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We study dark matter, assumed to be composed of weak interacting massive particles (WIMPs), scattering
off 2H and 4He nuclei. In order to parametrize the WIMP-nucleon interaction, the chiral effective field theory
approach is used. Considering only interactions invariant under parity, charge conjugation, and time reversal, we
examine five interaction types: scalar, pseudoscalar, vector, axial, and tensor. Scattering amplitudes between two
nucleons and a WIMP are determined up to second order of chiral perturbation theory. We apply this program
to calculate the interaction rate as a function of the WIMP mass and of the magnitude of the WIMP-quark
coupling constants. From our study, we conclude that the scalar nuclear response functions is much greater than
the others due to their large combination of low energy constants. We verify that the leading order contributions
are dominant in these low energy processes. We also provide an estimate for the background due to atmospheric
neutrinos.
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I. INTRODUCTION

A great number of gravitational anomalies have been de-
tected since the 1930s at galactic scales and beyond [1]. These
anomalies, which cannot be described by the standard cosmo-
logical model, suggest the existence of a new type of particles
whose properties are still unknown, forming the so-called dark
matter (DM). Nowadays, one of the most important challenges
of physics is to understand the nature of DM in the Universe.
The long-held hypothesis is that most DM is cold and made up
of some massive particles. The leading candidates of such par-
ticles are the weakly interacting massive particles (WIMPs),
still a viable and highly motivated possibility nowadays [2,3].
Another class of candidates with the requisite thermal relic
density are the so-called feebly interacting light particles [4].
While not WIMPs, feebly interacting particles with couplings
of g � 1 and masses of m � 1 GeV might be thought of as
variations of the WIMP paradigm.

Our purpose is to study the nuclear response to WIMP scat-
tering, assumed to be Dirac particles. This response is needed
to analyze the results of various direct detection experiments,
which are currently attempting to detect DM in experimental
laboratories all over the world [5,6]. Clearly, WIMPS are also
searched for in many experiments performed in high-energy
colliders, such as the Tevatron and the Large Hadron Col-
lider (LHC); see, for example, Refs. [7,8] for the constraints
imposed on the various models of DM. The WIMPs can be
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assumed to be nonrelativistic, since, in order to be gravita-
tionally bound in the galaxy halos, their velocity needs to be
below about 600 km/s. The typical WIMP velocity in the halo
is thus | vχ

c | ≈ 10−3. The maximal recoil momentum transfer
depends on the reduced mass of the WIMP-nucleus system
and on the range of recoil energies, ER, that the experiments
are measuring. This recoil energy is usually in the range of a
few keV to few tens of keV [9], while the heaviest nuclei have
masses of mA ≈ 200 GeV. This gives a maximal momentum
transfer of qmax � 200MeV. This is also a typical size of the
momenta exchanged between the nucleons bound inside the
nucleus. Therefore, the nucleons remain nonrelativistic also
after scattering, and the nucleus does not break apart.

In order to describe this type of scattering, the chiral ef-
fective field theory (χEFT) approach to nuclear dynamics
can be used [10–14]. The Lagrangian interaction terms are
obtained by placing the WIMP as an external source in the
QCD Lagrangian [15–21]. In this way, we can define the
external currents in the SU(2) flavor space and, to take into
account some particular quark coupling of isoscalar-axial na-
ture, we extend the discussion in the flavor SU(3) space [12].
Considering only interactions invariant under parity, charge
conjugation, and time reversal, we examine all possible
WIMP and quark interaction types: scalar, pseudoscalar, vec-
tor, axial and tensorial. Then, within the framework of χEFT,
for each interaction type, the interaction vertices between
nucleons, pions, and WIMP can be obtained [16]. From the
vertices, we derive the amplitudes for nucleus-WIMP scat-
tering by taking contributions up to next-to-next-to-leading
order (N2LO) in the chiral perturbation theory (χPT). We
applied this program to study the 2H and 4He responses to the
external sources and finally to calculate the interaction rate as
function of the WIMP mass and of the WIMP-quark coupling
constants (quantities clearly unknown). Theoretically, light
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nuclei are great testing laboratories as they can be described
from first principles to high accuracy, moreover helium iso-
topes are potential experimental targets as they are sensitive to
relatively light dark matter particles (mass � 10 GeV) [22].

