed in terms
of one-body density matrices computed from the |p〉 and
|n〉 eigenstates. The details for computing the proton-neutron
matrix elements are given in Appendix. By diagonalizing in
a truncated basis set, we obtain approximate solutions of the
form:

|�̃〉 =
mn,mp∑

pn

ψpn|pn; Jπ 〉 ≈ |�〉, (18)

where |�〉 is an exact eigenstate of Ĥ . Setting mp = dp ≡
dim(P̂) and mn = dn ≡ dim(N̂ ) leads to the full configuration
interaction solution. In the next section we show we can obtain
good results with mp � dp, mn � dn; the energies follow the
usual variational principle.

IV. RESULTS

Here we compare the low-lying spectra obtained from
the weak entanglement factorization against untruncated, full
configuration-interaction (FCI) calculations. Given specifica-
tions from the phenomenological interactions used, we also
compute the total binding energies using the formulas given
in Refs. [26–28]. We compare the most-bound levels for four
benchmark nuclei, 78Ge, 70As, 60Ni, and 79Rb. In each case,
multiple calculations are performed with increasing fidelity:
Each uses an increasing fraction of the proton and neutron
subspace factors and therefore an increasing computational
cost which scales like the cube of the model space dimension.

We perform calculations in two model spaces. The first
is the 0 f7/2, 1p3/2, 0 f5/2, 1p1/2 space with the GX1A inter-
action [28], and the second is the 0 f5/2, 1p3/2, 1p1/2, 0g9/2

space with the JUN45 interaction [27]. The nuclei modeling
in each space and their dimensions are shown in Table I.
These nuclei were selected to span a large range of M-scheme
model space dimensions (from 106 to 109), as well as several
properties which affect the difficulty of capturing the many-
body physics. Even-even nuclei have more regular, collective
excitation spectra than odd-A (79Rb) or odd-odd (70As) nuclei.
We consider two even-even cases: one more spherical (60Ni)
expected to exhibit seniority-like spectra, and one more de-
formed (78Ge) expected to exhibit rotational spectra.

Since PANASh uses a J-scheme basis, each Jπ block of the
Hamiltonian can be solved independently with a much smaller
basis, typically an order of magnitude than the equivalent
M-scheme basis. The J-scheme matrix elements have a much
higher cost per element, however, and the BIGSTICK code
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TABLE I. PANASh benchmark calculations and their interaction used (Int.), M-scheme FCI dimension in millions (Mdim), number of
protons (Z), number of valence protons (Zval.), proton subspace M-scheme dimension (Zdim), (the equivalent for neutrons), and properties for
which the nucleus was selected as a benchmark.

M scheme
Nucleus Interaction FCI dim. (×106) Z (Zval. ) Z dim. N (Nval. ) N dim. Properties

78Ge JUN45 3.7 32 (4) 701 46 (18) 701 Even-even, deformed
70As JUN45 760 33 (5) 2 293 37 (9) 36 998 Odd-odd, deformed
60Ni GX1A 1090 28 (8) 12 022 32 (12) 12 022 Even-even, spherical
79Rb JUN45 8600 37 (9) 36 998 42 (14) 24 426 Odd-A, spherical

is more efficient for a fixed-size basis. For this reason we
use BIGSTICK to compute the FCI results for the untruncated
basis where the advantages of the weak-entanglement approx-
imation are lost.

The results for 78Ge, an even-even deformed nucleus,
are shown in Fig. 1. In each panel the PANASh basis is
constructed with m proton and neutron factors as an increas-
ing fraction of the available subspace factors dn = dp = 701
(see also Table I). Also given is the maximum J-scheme
dimension d solved. In the first panel, with 1% of the basis
factors resulting in four orders of magnitude reduction in
the dimension of the model space, we reproduce the spec-
tral structure characteristic of a deformed, rotational nucleus:
nondegenerate low-lying 0+, 2+, 4+ states. We also obtain the
ground-state binding energy well within the 1-percent level
(1.6 MeV/676 MeV). Notice that in addition to the yrast
band we also reproduce the yrare K = 2 band. The last panel,
m = 1.0dn, is equivalent to the FCI calculation. Unlike the
next three benchmark cases, it is practical to compute the
FCI results with PANASh, since the dimensions are relatively
modest (105).

