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Rotation-vibration model for the chiral doublet bands and wobbling bands in transitional nuclei
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A collective model Hamiltonian incorporating a β-soft potential is proposed to elucidate phenomena related to
triaxiality in transitional systems. The solutions derived from the model built within the core-particle scheme can
be approximated using Bessel functions and subsequently applied to describe the exotic high-spin phenomena
observed in the A ≈ 130 mass region. The results indicate that chiral and wobbling rotations in a β-soft system
may exhibit robustness against β vibrations, suggesting a collective vibration mechanism for multiple chiral
doublet bands and multiple rotation-wobbling bands in triaxial nuclei.
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I. INTRODUCTION

Spontaneous chiral symmetry breaking in atomic nuclei [1]
has attracted intensive investigation since the pioneering work
in 1997 [2]. The relevant phenomenon is suggested to occur
in a triaxially deformed nucleus with high- j valence particles
(holes) configurations. Experimental evidence for this phe-
nomenon, manifested as chiral doublet bands, was initially ob-
served in the N = 75 isotopes [3] and subsequently in around
50 nuclei in the A ≈ 80, 100, 130, 190 regions [4–23]. It was
further demonstrated [24] that multiple chiral doublet bands
may exist in a single nucleus with different single-particle
configuration [25–27] and the experimental evidences have
been then reported for nuclei with both odd and even mass
number [28–38]. In addition to chiral rotation, wobbling mo-
tion [39] is another phenomenon suggested to occur in a triax-
ially deformed nucleus with high- j valence particles [40–42].
Specifically, wobbling motion describes small amplitude os-
cillation of the total angular momentum vector with respect
to the principal axis with the largest moment of inertia.
The experimental signatures were predominantly observed
in the odd mass systems in the A ≈ 100, 130, 160, 190 re-
gions [43–53]. Notably, recent findings [54] have revealed
that wobbling motion and chiral rotation may simultaneously
occur within a single nucleus, highlighting the complexity of
angular momentum coupling in a triaxial system. In short,
chirality and wobbling are considered to be two unambiguous
fingerprints of triaxiality in nuclei.

On the theoretical side, the particle-rotor model
(PRM) [2,8,55–57], the titled axis cranking model [2,58–60],
the interacting boson-fermion-fermion model [12,61,62], and
the projected shell model [63,64] have been successfully
applied to describe chiral rotations in triaxial nuclei.
Similar models [40–42,65–69] and methods [70,71] have
been also utilized to elucidate wobbling motions. Among
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them, the PRM offers the most convenient framework for
analyzing the two high-spin phenomena linked to triaxiality,
and some important concepts were even derived from the
theoretical analysis of this model. However, both the β and
γ degrees of freedom have been frozen in describing related
experiments using the PRM, allowing only the rotational
excitations. A more comprehensive consideration of collective
motion should commence with the Bohr Hamiltonian [39],
especially for the transitional systems associated with β-soft
deformations. Although solving the Bohr Hamiltonian usually
needs to employ certain approximations [72], new insights
into nuclear collective dynamics can often be gleaned from
exact or approximate solutions of the model. A prime example
is the development of critical point symmetry (CPS) [73,74]
for describing nuclear shape phase transitions, where different
CPSs are associated with solutions of the Bohr Hamiltonian
with different potentials [73–78]. Particularly, a square well
potential due to its solvability was frequently employed
in the CPS Hamiltonian for modeling a β-soft structure
that is expected to be exhibited by transitional nuclei [73].
Additionally, triaxial deformation is anticipated to manifest
to some extent in transitional systems such as those in
the A ≈ 130 mass region, where numerous experimental
candidates of chiral doublet bands and wobbling bands have
been identified [3,9,11,12,28,48,50,51].

In this work, we aim to expand the PRM descriptions of the
chiral and wobbling modes by incorporating the Bohr Hamil-
tonian with a β-soft potential to simulate the transitional cases
in triaxial systems containing both even-A and odd-A nucle-
ons. The resulting model can be utilized to examine the impact
of β softness on the two exotic nuclear modes associated with
triaxiality.

II. THE MODEL

In the core-particle coupling scheme [79], the collective
Hamiltonian for an odd-odd system can be expressed as

Ĥ = Ĥc + Ĥp + Ĥn , (1)
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where Ĥc represents the Bohr Hamiltonian for the even-even
core and Ĥσ with σ = p, n represents the single-particle
Hamiltonian for the odd nucleon (unpaired proton or neutron).
It is assumed that there is no additional interaction between
the core and odd nucleons except for the correlation in the
angular momentum coupling with Î = L̂ + ĵp + ĵn, where
L̂, ĵp, ĵn, and Î represent the angular momentum operators
for the even-even core, odd proton, odd neutron and whole
odd-odd system. This assumption is commonly employed in
the PRM calculations and has been demonstrated to work well
when dealing with odd nucleons occupying high- j orbits [79].
In fact, if the β and γ degrees of freedom are frozen, then the
collective Hamiltonian in Eq. (1) will be reduced to that of the
PRM [55].

For a transitional odd-odd system, the core dynamic can
be approximately described by the T(4) CPS [80], which is
motivated by the model of Davydov and Chaban with a fixed
γ degree of freedom [81]. Specifically, the Bohr Hamiltonian
for the even-even core is written by

Ĥc = − h̄2

2B

[
1

β3

∂

∂β
β3 ∂

∂β
− 1

4β2

∑
k

L̂2
k

sin2
(
γ − 2

3 kπ
)
]

+V (β ) , (2)

where β is the collective variable, B is the collective mass
parameter, and L̂k (k = 1, 2, 3) represents the projection of
the core angular momentum on the body-fixed k axis. To
simulate a β-soft structure, the potential function is designed
to be the infinite square well in β,

V (β ) =
{

0 , β � βW ,

∞ , β > βW .
(3)

Such a Hamiltonian can be solved like the rotor model [80],
given that γ is treated here as a parameter characterizing axial
asymmetry.