Alternative approaches also used in the literature are pi-
onless effective field theory [23] and Galilean effective field
theory (GEFT) [24,25] frameworks, where all possible con-
tact WIMP-nucleon interactions allowed by the nonrelativistic
symmetries are taken into account. Several calculations within
GEFT approach have been reported already, setting con-
straints on WIMP-nuclei coupling and cross sections [26–29].
Here, as stated above, we derive the interaction using χEFT.
In this way, a more direct connection to WIMP-quark cou-
plings is achieved, and in addition, thanks to chiral power
counting, a direct hierarchy between the various operators
contributing to the current can be established. Moreover, as
shown in Ref. [30], the relations between χEFT and GEFT
operators show that the latter are not independent due to QCD
effects. With respect to other calculations of DM scattering off
light nuclei using χEFT [18,20,21], we have treated systemat-
ically the contributions of one-body and two-body currents for
five different interactions, providing a quantitative estimate of
the rate of the process in each case. In this framework, there
are already calculations for argon and xenon; see, for example,
Ref. [31]. Using χEFT we also provide an estimate for the rate
of nuclear recoils induced by atmospheric neutrinos, which
represents a background process.

This paper will be organized as follows. In Sec. II we will
introduce the χEFT framework and define the quark-WIMP
currents. In Sec. III we will use the χEFT to parametrize the
WIMP-nucleon interaction and compute the transition ampli-
tudes using the χPT. In Sec. IV the interaction rate between
nucleus and WIMP will be calculated using the multipolar
expansion of the currents. In Sec. V we will present the results,
in particular the nuclear responses to WIMP scattering and the
interaction rate for each interaction type. Finally, in Sec. VI
we will discuss the conclusions and perspectives of the
present work.

II. CHIRAL EFFECTIVE FIELD THEORY FRAMEWORK
AND DEFINITION OF EXTERNAL CURRENTS

The χEFT treatment of a general WIMP interaction has
been developed and employed in calculations in several
works [15–21], usually in the heavy-baryon approach. Here
we will start from the relativistic chiral Lagrangian and then
make a nonrelativistic expansion of the final amplitudes [32].

We start from the following general Lagrangian at ≈1 GeV
energy scale:

Lq
QCD = LM=0

QCD + q̄(x)γ μ
(
vμ(x) + 1

3v(s)
μ (x) + γ 5aμ(x)

)
q(x)

− q̄(x)(s(x) − iγ 5 p(x))q(x)

+ q̄(x)σμνtμν (x)q(x), (1)

where

q(x) =
(

u(x)
d (x)

)
, (2)

u(x) and d (x) being the fields of the u and d quarks. Above,
LM=0

QCD is the QCD Lagrangian for massless quarks, while s(x),
p(x), v(x)μ, v(s)

μ (x), aμ(x), and tμν (x) are external currents, to
be specified below. As is well known, LM=0

QCD is invariant under
the chiral group under independent unitary transformation of
the right and left components of the quark field q(x).

The Lagrangian given in Eq. (1) is written in such a way
to be invariant under local chiral transformations [11]. In
general, external source fields are Hermitian matrices in the
isospin space; the scalar (S) and pseudoscalar (P) charge den-
sities are written explicitly as

s(x) =
3∑

a=0

τasa(x), p(x) =
3∑

a=0

τa pa(x), (3)

where τ0 ≡ 1 and τi, i = 1, 3, are the Pauli matrices. The
vector (V), axial (A), and tensor (T) current densities are
defined as

vμ(x) =
3∑

a=1

τa

2
va

μ(x), v(s)
μ (x) ≡ v(s)

μ (x)τ0, (4)

aμ(x) =
3∑

a=1

τa

2
aa

μ(x), (5)

tμν (x) =
3∑

a=0

τa

2
t a
μν (x). (6)

An eventual isoscalar external axial current a(s)
μ (x) would cou-

ple to the isoscalar axial quark current,

q̄(x)γμγ 5q(x); (7)

however, the latter quantity is not conserved due to the
anomaly of the U(1)A group [33]. Therefore, it is not possible
to construct an invariant Lagrangian with a(s)

μ (x). This case
will be treated explicitly by considering the χEFT in the
SU(3) flavor space [12]; see below.