The results for 60Ni, an even-even spherical nucleus, are
shown in Fig. 2. The format of the figure is the same as in
Fig. 1, except for the last panel showing the FCI calcula-
tion. Here it was not practical to get the FCI results using
PANASh due to the large dimensions, and instead the FCI
code BIGSTICK was used. Therefore, the dimension indicated
is in the M scheme rather than the J scheme (which would
have been about an order of magnitude smaller). The spectral
structure here is not so different from 78Ge, but we do see
seniority-like spectra as one might expect for a spherical,
semimagic nucleus [29]. The ground-state binding energies
obtained using only 1% of the basis factors (four orders of
magnitude reduction in dimension) is within 1 MeV, and the
excitation energy of the first 2+ state is about 350 keV too
high, about twice the typical shell-model uncertainty. Using
5% of the basis factors (still three orders of magnitude reduc-
tion), the ground-state binding energy is within 160 keV of
FCI, and the first 2+ is within 81 keV.

The results for 70As, an odd-odd, deformed nucleus, are
shown in Fig. 3. Compared to even-even nuclei with a 0+
ground state and orderly low-lying excitations, the spectra for
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FIG. 1. Binding energies of 100 levels of 78Ge computed with the weak entanglement approximation. Each panel has two labels: the
number of components used as a fraction of the neutron subspace dimension and the largest J-scheme basis dimension required (across all
values of J). Each stack of bars is a set of levels with a given total angular momentum J; full bars are positive parity and empty bars are
negative parity.
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FIG. 2. Same as Fig. 1 but for 60Ni. The final panel, labeled FCI, was performed with the M-scheme code BIGSTICK at a dimension of
1.1 × 109 but lists the equivalent J-scheme dimension. See text for a full discussion.

the odd-odd 70As is much denser with a 4+ ground state.
While the 1% calculation which in the previous two cases
came very close to the final ground-state binding energy, here
the discrepancy is almost 3 MeV. This comports with our
expectation that the odd proton and neutron are forced to
couple, increasing the proton neutron entanglement entropy
and reducing the effectiveness of the PANASh method. De-
spite this, we are still able to obtain the approximate ordering
of the low-lying states and obtain hundreds of states where
FCI can only manage a few with significant resources. For
the 9% calculation, the 2− ground state is off by 0.75 MeV

and resolves above the first 4+ MeV state which is nearly
degenerate.

The results for 79Rb, an odd-A, spherical nucleus, are
shown in Fig. 4. As an odd-A nucleus, there will be one
unpaired nucleon leading to half-integer spins (represented in
the figure in decimal values). The M-scheme dimension for
this nucleus is 8.6 × 109, which is approaching the limits of
our computing capabilities. Using BIGSTICK, we could only
obtain the lowest four states of each parity in a reasonable
amount of time. In the J scheme it would have been 7.1 × 108.
Using 1% of the basis factors, four orders of magnitude basis
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FIG. 3. Same as Fig. 1 but for 70As. The final panel, labeled FCI, was performed with the M-scheme code BIGSTICK at a dimension of
7.1 × 108 but lists the equivalent J-scheme dimension.
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FIG. 4. Same as Fig. 1 but for 79Rb. The right-most panel was computed with the FCI code BIGSTICK at a dimension of 8.6 × 109, but
lists the equivalent J-scheme dimension.

reduction, the ground-state binding energy is too high by
2.1 MeV, and the ordering of the first few states does not
match the converged results. This is not too surprising given
the high level density. Furthermore, this truncation error
is comparable to the error of FCI compared to the ex-
perimental binding energy: BEexp = −679.5 MeV, BEFCI =
−680.7 MeV (error = 1.2 MeV). Increasing to 5% of the basis
factors and an order of magnitude increase in dimension, we
get the right ordering of at least the first five states compared to
FCI. The error in the ground-state binding energy is 770 keV.
Doubling the basis factors to 10% does not significantly im-
prove convergence despite quadrupling the basis dimension.
This is evidence that we can extract most of the physics from
the lowest-energy basis factors.

The significant basis reduction achieved by the weak en-
tanglement approximation is useful in two extremes. The
first, is that it makes possible calculations which cannot be
attempted in FCI—we will be able to study the structure of
a few low-lying states in model spaces that were previously
computationally impossible. The second extreme can already
be seen by the small number of levels in the FCI panel of last
three figures: Using this basis reduction method we can obtain
a far greater number of states for a comparable computational
cost. We can choose to sacrifice some quality for a larger
quantity of states. This might not sound desirable, but for sta-
tistical quantities such as average electromagnetic properties
of highly excited states, it is exactly the right trade-off.