For the single-particle part, we restrict the odd nucleon
(unpaired proton or neutron) to a single- j shell. The single-
particle Hamiltonian in the intrinsic frame of the core
deformation can be expressed as [79]

Ĥσ = Ĥ0 + kr2β

[
cos(γ )Y20 + sin(γ )√

2
(Y22 + Y2−2)

]
, (4)

where the spherical shell term Ĥ0 corresponds to the spher-
ical harmonic oscillator and the second term describes the
quadrupole deformation of the single-particle potential with
the parameter k given by the splitting of the j shell in the
Nilsson scheme under the deformations of β and γ . For high
j shells, the single-particle Hamiltonian in Eq. (4) is rewritten
as [79]

Ĥp + Ĥn = E0 +
∑

σ=p,n

Cσ

{[
ĵ2
σ3 − jσ ( jσ + 1)

3

]
cos(γ )

+ 1

2
√

3

[
ĵ2
σ+ + ĵ2

σ−
]
sin(γ )

}
, (5)

with ĵσ± = ĵσ1 ± i ĵσ2. The first term E0 arises from a con-
stant contribution of the spherical shell term 〈Ĥ0〉 for the given
single- j orbits, while the second and third terms describe level

splitting due to the axial asymmetry of the potential field. In
the concrete calculations, the strength parameter Cσ (in MeV)
is often taken by the form

Cσ = ± 195

2 jσ ( jσ + 1)
A−1/3β , (6)

in which the plus sign refers to a particle and the minus
to a hole. The single-particle Hamiltonian form presented
in Eq. (5) aligns with the one frequently adopted in the
PRM [55,56].

To solve the model Hamiltonian, one can make an approx-
imate separation of the variables by introducing the reduced
energy ε = 2BE/h̄2, the reduced potential u = 2BV/h̄2 and
the reduced single-particle energy ĥsp = 2Bβ2Ĥsp/h̄2 with the
involved β3 being approximately replaced by β3 = 〈β3〉g.
Here β3 represents the average value of β3 over η(β ) solved
from Eq. (8), which is defined below, for the lowest state.
This is equivalent to an assumption that the strength parameter
in Eq. (6) satisfies Cσ ∼ a/β2 and the adjustable parameter
“a” is then approximately determined by a � 〈β3〉g in or-
der to be in accord with the widely used form in the PRM
calculations [55]. The similar approximation has been previ-
ously employed in solving the CPS models associated with
the infinite square well potential [74–77]. Subsequently, the
eigenvalue equation Ĥ	 = E	 can be separated into two
equations, i.e., the rotational equation[

3∑
k=1

L̂2
k

4sin2
(
γ − 2

3 kπ
) + ĥsp

]
ϕ(θi, ap, an) = rϕ(θi, ap, an)

(7)

with r denoting its eigenvalues and the vibrational equation[
− 1

β3

∂

∂β
β3 ∂

∂β
+ r

β2
+ u(β )

]
η(β ) = εη(β ) (8)

with ε denoting its eigenvalues. The total wave function is
then expressed as

	 = η(β )ϕ(θi, ap, an) , (9)

where θi (i = 1, 2, 3) are the Euler angles and ap(n) represents
generally the coordinates of the odd proton (neutron).

The single particle Hamiltonian may directly influence
the collective rotation of the system as indicated by Eq. (7),
which is actually consistent with the one constructed from the
PRM [79]. To solve the rotational equation, one can expand
the rotational wave function as

ϕI
M,s(θi, ap, an) =

∑
K,p,n

CI,K
s,p,n

χ I,K
M,p,n

(θi, ap, an) (10)

with

χ I,K
M,p,n

=
√

2I + 1

16π2

[
DI

M,K (θi )φ
jp

p
(ap)φ jn

n
(an)

+ (−1)I− jp− jn DI
M,−K (θi )φ

jp

−p
(ap)φ jn

−n
(an)

]
, (11)

where DI
M,K (θi ) is the Wigner D-function and φ

j
(a) is the

single-particle wave function with  denoting the component
of the spin j on the intrinsic z axis, while s is an additional
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quantum number used to distinguish between states with the
same I, M. The symmetry in question is the D2h symme-
try. Due to the symmetry constraint [55], the summation in
Eq. (10) is restricted to K = 0, 1, 2, . . . , I with K − p − n

being even numbers and p > 0 when K = 0. The expansion
coefficients CI,K

s,p,n
are then determined by Eq. (7) along

with the corresponding eigenvalues denoted by rI
s . Since the

constant term E0 in Eq. (5) will not change the eigenvalue
structure of Eq. (7), its value will be simply fixed such that
the lowest eigenvalue holds rmin = 0 to ensure that rotational
excitation energies are larger than zero. This point agrees with
the rotor model calculations for even-even system. With the
rI

s value determined from Eq. (7), one can transform the β-
vibrational equation inside the infinite well as given in Eq. (8)
into the Bessel equation

d2F

dz2
+ 1

z

dF

dz
+

[
1 − v2

z2

]
F = 0 (12)

with the order v = (rI
s + 1)

1/2
, where we have taken F (β ) =

βη(β ) and z = βk with k = √
ε. The boundary condition

η(βW ) = 0 is used to determine eigenvalues and eigenfunc-
tions, which are expressed as

εξ,s,I = (kξ,v )2, kξ,v =
(

xξ,v

βW

)
, (13)

and

ηξ,s,I (β ) = cξ,vβ
−1Jv (kξ,vβ ) (14)

with xξ,v denoting the ξ th zero of the Bessel function Jv (z).
Accordingly, the normalization constants cξ,v are determined
by ∫ βW

0
β3η2

ξ,s,I (β )dβ = 1 . (15)

The total energy is finally expressed as

E (ξ, s, I ) = h̄2

2B
(kξ,v )2 . (16)

Clearly, the order of Bessel functions v plays a pivotal role
as its values completely determine the model structure. It is
evident that different excitation states in the model can be
characterized by different values of I , ξ , and s. For instance,
the lowest rotational band is associated with ξ = 1 and s = 1,
while the bands related to β vibrations is characterized by
ξ = 2, 3, . . . .