These external sources can be used to parametrize the
coupling of quarks to electroweak field, and also to WIMPs.
Moreover, they can be used to insert explicit violations of the
chiral symmetry in the Lagrangian. For example, the explicit
violation induced by the nonzero values of the quark masses
can be incorporated by assuming s(x) = M + · · · , where

M =
(

mu 0
0 md

)
, (8)

mu and md being the u- and d-quark masses, respectively.
At hadronic level, it is then possible to write an effec-

tive Lagrangian involving nucleonic and pionic degrees of
freedom and the various external currents and charge densi-
ties [10,12,13]. The symmetries used to build this Lagrangian
are (i) the chiral symmetry, (ii) the Lorentz invariance and
(eventually) (iii) the discrete symmetries of charge conjuga-
tion C and parity P. With these Lagrangians it is possible
to treat processes of momenta Q � �χ , with �χ ≈ 4π fπ ≈
1 GeV [34], where fπ � 92.4 MeV is identified as the charged
pion decay constant [35]. If the chiral symmetry was an exact
symmetry of the theory, the momentum Q would be the only
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expansion parameter. As we have seen before, this is not true;
the chiral symmetry is explicitly broken by the mass term
of the quarks that generates the mass of the pion mπ . This
quantity reappears in the χEFT as a new expansion parameter.
However also mπ is a small parameter compared to �χ , so we
have two expansion scales: Q/�χ and mπ/�χ . From now, we
will indicate with Q both the typical momentum and the mass
of the pion. If we limit the range of Q between zero and the
mass difference between the baryon 	(1232) and the nucleon,
we can take as effective degrees of freedom only the pions and
the nucleons, without including heavier mesons or baryons. In
constructing this effective Lagrangian, a number of coupling
constants appear, the so-called low-energy constants (LECs).
These coupling constants can be fixed from experimental data,
or from lattice calculations. The LECs entering this study will
be discussed in Appendix A 6.

Let us now consider a general Lagrangian describing the
interaction of quarks and the WIMP, the latter assumed to be
a Dirac fermion [15],

Lχ = 1

�3

∑
f

[
CS

f χ̄χm f f̄ f + CP
f χ̄ iγ5χm f f̄ iγ5 f

]

+ 1

�2

∑
f

[
CV

f χ̄γ μχ f̄ γμ f + CA
f χ̄γ μγ5χ f̄ γμγ5 f

]

+ 1

�2

∑
f

[
CT

f χ̄σμνχ f̄ σμν f
]
, (9)

where � is a high energy scale, χ is the WIMP field, f the
field of quark of flavor f = u, d, . . . and the Wilson coeffi-
cients Ci are unknown parameters. They should in principle be
fixed by choosing a particular high energy WIMP model, thus
they parametrize the effect of new physics associated with
the energy scale �. This scale is assumed to be very large
(�1 TeV) but clearly it is also unknown. To render the scalar
and pseudoscalar matrix elements renormalization-scale in-
variant, the quark masses m f in the definition of the respective
operators has been explicitly included [15]. Note that we have
limited ourselves to consider interactions even under parity
and charge conjugation. The theory can be readily generalized
to treat other cases, as the inclusion of parity and/or charge
conjugation violating terms, or the cases of either the WIMP
being a scalar or a Majorana fermion [8,16]. These cases will
be considered in a forthcoming paper.