Finally, we explored how the weak entanglement approx-
imation is reflected in the convergence properties of our four
benchmark cases. Using the formalism described in Sec. II,
we computed the proton-neutron entanglement entropy of the
first five levels of each benchmark case. In Fig. 5 we show
there is a correlation between the error in the binding energy
as computed with our PANASh code and the relative strength
of the proton-neutron entanglement (which we normalized
to 1). This matches our expectations and the assumptions of

the weak entanglement approximation. It should be noted that
the proton-neutron entanglement entropies were computed
using the approximate PANASh wave functions indicated in
the caption of Fig. 5, and are thus approximations themselves.
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FIG. 5. Error in the binding energy using a similar truncation for
the five lowest states of the benchmark cases, as a function of the
relative proton-neutron entanglement entropy. Nuclei with weaker
entanglement tend to have a smaller error in the PANASh basis, as
predicted in Ref. [17]. Markers are shaded darker with increasing
excitation energy; lower excited states tend to have lower entangle-
ment. The binding energy and entanglements are computed from
the largest truncation performed in Figs. 1– 5 (78Ge: m = 0.10dn,
60Ni: m = 0.05dn, 70As: m = 0.09dn, 79Rb: m = 0.10dn). The error
is relative to the FCI (untruncated) values. The proton-neutron en-
tanglement entropies are computed using the method described in
Sec. II and as in Ref. [17] and are divided by their maximum value
in each model space to give a value between 0 and 1.
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reduction of neutron-neutron two-body matrix elements. Only for 128Xe is a full configuration-interaction (FCI) calculation possible, with an
M-scheme dimension of 9.3 billion; the FCI M-scheme dimension for 132Ce would be 2.4 trillion. The PANASh calculations have neutron
fractions m = 0.015 dn; the J = 6 PANASh dimensions are 377 000 for 128Xe and 432 000 for 132Ce. Also shown are truncated (see text for
details) configuration-interaction shell-model (SM) levels, with M-scheme dimensions of 507 million for 128Xe and 1.29 billion for 132Ce.

A. Aspirational calculation

In the benchmark results presented above, at least a few of
the low-lying states can be extracted from the full shell model
using state-of-the-art codes like [30]. In order to demonstrate
the potential reach of PANASh, we chose a case—132Ce
in the valence space bounded by magic numbers 50 and
82, with a 100Sn core (that is, valence orbitals 0g7/2, 2s1/2,
1d3/2, 1d5/2, 0h11/2)—whose FCI M-scheme dimension, 2.4
trillion, is far beyond current capabilities. Because no FCI
result is possible, we compare to the experimental excitation
spectrum [31]. The interaction we use is tuned to tellurium
isotopes [32] and provides a reasonable description of xenon
isotopes [33]. (Following Ref. [32], we reduce the strength of
the neutron-neutron two-body matrix elements by 0.9.) As a
partial benchmark, we also compute in this space with this
interaction 128Xe, which has in this space an FCI M-scheme
dimension of 9.3 billion, still tractable with suitable super-
computing power; we take its experimental excitation energies
from Ref. [34].

Figure 6 presents the excitation spectra for 132Ce and
128Xe. In both cases we used 1000 proton and 1000 neutron
levels to construct the PANASh basis; this corresponds to
a neutron basis fraction of m = 0.015 dn, and proton basis
fractions also 0.15 dp for 132Ce and m = 0.34 dp for 128Xe.
For 132Ce the largest PANSASh J-scheme dimension used
was 432 000 for J = 6, compared to the FCI J = 6 dimension
of 133 billion. For 128Xe, the corresponding PANASh J = 6
dimension was 377 000, compared to the FCI J = 6 of 614
million.

In addition to a calculation with PANASh, we carried out
truncated calculation with the BIGSTICK code. We assign to

each orbital a an integer weight wa. Each many-body con-
figuration is then assigned a total weight W which is the
sum of the weights of the occupied orbitals. The M-scheme
Hilbert space is truncated by keeping all configurations with
weights up to a defined maximum Wmax, defined relative to the
minimum in the space Wmin: Wex = Wmax − Wmin. With suit-
able choice of weights, this truncation scheme [30] is flexible
enough to include the standard Nmax truncation scheme for
the no-core shell model, as well as particle-hole truncations.
We assigned the following weights w to each of the or-
bitals: w(0g7/2) = 0; w(1d5/2) = 1; w(1d3/2) = w(2s1/2) =
w(9h11/2) = 2. This choice of weights approximates a trun-
cation based on the centroids (average energies) of orbital
configurations [35,36]. Under this truncation scheme with
Wex = 6, 128Xe has an M-scheme dimension of 507 million,
while 132Ce has an M-scheme dimension of 1.29 billion.