To calculate the B(E2) transitional rates, the E2 operator
is chosen by

T̂ E2
u =

√
5

16π
Q0

[
cos(γ )D(2)

u,0(θi )

+ sin(γ )√
2

(
D(2)

u,2(θi) + D(2)
u,−2(θi )

)]
, (17)

where Q0 denotes the intrinsic quadrupole moment. In the
concrete calculations, we adopt the empirical formula

Q0 = 3√
5π

R2
0Zβ, R0 = 1.3A1/3 , (18)

in which Z denotes the charge number and R0 represents
the average nuclear radius (unit in fm). The reduced B(E2)
transitional rates can then be calculated via

B(E2; αi, Ii → α f , I f ) = |〈α f , I f ‖ T̂ E2 ‖ αi, Ii〉|2
2Ii + 1

, (19)

where α represents generally all the quantum numbers in
addition to I . In the calculations, the integral over β takes the
form

Kβ (ξi, si, Ii; ξ f , s f , I f )

=
∫ βw

0
βηξi,si,Ii (β )ηξ f ,s f ,I f (β )β3dβ , (20)

and the integral over the Euler angles θi is achieved by em-
ploying the formula that involves three Wigner D-functions.
The final results can be expressed as

B
(
E2; Iiξi,si

→ I f ξ f ,s f

)
= 9

16π2
(R2

0Z )2K2
β (ξi, si, Ii; ξ f , s f , I f )

×
⎧⎨
⎩

∑
Ki,Kf ,p,n

CIi,Ki
si,p,n

C
If ,Kf

s f ,p,n

×
[

cos(γ )〈20IiKi|I f Kf 〉 + 1√
2

sin(γ )〈2 − 2IiKi|I f Kf 〉

+ 1√
2

sin(γ )〈22IiKi|I f Kf 〉
]

+ · · ·
⎫⎬
⎭

2

, (21)

where “. . . ” represents the other terms [56]. Similarly, the M1
transition can be calculated using the magnetic dipole operator
defined by [56]

T̂ M1
u =

√
3

4π

eh̄

2Mc
[(gp − gR) ĵpu + (gn − gR) ĵnu] , (22)

where gp, gn, and gR denote the effective g factors for proton,
neutron and even-even core, while ĵu denotes the spherical
tensor in the laboratory frame. The reduced B(M1) transi-
tional rates are then evaluated via

B(M1; αi, Ii → α f , I f ) = | 〈α f , I f ‖ T̂ M1 ‖ αi, Ii〉 |2
2Ii + 1

. (23)

Throughout this work, the g factors are set to gp − gR = 0.7
and gn − gR = −0.6 [56]. If applying the M1 operator defined
in Eq. (22) to odd-A systems, then only the first or second
term is needed, depending the valence nucleon being a single
proton or neutron [82].

The core-particle coupling Hamiltonian in Eq. (1) for
odd-A system contains either Hp or Hn, with the total angular
momentum given by Î = L̂ + ĵp(or n). The steps for solving
the odd-A Hamiltonian would be very similar to the ones
for the odd-odd case described above, which means that the
eigenfunctions and eigenvalues may have the same forms as
those shown in Eq. (9) and Eq. (16). In subsequent discussion,
we omit the derivations for odd-A cases and just describe the
calculated results. Since only the three parameters, B, βW , and
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γ , are adjustable for the neighboring even-even, odd-A and
odd-odd systems, the present model may provide a chance to
examine the core-particle coupling scheme in the correspond-
ing way.

III. RESULTS AND DISCUSSIONS

As discussed in Ref. [83], the core Hamiltonian taken from
the T(4) CPS [80] may exhibit characteristics of a β-soft
rotor. Its solutions as a function of the deformation parameter
γ can offer a comprehensive description of the transitional
even-even nuclei, ranging from the first-order shape phase
transition as observed in rare-earth nuclei with A ≈ 150 to the
second-order shape phase transition seen in the A = 130 mass
region. Interestingly, the phenomena related to chiral rotation
and wobbling motion have also been observed in the A = 130
region [3,22,50,51]. To demonstrate the model application, we
choose the Xe, Ba isotopes and their adjacent partners in this
mass region to conduct the relevant theoretical calculations.