Since we are interested to interaction of the WIMP with
nuclei, so usually we can limit ourselves to include in the sum
in Eq. (9) only the quarks u and d , but in case of the axial term
we will include also the quark s (see below).

For the sake of simplicity, in the following we will define

CX
±

�2
S

= 1

�3

(
CX

u mu ± CX
d md

2

)
, X = S, P (10)

and

CX
±

�2
S

= 1

�2

(
CX

u ± CX
d

2

)
, X = V, A, T, (11)

where the new parameter �S is inserted only for dimensional
reasons. Hereafter, we have taken �S = 1 GeV. Adding the

Lagrangian Lχ to the QCD Lagrangian, the resultant La-
grangian can be cast in the form given in Eq. (1), where

s(x) = M − 1

�2
S

(CS
+ + CS

−τz )χ̄χ, (12)

p(x) = 1

�2
S

(CP
+ + CP

−τz )χ̄ iγ5χ, (13)

1

3
vs

μ(x) = 1

�2
S

CV
+χ̄γ μχ, (14)

vμ(x) = 1

�2
S

CV
−τzχ̄γ μχ, (15)

tμν (x) = 1

�2
S

(CT
+ + CT

−τz )χ̄σμνχ, (16)

where in the scalar current s(x) we have included also the
quark mass term. Note that above we have not considered the
axial coupling. This case will be treated in the next subsection.

Axial current

Taking into account also the quark s, the field q(x) becomes

q(x) =
⎛
⎝u(x)

d (x)
s(x)

⎞
⎠. (17)

Using the chiral limit (the masses of the quarks u, d and
s zero), we can find a relation between one of the currents
conserved in SU(3) and the isoscalar axial term. One has

〈N |ūγμγ 5u + d̄γμγ 5d|N〉 → 〈N |A(8)
μ |N〉, (18)

where the current A(8)
μ is [12]

A(8)
μ = ūγμγ 5u + d̄γμγ 5d − 2s̄γμγ 5s =

√
3q̄γμγ 5λ8q,

(19)

and λ8 is the Gell-Mann matrix

λ8 = 1√
3

⎛
⎝1 0 0

0 1 0
0 0 −2

⎞
⎠. (20)

Equation (18) is valid in the hypothesis that the content of the
strange quark in the nucleon vanishes,

〈N |s̄γμγ 5s|N〉 = 0. (21)

With these premises, we can rewrite the axial current part of
the Lagrangian (9) in the SU(3) space as,

Laxial
q =

∑
i

αA
i q̄γμγ 5λiqχ̄γ μγ 5χ, (22)

where the constants αA
i are zero except

αA
3 = 1

�2

(
CA

u − CA
d

2

)
≡ CA

−
�2

S

, (23)

αA
8 =

√
3

1

�2

(
CA

u + CA
d

2

)
≡

√
3

CA
+

�2
S

, (24)
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and the Gell-Mann matrix λ3 is the SU(3) extension of τz,

λ3 =
⎛
⎝1 0 0

0 −1 0
0 0 0

⎞
⎠. (25)

In the following we define the SU(3) external axial current
to be

aμ =
∑

i

a(i)
μ λi =

∑
i

αA
i χ̄γμγ 5χλi, (26)

where only a(3)
μ and a(8)

μ are nonvanishing.

III. WIMP-NUCLEON INTERACTIONS

We use the EFT framework to write the WIMP-nucleon
interaction and compute the transition amplitudes using the
χPT. The nucleon-WIMP interaction terms will be obtained
from the WIMP-quark Lagrangian given in Eq. (9) using the
standard procedure [36].