For 128Xe we get relatively good agreement for all three
calculations as well as with experiment. The truncated shell-
model (SM) calculation has a slightly compressed yrast 0-2-4
band, while the PANASh band is slightly expanded. This
behavior is exaggerated for 132Ce. One can speculate that
the PANASh calculation, because it only partially couples the
proton and neutron sectors, underestimates the proton-neutron
quadrupole collectivity, while the SM calculation, which has
reduced proton and neutron spaces, underestimates the pairing
collectivity in the ground state. We leave investigating this
speculation to future work.

Nonetheless, by comparing ground-state energies we can
demonstrate that PANASh builds in substantial correlations.
Table II shows the ground-state energies obtained from our
calculations. The absolute values of these energies are not
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TABLE II. Ground-state (GS) energies from three shell-model calculations of 132Ce and 128Xe shown in Fig. 6. The value does not have a
direct interpretation on its own since the interaction was not fit to the total binding energy. However, the variational principle guarantees that all
truncations are less bound than FCI, and so the GS energy serves as a proxy for convergence. These values show that the PANASh calculation
is more converged than the SM truncation while using a smaller basis.

132Ce 128Xe

Calculation FCI PANASh SM trunc. FCI PANASh SM trunc.

J-scheme (J = 6) dimension 1.33 × 1011 4.32 × 105 — 6.14 × 108 3.77 × 105 —
M-scheme dimension 2.4 × 1012 — 1.29 × 109 9.3 × 109 — 5.07 × 108

GS energy (MeV) — −291.17 −287.79 −264.41 −263.98 −262.88
First 2+ (MeV) — −290.69 −287.58 −263.93 −263.46 −262.46

meaningful on their own, as the interaction was not fitted to
absolute binding energies, but they serve as a proxy for overall
convergence due to the variational principle of basis trunca-
tion methods. For 128Xe, the truncated SM ground state is
1.53 MeV above the FCI ground state, but the PANASh
ground state is only 0.43 MeV above. While the FCI
ground-state energy for 132Ce is not available, the PANASh
ground-state energy is 3.37 MeV lower than the truncated SM
ground state.

The FCI dimension for 132Ce is two orders of magnitude
larger than any published shell-model calculation [6,7]. Al-
though the PANASh excitation spectrum is not perfect, it
captures the main features of the experimental spectrum, and
clearly builds in correlations beyond what can be captured
by a traditional truncated shell-model calculation. As dis-
cussed briefly in Sec. VI, this will provide motivation to push
PANASh further and to carefully investigate extrapolation to
the full space with appropriate uncertainty quantification.

V. COMPARISON TO OTHER SVD TRUNCATIONS

Our weak entanglement factorization has precursors in the
density matrix renormalization group (DMRG) [19–21,37]
and variational wave-function factorization (VWF) or simply
wave-function factorization (as called by its creators [22,23]).
Both of these methods are based on a bipartite decomposition
of the Hilbert space, followed by some sort of truncation.
Both also directly or indirectly consider a singular-value
decomposition of the bipartite representation of the wave
functions.

In a DMRG approach to the nuclear shell model, one splits
the single-particle space into two subgroups which are itera-
tively improved. At each step of the DMRG method, (1) the
effective interaction in each subspace is diagonalized exactly,
(2) the approximate ground state’s SVD is used to inform
which states to keep in a truncation to m factors from that
subspace, and (3) the solution to the full space is taken as a
product state of the two subspace solutions. Various flavors
of DMRG deal with how to define the subgroups, and how to
change the subgroups at each iteration.