A. Even-even nuclei

For the even-even core described by Eq. (2), the entire level
structure (up to a scale factor) will be completely determined
by the γ parameter, which is highly sensitive to the ratio of
E (2γ )/E (21). Here, E (2γ ) denotes the band head energy of
the γ band. This implies that the energy ratio in the present
model can play a role similar to γ in characterizing axial
asymmetry. Consequently, one can identify nuclei that bet-
ter conform to the model dynamics by comparing quantities
such as E (41)/E (21) and E (81)/E (02) as they evolve with
E (2γ )/E (21), both experimentally and theoretically. The spe-
cific results are presented in Fig. 1. As seen from Fig. 1(a),
the theoretical values of E (41)/E (21) may monotonically in-
crease with those of E (2γ )/E (21), which is similar to the
evolutional behaviors observed in the Xe, Ba isotopes. By
comparison, the data for 126Xe and 132Ba are closer to the
theoretical trajectory. In addition, the results shown in the
inset indicate that the rotor model may yield a more rigid spec-
trum with E (41)/E (21) > 2.66, suggesting that a β-soft core
described by the present model may be more suitable for these
transitional nuclei. As further observed from Fig. 1(b), the the-
oretical values of E (81)/E (02) as a function of E (2γ )/E (21)
is nearly constant, effectively reproducing the results for 126Xe
and 132Ba. It is thus confirmed that the properties of the nuclei
can indeed be described by the model. Based on the results
shown in Fig. 1, one can also estimate the γ values to be used
in the model calculations, which are suggested to be γ = 22◦
and γ = 23◦ for 126Xe and 132Ba, respectively.

To determine the remaining two parameters, B and βW , the
low-lying levels and available B(E2) data in the two nuclei
are fitted by the model calculations. As seen from Fig. 2,
the level patterns of both nuclei can be well reproduced in
theory especially for the γ - and β-band head energies as
indicated by the corresponding ratios. A discrepancy aries
from the relatively small energy gaps between 3+

1 and 4+
2 in

experiments, suggesting that γ deformation of the two nuclei
may be more or less softer. In addition, the state 2+

4 rather than
2+

3 in 132Ba can be arranged as the band member of the 0+
2

FIG. 1. The energy ratios E (41)/E (21) and E (81)/E (02) ob-
tained from the model are presented as a function of E (2γ )/E (21)
for comparison with the experimental data extracted from the Ba and
Xe isotopes [84–89]. The inset provides a comparison between the
results for E (41)/E (21) vs E (2γ )/E (21) derived from the present
model and those from the triaxial rotor model (TR) using the hy-
drodynamical moments of inertia.

band according to the analysis given in Ref. [90]. As shown
in Table I, the available data for B(E2) transitions can also be
generally well described by theory, except for the overestima-
tion of B(E2; 02 → 21) in 126Xe. This discrepancy could also
be improved through incorporating a softer potential in γ .

B. Odd-odd nuclei

Based on the above analysis, the two even-even nuclei that
best conform to the model predictions both exhibit the large
triaxial deformations with γ > 20◦. For odd-odd nuclei, chiral
doublet bands originating from spontaneous chiral symmetry
breaking serve as a crucial indicator of triaxial deforma-
tion. In experiments, chiral bands were mostly observed in
the triaxial odd-odd nuclei with the valence particles (holes)
occupying high- j orbits. To illustrate this triaxiality-related
phenomenon, the single-particle configuration is chosen to
be πh11/2 ⊗ νh−1

11/2 with the strength parameters Cπ (ν) deter-
mined from Eq. (6). Then, the high-spin structures derived
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FIG. 2. The patterns of low-lying excitation states for 132Ba and
126Xe are provided to compare with the results solved from the core
Hamiltonian with the model parameters given in Table I. The typical
energy ratios are defined as R42 = E (41)/E (21), R22 = E (22)/E (21),
and R02 = E (02)/E (21).

from this single-particle configuration in an odd-odd nucleus
will be completely fixed in theory, as all the model parameters
have been determined by reproducing the low-lying properties
of the adjacent even-even nucleus. The odd-odd partners of
126Xe and 132Ba satisfying one particle one hole condition
are identified as 126Cs [22] and 132La [91], respectively. They
will be taken in the following to examine the model predic-
tions under the given parameters. For that, the level patterns
solved from Eq. (1) are shown in Fig. 3 to compare with the
experimental results for the yrast bands and yrare bands built
on πh11/2 ⊗ νh−1

11/2. Besides, the calculated energy staggering
parameter S(I ) and B(M1)/B(E2) ratios are shown in Fig. 4
and Fig. 5, facilitating further comparison in between theory
and experiment.

As seen in Fig. 3(a), the level energies of the yrast and yrare
bands in 126Cs can be reasonably reproduced by the model
results characterized by ξ = 1 and s = 1, 2. In particular, the
near degeneracies in the levels of the same spins can be clearly
observed in both the experimental data and the theoretical
results for the two �I = 1 bands, especially for I > 12. It
is thus suggested that the yrast band and yrare band form
a pair of chiral doublet bands [22]. An agreement between
the experiment and theory can also be found for 132La as

TABLE I. The available data for B(E2) transitions (in W.u.) in
126Xe [88] and 132Ba [85] are provided to compare with the results
obtained from the model, where “—” denotes unknown data. In the
calculations for 126Xe (132Ba), a value of γ = 22◦ (23◦) is adopted,
the mass parameter (in MeV−1 h̄) is taken as B = 184.6 (198.9), and
the well width is set by βW = 0.271 (0.241). With these parameters,
the first excited level in the model has been set to precisely match
the experimental data for 126Xe (132Ba), which implies E (21) =
0.389(0.465) MeV.

Li → Lf
126Xe Model Li → Lf

132Ba Model

21 → 01 44(4) 36 21 → 01 43(4) 31
41 → 21 76(12) 65 41 → 21 – 55
61 → 41 89(16) 90 61 → 41 – 77
02 → 21 6.4(12) 39 02 → 21 – 34
22 → 21 47(9) 24 22 → 21 144(14) 25
22 → 01 0.68(12) 2.45 22 → 01 3.9(4) 1.93
23 → 02 40(6) 28 23 → 02 – 24

depicted in Fig. 3(b). Similarly, the yrast and yrare bands
in this nucleus also constitute a pair of chiral doublet bands
with near degeneracies present in the levels of the same spins.
A chiral interpretation of the two bands in 132La has also
been provided in the previous study [6]. Additionally, the
results in Fig. 3 indicate that the present model may yield a
patten featuring multiple doublet bands arising from collective
excitations, including the bands denoted by ξ = 2 alongside
s = 1, 2, as well as those denoted by ξ = 1 together with
s = 3, 4. By comparing the band head energies between the
odd-odd and even-even nuclei, one can derive that the former
(ξ = 2) corresponds to the β band and the latter (ξ = 1) to
the γ band. Further analysis of these doublets resulting from
collective excitations will be presented below.