We have examined all possible WIMP-quark vertex types:
scalar, pseudoscalar, vector, axial, and tensor. Now, within the
framework of χEFT, for each case, the interaction vertices
between nucleon and WIMP are derived. Among them, we
will take into account only the dominant ones and they will be
used to get the effective Hamiltonian. A fairly self-contained
summary of this derivation is provided in Appendix A for
completeness. Here we report a summary of the Lagrangian
terms taken into account:

LS
int = −8Bcc1

CS
+

�2
S

N̄N χ̄χ − 4Bcc5
CS

−
�2

S

N̄τzN χ̄χ

+ Bc
CS

+
�2

S

χ̄χπ2, (27)

LP
int = 2 fπBc

CP
−

�2
S

χ̄ iγ 5χπz

− 2Bc
CP

+
�2

S

(d18 + 2d19)N̄γ μγ 5N ∂μ(χ̄ iγ 5χ )

− 2Bc
CP

−
�2

S

d18N̄γ μγ 5τzN ∂μ(χ̄ iγ 5χ ), (28)

LV
int = iN̄γ μ

(
μ − iv(s)

μ

)
N + c6

8M
N̄σμνF+

μνN

+ c7

4M
N̄σμνF (s)

μν N + f 2
π

2
〈∂μU †(iUvμ − ivμU )〉,

(29)

LA
int = (D + F )N̄γ μγ 5τzNa(3)

μ + (3F − D)N̄γ μγ 5N
a(8)

μ√
3

− 2 fπ∂μπza
(3)
μ + 1

fπ
N̄γ μ(�τ × �π )zNa(3)

μ , (30)

LT
int = N̄σμν

1

�2
S

(4c̃1C
T
+ + 2c̃2C

T
−τz )N χ̄σμνχ, (31)

where N (x) is the isodoublet of nucleon fields, �π (x) the
triplet of pion fields, χ the WIMP field, μ = 1

2 [u†∂μu +
u∂μu† − iu†vμu − iuvμu†], F (s)

μν = ∂μv(s)
ν − ∂νv

(s)
μ , Fμν =

∂μvν − ∂νvμ, M the nucleon mass, fπ the pion decay constant
and Bc, c1, c5, c6, c7, d18, d19, F, D, c̃1, c̃2 are LECs.

Then, the amplitude for the elastic scattering of a WIMP
by a two nucleon system is obtained using the time-ordered
perturbation theory (TOPT) method [32]. It is given as a sum
of TOPT diagrams. Finally, we will make a nonrelativistic
expansion of the amplitude in power of Q/M ≈ Q/�χ . Using
the naive counting rule, each term will be characterized by a
chiral “order” Qν , where ν is an integer number. The terms
with the lowest value of ν = νmin are denoted as the leading
order (LO) terms, those with ν = νmin + 1 as the next-to-
leading order (NLO) terms, etc. In this study, we will consider
contributions up to N2LO.

The amplitude for the scatter of a WIMP by a two-nucleon
system has the following general form:

Tf i =
{

1

�

(
J (1)
α1,α

′
1
δp′

1+k′,p1+kδα′
2,α2 + J (1)

α2,α
′
2
δp′

2+k′,p2+kδα′
1,α1

)

+ 1

�2
J (2)
α1,α

′
1,α2,α

′
2
δk1+k2,k−k′

}
· Lk′r′,kr, (32)

where � is the normalization volume, for the sake of simplic-
ity, in the following we will take � = 1, and αi ≡ {pi, si, ti}
indicate the state of nucleon i (si and ti are the z projections
of the spin and isospin, respectively). Here the initial (final)
state of the WIMP is specified by a momentum k (k′) and
spin projection r (r′). The initial (final) state of the nucleon i
is identified by the quantum numbers αi (α′

i). The masses of
the pion, the nucleon, and the WIMP will be denoted as mπ ,
M, and Mχ , respectively. Moreover, we define ki = p′

i − pi,
K i = (pi + p′

i )/2, q = k − k′, and Q = (k + k′)/2. Clearly q
is the momentum transferred by the WIMP to the two nucleon
systems. In the following J (1) (J (2)) is the so-called one-body
(two-body) current, while L is the so-called WIMP current. To
determine eventual three-body transition currents, one should
consider the interaction of the WIMP with a three-nucleon
system. However, we will neglect this latter contribution. Note
that for the vector and axial interaction J (1,2) and L are four
vectors, so in Eq. (32) J (1,2) · L ≡ J (1,2)

μ Lμ, while in the tensor
case all quantities are four tensors, so J (1,2) · L ≡ J (1,2)

μ,ν Lμ,ν ,
etc. Both nuclear currents J (1,2) and L will be constructed at
N2LO, independently of each other (except for some cases).
We refer to the Appendix A for all details of the calculation
on the five examined interaction cases and for the values of
the LECs used in this work.