Variational wave-function factorization is also an iterative
method which works with a bipartite representation. A com-
plete description can be found in the literature by Papenbrock
et al. [22,23]; a short summary will be given here. VWF seeks
the optimal set of proton and neutron factors | p̃〉 and |ñ〉 which

for m << min(dp, dn) yield a good approximation,

|�〉 ≈
m∑
j

s j | p̃ j〉|ñ j〉. (19)

It is known that the optimal factors are given by the SVD,
but VWF deals with the scenario where it is too computation-
ally expensive to solve even the ground state of the system.
One starts with an ansatz state composed of random proton
and neutron many-body wave functions and writes down a
variational condition. Then, one solves the coupled set of
nonlinear equations that follow. This is computed as a gen-
eralized eigenvalue problem. After each iteration, the number
of basis factors m is increased until satisfactory convergence
is reached.

Like DMRG, VWF relies on the fact that the singular
values of realistic shell model ground states fall off rapidly
so that an accurate approximation can be achieved with only a
small number of factors [21]. Empirically, the spectra tends
to converge exponentially with the number of states m re-
tained [22].

A major cost of both DMRG and VWF is the iterative
approach to finding the optimal basis factors. The weak entan-
glement approximation avoids this cost by assuming that the
eigenstates of the proton and neutron subgroups are sufficient
approximations of the optimal proton and neutron factors.
Interestingly, our choice of metric for selecting the proton
and neutron basis factors is reminiscent of Wilson’s numer-
ical renormalization group (NRG) [38,39], the precursor to
DMRG. The downfall of NRG (which DMRG overcame) is
that its truncation is based only on the energy of the subspace
solutions and ignores the coupling of the subgroup to the
rest of the system. It fails when long-range correlations exist.
Our method does not have this problem, since within each
bipartition we include all orbitals, and it is known that the
entanglement between the proton and neutron subgroups is
weak [17].

We can compare how close the weak entanglement approx-
imation comes to the optimal basis given by SVD. The SVD
basis is the one where � = USV T yields a diagonal matrix S
whose elements are the singular values si. The values s2

i are
plotted and labeled “SVD” in Fig. 7(a). The PANASh basis is
one where � = PS̃QT yields a matrix S̃ (the proton-neutron
wave function in the PANASh basis) which is approximately
diagonal, and with strongly decaying diagonal elements ψ j j .
(The matrices P and Q would be formed by the proton and
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FIG. 7. Representation of the (JUN45) 78Ge ground-state wave-function elements ψi j in two different proton-neutron bases: the SVD basis
in which the wave function is exactly diagonal, and the PANASh basis which for this nucleus is 58% diagonal. (a) Diagonal elements (squared)
of the wave function showing the PANASh basis follows the same exponentially decaying trend as the SVD basis. (b) Cumulative probability of
the wave function captured as a function of the fraction of basis components. The PANASh basis is suboptimal but the cumulative probability
still converges to 1 exponentially in the number of basis components. This demonstrates that a significant truncation can be performed while
maintaining a high-fidelity wave function.

neutron basis factors.) The values |ψ j j |2 are plotted for an
untruncated PANASh calculation and labeled “PANASh” in
Fig. 7(a). The SVD matrix S is completely diagonal and its
diagonal elements sum to 1. The PANASh matrix S̃ has off
diagonal elements and only sums to 0.58 in this case. The
off-diagonal (0.42) strength is due to the fact that the PANASh
basis is not optimal for nonzero proton-neutron entanglement;
for this nucleus the proton-neutron entanglement is roughly
20% of its maximum value. In Fig. 7(b), we plot the cu-
mulative fraction of the wave function as one includes more
components, both of the ideal SVD basis and of the more
practical PANASh basis. While the SVD basis more quickly
captures the full wave function, as it must, the PANASh basis
nonetheless provides a reasonable approximation with signif-
icantly less numerical burden.

VI. SUMMARY AND OUTLOOK

We have presented a “weak entanglement” approxi-
mation to the nuclear shell model, which relies on the
observation [17,18] that the proton and neutron compo-
nents, especially for neutron-rich nuclei, have relatively low
entanglement. Thus, rather than requiring computationally
expensive optimization of the basis, as is done in precur-
sor methods DMRG and VWF, we simply construct the
many-proton and many-neutron components independently
as eigenpairs of their respective Hamiltonians, an approach

that arises from an assumption of zero entanglement. If the
entanglement were truly zero, then the full solutions would
be simple tensor products; instead, we couple the proton and
neutron components through the proton-neutron interaction.
We find this construction provides a “good enough” represen-
tation of the excitation spectra of complex nuclei, including
cases beyond current shell-model capabilities, while retaining
many of the advantages of configuration interaction, such
as generating many excited states, addressing open-shell and
odd-particle systems, and so on.