Apart from the near degeneracies in level energies, the
other fingerprints of nuclear chirality include the constant
evolution of S(I ) = [E (I ) − E (I − 1)]/2I and the staggering
in B(M1)/B(E2) = B(M1; I → I − 1)/B(E2; I → I − 2) as
these quantities vary with spins. As shown in Fig. 4(a), a
nearly constant behavior of S(I ) is observed from the data
for 126Cs, particularly for I > 12, which is also well captured
by the model results, thereby reaffirming the chiral rotational
nature of the doublet bands in this nucleus. The similar feature
can also be discerned for 132La as seen in Fig. 4(b). On the
other hand, the calculated results of S(I ) exhibit a staggering
behavior for large values of I . The staggering feature was also
found in the results obtained from the PRM [92], indicating
a potential influence from the Coriolis effect at high spins.
But, we observe that the staggering feature in the present
model appears to be weaker than that in the PRM calcula-
tions, suggesting a possible reduction of the Coriolis effect
due to β softness. As further seen from Fig. 5, the data for
B(M1)/B(E2) in 126Cs can also be reasonably explained by
the model calculations. Notably, these ratios in the experiment
demonstrate pronounced staggering along the yrast band but
weaker staggering along the yrare band. These features are
consistent well with the model prediction. For 132La, although
the predicted staggering amplitudes for the yrast band ap-
pear evidently larger than the experimental observations at
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FIG. 3. The patterns of low-lying excitation states for 126Cs [22] and 132La [91] are presented to compare with the results obtained from the
model, where ξ = 1 and ξ = 2 correspond to the lowest bands and β-vibrational bands, respectively, and s = 1, 2, 3, 4, · · · is the additional
quantum number to distinguish between states with the same I, M.

high spins, qualitative agreement in the evolutional trends of
B(M1)/B(E2) can still be discerned as shown in Fig. 5(b).
Since only one data is available for the yrare band as seen
in Fig. 5(d), further measurements of B(M1)/B(E2) in 132La
are necessary to enable a reliable comparison between the ex-
periment and theory. The above analysis clearly demonstrates
that the two lowest �I = 1 bands in both odd-odd nuclei can
be attributed to chiral doublet bands, and their characteristics
can be identified through the theoretical calculations using
the parameters determined from fitting the adjacent even-even
nuclei.

To further investigate the properties of the additional
doublet bands generated in the model, we select the bands de-
picted in Fig. 3(a) to examine the evolutional behaviors of S(I )
and B(M1)/B(E2) as shown in Fig. 6. As seen from Fig. 6(a),
the global features of S(I ) for the bands with ξ = 2 and s =
1, 2 are very similar to those exhibited by the yrast and yrare
bands shown in Fig. 4(a). The similarities between these two
pairs of doublets can also be identified from the evolutions of
the B(M1)/B(E2) ratios as observed in Fig. 6(c). It is shown

that both the staggering amplitudes and evolutional trends in
the doublets with ξ = 2 closely mirror those seen in the yrast
and yrare bands, which means that the two bands with ξ = 2
indeed form a pair of chiral doublet bands. One can thus
conclude that chiral rotation within a β-soft system remains
robust against β vibrations. In comparison, as depicted in
Fig. 6(b) and 6(d), the evolutions of S(I ) and B(M1)/B(E2)
for the bands with ξ = 1 and s = 3, 4 exhibit fewer similari-
ties to those observed for the yrast and yrare bands.

Examination of the geometry of angular momentum cou-
pling, which can be achieved by analyzing the effective angles
between different angular momentum vectors, is essential
for a deeper understanding of chiral bands. To this end, we
calculate the expectation values of some scalar operators as
considered in Ref. [6], including 〈 |L̂2| 〉, 〈 |L̂ · ĵp| 〉, 〈 |L̂ · ĵn| 〉,
and 〈 | ĵp · ĵn| 〉, in which | 〉 ≡ |I, ξ , s〉 denote the eigenvectors
described by Eq. (9). By utilizing the tensor properties of
the angular momentum operators with L̂± = L̂1 ± iL̂2, ĵ± =
ĵ1 ± i ĵ2, and Î = L̂ + ĵp + ĵn [79], one can evaluate the ex-
pectation values of these scalar operators in a given wave
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FIG. 4. The energy staggering parameter S(I ) for 126Cs [22] and
132La [91] are provided to compare with the results derived from the
model, where “yrast” and “yrare” denote those calculated for ξ = 1
but with s = 1 and s = 2, respectively.

function, of which the rotational part can be expanded in terms
of the strong-coupling basis as indicated in Eq. (10). These
scalars further allow us to define the effective angles with their
cosine functions written by [6]

cos
(
θL jp

) = 〈L̂ · ĵp〉√
〈L̂2〉〈 ĵ2

p

〉 , (24)

cos
(
θL jn

) = 〈L̂ · ĵn〉√
〈L̂2〉〈 ĵ2

n

〉 , (25)

cos
(
θ jp jn

) = 〈 ĵp · ĵn〉√〈
ĵ2
p

〉〈
ĵ2
n

〉 . (26)