IV. THE INTERACTION RATE

Let us now calculate the cross-section for the elastic scat-
tering between a nucleus and the WIMP. The initial state i is
the state with an incoming WIMP of momentum k and nucleus
at rest in the laboratory. The energy of this initial state is

Ei = MA + Mχ + k2

2Mχ

, (33)

where MA is the nucleus mass, Mχ the WIMP mass and
k = |k| is the absolute value of the initial WIMP momentum.
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The final state f has energy

E f = MA + P′2
A

2MA
+ Mχ + k′2

2Mχ

, (34)

where we have indicated with k′ = |k′| the absolute value
of the final WIMP momentum and with P′

A = |P′
A| that of

the nucleus. The nonpolarized cross section for this process
is calculated from Fermi golden rule, by mediating over the
initial polarizations and summing over the final ones,

σ f i = 2π

2(2JA + 1)

∑
r′r

∑
s′

AsA

∑
k′

∑
P′

A

1

v
δk,P′

A+k′

× |Tf i|2δ
(

k2

2Mχ

− P′2
A

2MA
− k′2

2Mχ

)
, (35)

where JA is the spin of the target nuclei and the Kronecker
delta in Eq. (35) fixes the final momentum of the WIMP to
be k′ = k − P′

A, thus eliminating the sum over k′. Moreover,
v = k/Mχ is the velocity of the incoming WIMP.

We are going to compute the matrix elements Tf i using
the nucleus wave function �

JA,sA
A calculated in r-space (sA is

the z component of the nuclear spin, which can assume the
values −JA, . . . ,+JA). For that reason, we need to express the
currents in configuration space. In general, we can write

Tf i =
∑

X=S,P,V,A,T

∑
a=±

CX
a

�2
S

×
∫

eiq·x〈�JA,s′
A

A

∣∣JXa
c (x)

∣∣�JA,sA
A

〉
(LXa )cdx, (36)

where we have put in evidence the WIMP coupling constants.
Above c is an index which runs over the (eventual) Lorentz
indices of the currents for the case X , namely it takes into
account if the currents are scalar, four-vector, or four-tensor
quantities. The r-space currents JXa

c (x) can be expressed as

JXa
c (x) =

∑
i=1,A

JXa,(1)
c (i)δ(x − r̃i ) +

∑
i< j

JXa,(2)
c (i, j)δ(x − R̃i j ),

(37)

where here the indexes i and j runs over the nucleons and
R̃i j = (r̃i + r̃ j )/2. Note that in the previous expression r̃i ≡
ri − RCM, where RCM is the position of the nucleus center
of mass (CM). The quantities JXa,(1)

c and JXa,(2)
c are written

in terms of operators which act on the nucleonic degrees of
freedom (as r̃i, σi, ∇i, etc). The dependence on RCM has been
already integrated out to obtain the momentum conservation
delta in Eq. (35). The quantities JXa,(1)

i and JXa,(2)
i j are related to

the Fourier transforms of the one- and two-body currents de-
scribed in Appendix A. These Fourier transforms are obtained
without applying any cutoff in the momentum integrals. Note
that the WIMP currents (LXa )c are exactly those reported in
Appendix A. It is convenient now to perform a multipolar
expansion of the matrix elements. For simplicity, hereafter
we will concentrate in the case where only a single coupling
constant CX

a is different from zero. For the vector and axial

cases, the multipolar expression is given by

〈
�

JA,s′
A

A

∣∣ ∫ eiq·xJXa
μ (x)(LXa )μdx

∣∣�JA,sA
A

〉

= (−1)JA−sA

( ∞∑
l�0

l∑
m=−l

ilDl
m,0(ϕ, θ,−ϕ)