There are a number of issues to be tackled in the immediate
future, among them: electromagnetic and weak transitions;
improved basis construction; and extrapolation and uncer-
tainty quantification. Basis construction might be improved
by relaxing the “zero entanglement” assumption: We could
add to (for example) the proton Hamiltonian a deformed field
representing the average influence of the neutron component
and vice versa. Such work is under way and will be reported
on in a future paper.
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APPENDIX: RESIDUAL INTERACTION
MATRIX ELEMENTS

To diagonalize the nuclear Hamiltonian Ĥ = P̂ + N̂ +
Ĥ (pn) in the basis Eq. (16), we seek an explicit form in terms
of proton and neutron one-body density matrices since these
are a byproduct of the diagonalization of the subspace Hamil-
tonians as defined in Eq. (14). The P̂ and N̂ operators will
naturally be diagonal in our basis. (This may be relaxed in the
future.) The diagonal terms are E (p) and E (n). All that remains
is to find the matrix elements of Ĥ (pn) in terms of the original
FCI single particle basis and matrix elements.

Starting from an explicit proton-neutron formalism, the
(pn) part of the interaction can be written in the form:

Ĥ (pn) =
∑
abcd

∑
K

V (pn)
ab,cd;K

∑
M

Â†(pn)
ab;KMÂ(pn)

cd;KM, (A1)

where subscripts a and c will refer to proton single-particle
orbits, and b and d to neutron single-particle orbits. The two-
body operators are defined as:

Â†(xy)
ab;JM ≡ [x†

a ⊗ y†
b]JM =

∑
mamb

( jama, jbmb|JM )x̂†
jama

ŷ†
jbmb

. (A2)

Using various commutation relations and vector-coupling
identities [40], the following equivalent expression can be
derived:

H (pn) =
∑
abcd

∑
K

W (pn)
ac,bd;K ρ̂

(p)
ac;K · ρ̂

(n)
bd;K , (A3)

where the one-body proton (neutron) density operators are
defined as

ρ̂
(p)
ac;Kμ ≡

∑
mamc

( jama, jc − mc|Kμ)π†
jama

π̃ jc−mc , (A4)

which carry total angular momentum K and z component μ,
and the transformed proton-neutron interaction W (pn) is

W (pn)
ac,bd;K ≡

∑
K ′

(−1)K ′+ jb+ jc [K ′]2

{
ja jb K ′
jd jc K

}
V (pn)

ab,cd;K ′ ,

(A5)

with [x] = √
2x + 1. Finally, the scalar product of one-body

density operators is defined as

ρ̂
(p)
ac;K · ρ̂

(n)
bd;K =

∑
μ

(−1)−μρ̂
(p)
ac;Kμρ̂

(n)
bd;Kμ

. (A6)

The H (pn) part of the interaction is a scalar product of two
independent operators: ρ̂

(p)
ac;K · ρ̂

(n)
bd;K . Standard vector-coupling

relations allow us to write matrix elements of this operator
in a j- j-coupled basis as products of matrix elements in the
uncoupled basis [40]:

〈 f |ρ̂ (p)
ac;K · ρ̂ (n)

bd;K |i〉 = (−1) jpi+ jn f +J

{
J jn f jp f

K jpi jni

}
〈p f ||ρ̂ (p)

ac;K ||pi〉〈n f ||ρ̂ (n)
bd;K ||ni〉. (A7)

Here |i〉 = |pini; Jπ〉 and (Jπ )i = (Jπ ) f = Jπ . The matrix elements of the proton-neutron interaction is thus expressed in terms
of the one-body transition density matrix elements of the proton and neutron factor wave functions.

The matrix elements of the pn-part of the Hamiltonian can be written in the simplified form:

〈 f |Ĥ (pn)
J |i〉 = (−1) jpi+ jn f +J

∑
K

{
J jn f jp f

K jpi jni

}∑
bd

P
p f pi

bd;K ρ
n f ni

bd;K (A8)

where the reduced one-body density matrix elements of the factor wave functions |x〉 are defined as

ρ
x f xi

ab;K ≡ 〈x f ||ρ̂ (x)
ab;K ||xi〉/

√
2K + 1, (A9)

and where the partial sum P
p f pi

bd;K is defined as

P
p f pi

bd;K = (2K + 1)
∑

ac

ρ
p f pi

ac;KW (pn)
ac,bd;K . (A10)
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