Note that the calculated results are independent of the β vi-
bration and, consequently, the values of ξ . This is due to the
fact that the β part of the wave functions in the model only
contributes an orthonormality factor. It means that the doublet
bands denoted by (ξ = 1, s = 1, 2) and those by (ξ = 2, s =
1, 2) as depicted in Fig. 3(a) will exhibit identical effective
angles in angular momentum coupling. Given that the results
depend solely on the quantum number s and I , the angles for

FIG. 5. The evolutions of the B(M1)/B(E2) ratios for the yrast
band and yrare band in 126Cs [22] and 132La [91] are shown to
compare with those derived from the model.
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FIG. 6. The theoretical values of S(I ) and B(M1)/B(E2) are presented as a function of spin. Here, ξ = 1, 2 and s = 1, 2, 3, 4 denote the
results corresponding to the bands depicted in Fig. 3(a).

s = 1, 2 are presented as a function of I to compare with those
for s = 3, 4. As illustrated in Fig. 7, the three effective angles
for both s = 1 and s = 2 may decrease from θ ≈ 90◦ to lower
values with increasing spin. Nevertheless, these angle values

during their evolutional process remain relatively large, even
with some oscillation at high spins. For instance, all three an-
gles exceed 60◦ for I � 14, except for the angle between L̂ and
ĵp for s = 1, which yields θL jp ≈ 48◦ at I = 14, as observed in

FIG. 7. The effective angles (in degree) between different angular momentum vectors are presented as a function of spin with (s = 1, 2)
and (s = 3, 4) denoting the corresponding bands depicted in Fig. 3(a).
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FIG. 8. The probability distributions for the projections K of the total angular momentum along the long (l-), intermediate (i-), and short
(s-) axes are presented for I = 10, 14, 18, where s = 1 and s = 2 denote the results corresponding to the case shown in Fig. 3(a).

Fig. 7(b). This geometric picture of angular momentum cou-
pling is basically consistent with the three-dimensional titled
rotation coupling in the doublets bands based on the chiral
hypothesis. Apart from that, the calculated results indicate that
the core contribution to the total angular momentum could
be comparable to the contributions from the valence proton
and valence neutron (h11/2) [6]. For example, L =

√
〈 |L̂2| 〉

for two states with I = 14 in the doublet bands yield L ≈ 6.
This observation also aligns with chiral interpretations [6]. As
further seen in Figs. 7(d)–7(f), the evolutional features of the
effective angles for s = 3 and s = 4 are more or less similar
to those observed from the s = 1 and s = 2 doublet bands,
suggesting that the two doublets have the similar geometry in
angular momentum coupling.

Moreover, the chirality in each doublet bands can be dis-
cerned from the probability distribution for the projection of
the total angular momentum along the long (l-), intermediate
(i-), and short (s-) axes, which coincide with the body-fixed 3,
1, and 2 axes according to the adopted parametrization of γ .
Similarly to the effective angles, the probability distribution,
referred to as K distribution, is also unaffected by the β part

of the wave functions and derived as [93]

PK =
∑

p,n

∣∣CI,K
s,p,n

∣∣2
. (27)

To compare the doublet bands denoted by s = 1, 2 with
those denoted by s = 3, 4, PK on different axis are calculated
for three typical I values (I = 10, 14, 18). The results are
presented in Figs. 8 and 9. As seen from Fig. 8, a noticeable
difference in the distribution between the s = 1 and s = 2
bands is observed near the band heads (I = 10), consistent
with expectations for chiral vibration. Specifically, at low
spin (I = 10), the maximum distribution on the i-axis appears
near Ki = 0 for s = 1, while it occurs at Ki = 6 for s = 2,
demonstrating the typical distribution for a chiral vibration
between the zero-phonon state (s = 1) and one-phonon state
(s = 2) [57]. With increasing I the distribution of K on the
three axes for the two bands are getting closer as indicated
by the results for I = 14 and I = 18, which indicates that the
static chirality will develop at higher spins. These features
align well with the previous PRM calculations [57], reaffirm-
ing the chiral interpretation of the s = 1 and s = 2 bands. For
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FIG. 9. The same as in Fig. 8 but for s = 3 and s = 4.

the bands with s = 3, 4, the evolutions of the distributions of
K from low spins to high spins exhibits global similarities to
those observed in the bands with s = 1, 2, particularly along
the i-axis. This suggests that the doublet bands s = 3, 4 can
also be attributed to chiral rotation. However, a certain dif-
ference between the s = 3 and s = 4 bands may be sustained
even at high spins (I = 14, 18) as clearly seen from Fig. 9.
This implies that the chiral interpretation of the doublet bands
with s = 3, 4 may not be as robust as that of the bands with
s = 1, 2, despite the more pronounced level degeneracies in
the former compared to the latter as seen from Fig. 3(a).

C. Odd-A nuclei

As discussed above, the chiral doublet bands in a triaxial
odd-odd nucleus with a transitional core can be effectively
described within the present model. The phenomenon of wob-
bling motion provides an alternative perspective for observing
triaxiality in nuclei [39]. Specifically, the wobbling mode
is characterized by the �I = 2 rotational bands connected
through �I = 1, E2 transitions. Such bands have predom-
inantly been observed in triaxial odd-A nuclei with high- j
valence particles. In the following, we select 127Xe and 133La

to test the model predictions for the odd-A systems neigh-
boring the even-even core counterparts 126Xe and 132Ba. It
is worth noting that the lowest bands built on the single-
particle configuration h11/2 in the two odd-A nuclei have
been proposed as the potential candidates for observing the
wobbling mode [50,51]. By fully constraining the parameters
based on the core nuclei 126Xe and 132Ba, the level patterns
derived from the model are given to compare with those
obtained experimentally for 127Xe and 133La as shown in
Fig. 10. In the calculations, either Ĥn or Ĥp with the odd
particle occupying the h11/2 orbit is considered in the model
Hamiltonian.