√
4π

× (JAs′
AJA − sA|lm)

{
L0XC

l − LzX
L
l

}

−
∞∑

l=1

l∑
m=−l

∑
λ=±1

ilDl
m,λ(ϕ, θ,−ϕ)

√
2π

× (JAs′
AJA − sA|lm)L−λ

{
λX M

l + X E
l

})
, (38)

where XC
l , X L

l , X E
l , and X M

l are the charge, longitudinal,
electric, and magnetic reduced matrix elements (RMEs), re-
spectively. Above Lz, L±1 are defined with respect to a
reference system with ẑ = q̂. The corresponding expressions
for the scalar and pseudoscalar cases are obtained by retaining
the charge RMEs only, while for the tensor case the longitudi-
nal, electric and magnetic RMEs only. Above θ and ϕ are the
spherical angles of q with respect to the laboratory system (to
be specified later).

Now, using the properties

∑
sAs′

A

(JAs′
AJA − sA|lm)(JAs′

AJA − sA|l ′m′) = δl ′lδm′m, (39)

∑
m

Dl
m,λDl ∗

m,λ′ = δλ,λ′ , (40)

we obtain

1dσ f i = π

2JA + 1

(
CX

a

)2

�4
S

∑
r′r

∑
P′

A

δ

(
k · P′

A

Mχ

− P′
A

2

2μ

)
1

v

×
{

(4π )
∑
l�0

[
L0L0

∗∣∣XC
l

∣∣2 + LzLz
∗∣∣X L

l

∣∣2
− 2L0Lz

∗ Re
(
XC

l X L
l

∗)]
+ (4π )

∑
l�1

L1L∗
1

(∣∣X M
l

∣∣2 + ∣∣X E
l

∣∣2)}, (41)

where we used the fact that L0L∗
z = L∗

0Lz and L−1L∗
−1 =

L+1L∗
+1. Above, μ is the reduced mass of the WIMP-nucleus

system.
The RMEs are calculated evaluating the matrix elements

in a coordinate system where q is along z (so that θ = ϕ = 0),
and then reversing Eq. (38). Once the various RMEs have been
determined, they can be used in Eq. (38) to obtain the matrix
elements for a generic direction of the momentum transfer q̂.
From Eq. (41), in the continuous limit � → ∞ the sum on P′

A
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transforms in an integral, then

d2σ

dE ′
AdP̂′

A

= π

(2JA + 1)(2π )3

(
CX

a

)2

�4
S

∑
r′r

MA δ

(
v · P̂

′
A − P′

A

2μ

)

· 1

v

{
(4π )

∑
l�0

[
L0L0

∗∣∣XC
l

∣∣2 + LzLz
∗∣∣X L

l

∣∣2

− 2L0Lz
∗ Re

(
XC

l X L
l

∗)]

+ (4π )
∑
l�1

L1L∗
1

(∣∣X M
l

∣∣2 + ∣∣X E
l

∣∣2)}, (42)

where E ′
A = P′2

A /2MA is the recoiling nucleus kinetic energy.
The double-differential rate of interactions per second in-

duced by the WIMP will be given by [37],

d2R

dE ′
AdP̂′

A

= NχNA

∫
d3v v f (v)

d2σ

dE ′
AdP̂′

A

, (43)

where NA is the number of nuclei in the target, Nχ the nu-
merical density of WIMPs, and f (v) the velocity distribution
for the incoming WIMP. We assume the standard halo model
(SHM) [6,37], i.e., a Maxwell-Boltzmann WIMP velocity dis-
tribution of width σv ,

f (v) = 1√(
2πσ 2

v

)3
e− 1

2 ( v+V
σv

)2
, (44)

where V is the earth velocity relative to galactic center.
It is now necessary to compute the factors