As depicted in Fig. 10(a), the energy levels of the yrast
band and side (wobbling) band in 127Xe can be accurately
reproduced by the model calculations based on the single-
particle configuration νh11/2. The near degeneracies with
E (I ) ≈ E (I − 1) between the two �I = 2 bands can be
clearly observed from both the experiment data and theoretical
predictions, indicating a similar distribution of the moments
of inertia for these two rotational bands. Recently, it has
been suggested [50] that the side band in this nucleus can
be interpreted as a longitudinal wobbling mode of the yrast
band. In other words, the two �I = 2 bands may group into
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FIG. 10. The patterns of low-lying excitation states for 127Xe [50] and 133La [51] are presented to compare with the results solved from the
model Hamiltonian, where ξ = 1 and ξ = 2 represent the lowest bands and β-vibrational bands, respectively, and s = 1, 2 is the additional
quantum number used to distinguish between states with the same I, M. In addition, nω is introduced to indicate that a �I = 1 rotational serial
with given (ξ, s) may be recognized as two �I = 2 bands corresponding to the “ground” band (nω = 0) and its wobbling partner (nω = 1),
respectively (see text).

a rotation-wobbling bands pair corresponding to the wob-
bling phonon excitations nω = 0 and nω = 1, respectively.
Here, the quantum number nω is taken from the harmonic
approximation in treating the triaxial rotor model [39] and
used to distinguish between two adjacent �I = 2 bands for
each given (ξ, s) as shown in Fig. 10. A similar picture can
also be observed for the odd-proton nucleus, 133La, as seen
from Fig. 10(b), where one can observe a good agreement
between the experimental data and the theoretical predictions
based on the single-particle configuration πh11/2. Addition-
ally, the results in Fig. 10 indicate that the model can yield a

pattern of multiple rotation-wobbling doublets characterized
by nω = 0, 1 with different (ξ, s), which bears resemblance
to the multiple chiral doublets displayed in Fig. 3. It should
be noted that chiral bands have also been observed in
odd-A systems [23], but spins in each chiral band change
by �I = 1 rather than �I = 2 as exhibited in a wobbling
band.

The wobbling modes can be identified by observing several
quantities, including the wobbling energy defined by [42]

Ewob(I ) = E (1, I ) − 1
2 [E (0, I − 1) + E (0, I + 1)] (28)
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FIG. 11. The available data for Ewob, B(M1)/B(E2)in and B(E2)out/B(E2)in in 127Xe [50] and 133La [51] are shown to compare with the
results solved from the model Hamiltonian with the assumed single- j configuration.

and the B(σ, λ) transitional ratios defined by

B(M1)/B(E2)in = B(M1; (1, I ) → (0, I − 1))

B(E2; (1, I ) → (1, I − 2))
, (29)

B(E2)out/B(E2)in = B(E2; (1, I ) → (0, I − 1))

B(E2; (1, I ) → (1, I − 2))
. (30)

In Eqs. (28)–(30), the states are characterized by the quantum
numbers (nω, I ) with (0, I ) and (1, I ) corresponding to those
from the yrast band (nω = 0) and its wobbling mode (nω = 1),
respectively. As shown in the Fig. 11(a), the Ewob values
extracted from 127Xe may increase with spins, suggesting a
longitudinal wobbling mode in this nucleus [50]. This trend is
qualitatively captured by the model calculations, particularly
for high-spin states. The similar situation can also be ob-
served for 133La as seen in Fig. 11(b). For B(M1)/B(E2)in and
B(E2)out/B(E2)in, the results presented in Figs. 11(c)–11(f)

indicate that the available data can also be qualitatively ex-
plained from the model calculations for both nuclei, but some
quantitative deviations are evident. For instance, the model
predictions heavily underestimate the B(E2)out/B(E2)in in
127Xe especially at low spins. Adopting a larger γ value may
improve this B(E2) ratio at specific spins; for example, setting
γ = 30◦ would elevate B(E2)out/B(E2)in at I = 17/2 from
the current value of 0.47 to 0.88. Nonetheless, a quantita-
tive description of the large ratio values in 127Xe, which are
also much larger than those observed in 133La as depicted in
Fig. 11(f), may go beyond the simple model calculations with
the parameters fully determined from fitting the core nucleus.
A better descriptions of B(E2)out/B(E2)in in experiments can
be achieved from the PRM calculations with the assumed
spin-dependent moments of inertia [51]. But, the resulting
B(M1)/B(E2)in ratio will be significantly larger than the rel-
evant data [42,49,53] as well as the results derived from the
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present model. For example, B(M1)/B(E2)in at I = 17/2 in
the present model calculation for 133La is given by 0.61 (in
μ2

N/e2b2) as shown in Fig. 11(d), while the PRM calculations
with the spin-dependent moments of inertia [51] will yield
the ratio value larger than 1.4. While a quenching factor was
often introduced in the PRM calculations [49] to improve
agreement with small experimental B(M1)/B(E2)in ratio, the
present model provides a relatively reasonable theoretical de-
scription without requiring such adjustments, despite the fact
that the data are still overestimated by the calculated results,
as illustrated in Fig. 11.

Based on the aforementioned discussions, the two bands
characterized by (ξ = 1, s = 1) as depicted in Fig. 10 can be
elucidated as a pair of rotation-wobbling doublet consisting of
a �I = 2 rotational band identify by nω = 0 and its wobbling
partner designated by nω = 1. To further discern the wobbling
nature of other bands in the model, we employ the case pre-
sented in Fig. 10(a) as an example to compare the doublet
denoted by (ξ = 1, s = 1) with those denoted by (ξ = 2, s =
1) and (ξ = 1, s = 2). Specifically, the quantities defined in
Eqs. (28)–(30) have been calculated for each doublet and the
results as a function of spin are presented in Fig. 12. In the
calculations, the band built on I = 13/2 has been assigned as
the nω = 1 mode of that built on I = 11/2 in each doublet.
As observed from Fig. 12(a), the evolutional behavior of Ewob

for (ξ = 2, s = 1) closely resembles that for (ξ = 1, s = 1)
but differs from the one for (ξ = 1, s = 2). The similarity be-
tween the two pairs of bands with s = 1 are even highlighted
by the results for B(M1)/B(E2)in and B(E2)out/B(E2)in as
seen in Fig. 12. It is thus inferred that the wobbling motion can
not only be effectively preserved in a transitional system but
also robust against β vibrations. This observation is similar
to the above discussed chiral rotation. It should be mentioned
that the band built on I = 13/2 with (ξ = 1 s = 2, ) cannot
be considered as the nω = 2 wobbling mode of the yrast band
due to almost zero interband E2 transitions, which means that
the two �I = 2 bands are not E2 connected.

To further identify the geometry of angular momentum
in the wobbling modes, we calculate the root-mean-square
values of the angular momentum components, 〈I2

k 〉1/2, where
Ik with k = 1, 2, 3 represents the projection of the total angu-
lar momentum I on the body-fixed k axis with 〈I2

1 〉 + 〈I2
2 〉 +

〈I2
3 〉 = I (I + 1). Given that the β part of the wave functions

only contributes an orthonormality factor, the calculated re-
sults would be identical for the states with the same values of
s and I . This suggests that the angular momentum geometry
in the present model is solely determined by the quantum
numbers s and nω, rather than by ξ . Hence, a meaningful com-
parison should be conducted between two bands with identical
s but different nω. As seen in Fig. 13(a), the results indicate
that at high spins such as I > 23/2, the angular momenta in
the two bands with s = 1 will be predominantly influenced
by their k = 1 components. Notably, it is observed that the
k = 1 components in the nω = 0 band exceed those in the
nω = 1 band (wobbling mode) by nearly an average of 1h̄.
For instance, if one defines the spin difference by

�Ik = 〈
I2
k

〉1/2

nω=0 −
〈
(I + 1)2

k

〉1/2

nω=1 + 〈
(I − 1)2

k

〉1/2

nω=1

2
, (31)

FIG. 12. The theoretical values of Ewob, B(M1)/B(E2)in and
B(E2)out/B(E2)in are presented as a function of I for the bands
depicted in Fig. 10(a).

then one may get �I1 ≈ 0.8h̄ for I = 27/2 and �I1 ≈ 0.7h̄
for I = 35/2, respectively. This is consistent with the descrip-
tion [39] that the wobbling motion describes small amplitude
oscillation of the total angular momentum vector with respect
to the principal axis with the largest moment of inertia, which
coincides with the k = 1 axis in the present model. As further
demonstrated in Fig. 13(b), the similar angular momentum
geometry can also be identified for the two bands with s = 2,
particularly for high-spin states such as those with I > 27/2.
Therefore, it is reasonable to distribute the band built on
I = 13/2 as the nω = 1 mode of that built on I = 11/2, as
indicated in Fig. 10.
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FIG. 13. The root-mean-square values (in h̄) of the angular mo-
mentum components, 〈I2

k 〉1/2 with k = 1, 2, 3, are presented as a
function of I for the nω = 0 (full and black symbols) and nω = 1
(empty and red symbols) bands depicted in Fig. 10(a). Since the
calculated values are independent of the ξ number (as discussed in
the text), only s = 1 and s = 2 are used to denote the results for each
rotation-wobbling pair.

IV. SUMMARY

In summary, a collective model incorporating the β-soft
potential has been developed within the core-particle cou-
pling scheme. This extends the original PRM description of

triaxial dynamics to the β-soft case. It is demonstrated that
the model can be solved through approximately separating
the β variable describing collective vibration from the Euler
angles describing collective rotation. The obtained solutions
are expressed in terms of the Bessel functions of irrational
orders and subsequently applied to analyze the relevant nu-
clei in A ≈ 130 mass region. The results indicate that chiral
doublet bands and wobbling bands in the odd nuclei can
be reasonably explained by the model calculations with the
parameters completely determined from fitting the neighbor-
ing even-even nuclei. This suggests that triaxial dynamics
in an transitional even-even system can be well preserved
in its adjacent odd partners, although the manifestation of
triaxiality differ significantly between odd and even species.
Additionally, the model presents a picture of multiple chiral
doublets or multiple rotation-wobbling doublets caused by
collective excitations, demonstrating a new possibility of pro-
ducing multiple-bands pattern in odd systems. Since the early
prediction of the multiple chiral doublets based on multiple
single-particle configurations [24], searching for the possible
candidates has become an active issue in experiments [28–38].
Most recently, it was found [54] that the chiralilty and wob-
bling modes can even coexist in a single nucleus, which
provides new insights into observing multiple chiral doublets
in triaxial systems. The proposed multiple doublets caused by
collective excitations are different from those previously pre-
dicted based on several single-particle configurations [24] or
an identical configuration [29]. However, whether the present
predictions can be confirmed experimentally needs more care-
ful and systematic analysis of the relevant data. In particular,
it would be beneficial to find a way to treat the parameter γ as
a degree of freedom [94–96] rather than to keep it frozen as in
the analysis presented in the current paper. The related work
is in progress.
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