∑
r′r LiL∗

j with
i, j = 0, z, λ in Eq. (42). To do this we will need to consider
explicitly the form of the currents obtained for each type of
interaction; however we will give here the most general result:

1

2

∑
r′r

LiL
∗
j = a + b · u + cu2 + (d · u)2 + O(u3), (45)

where a, b, c, and d are parameters depending only on q, V ,
and Mχ , and u = v + V . In the expression above we have
used the fact that u ≈ k/Mχ � 1. Therefore, substituting the
expression given in Eq. (45) into Eqs. (42) and (43), we find
that we have to evaluate the following integrals (the so-called
Radon transform):

I (a, b, c, d ) =
∫

d3u
e
− u2

2σ2
v√(

2πσ 2
v

)3
(a + b · u + cu2 + (d · u)2)δ(u · q̂ − A)

= e
− A2

2σ2
v√

2πσ 2
v

(
a + b · q̂A + 2cσ 2

v + cA2 + d2σ 2
v − (d · q̂)2

(
σ 2

v − A2
))

, (46)

where we used the condition P′
A = q and called A = V · q̂ +

q
2μ

.
Finally, the general expression of the interaction rate when

only one coupling constant CX
a is different from zero is

d2R

dE ′
AdP̂′

A

= NχNAMA

(2JA + 1)π

(
CX

a

)2

�4
S

∑
α=1,4

F X
α (q)IX

α , (47)

where

F X
1 (q) =

∑
l

∣∣XC
l

∣∣2, (48)

F X
2 (q) = −

∑
l

2 Re
(
XC

l X L
l

∗), (49)

F X
3 (q) =

∑
l

∣∣X L
l

∣∣2, (50)

F X
4 (q) =

∑
l

(∣∣X M
l

∣∣2 + ∣∣X E
l

∣∣2) (51)

are the nuclear structure functions and Iα the quantities calcu-
lated in Eq. (46) for each case. For the scalar and pseudoscalar
cases, we can assume F2,3,4 = 0, while, for the tensor case,
F1 = F2 = 0. Actually, for the tensor case, we have the con-
tributions of currents JA and JB, the first given by Ji j ≡ εi jl Jl

A
and the second given by J0i ≡ Ji

B; see Eqs. (A87) and (A88).

Correspondingly, two set of RMEs are calculated, X L,M,E
l (A)

and X L,M,E
l (B). The expression of the rate in this case reads

d2R

dE ′
AdP̂′

A

= NχNAMA

(2JA + 1)π

(
CT

a

)2

�4
S

∑
α=3,4

4
[
F T,A

α (q)IT,A
α

+ F T,B
α (q)IT,B

α + 2F T,AB
α (q)IT,AB

α

]
, (52)

where

F T,A
3 (q) =

∑
l

∣∣X L
l (A)

∣∣2, (53)

F T,B
3 (q) =

∑
l

∣∣X L
l (B)

∣∣2, (54)

F T,AB
3 (q) = 0, (55)

F T,A
4 (q) =

∑
l

(∣∣X M
l (A)

∣∣2 + ∣∣X E
l (A)

∣∣2), (56)

F T,B
4 (q) =

∑
l

(∣∣X M
l (B)

∣∣2 + ∣∣X E
l (B)

∣∣2), (57)

F T,AB
4 (q) =

∑
l

Im
[
X E

l (A)X M
l (B)∗ + X M

l (A)X E
l (B)∗

]
. (58)
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TABLE I. The RMEs XC
l , X L

l , X E
l , and X M

l contributing to DM scattering off deuterons calculated for two widely used NN interactions,
the AV18 [38] and N4LO500 [39] potentials. Here q = 0.05 fm−1. In the fourth column, we report the order of the transition operator. Since
the deuteron has zero isospin, only the RMEs of the isoscalar operators are reported. For the S and V (P, A, and T) cases, XC , X L , and X E are
purely real (imaginary), while X M are purely imaginary (real). The notation X ± Y is a shortcut for X 10±Y . The equation numbers reported in
the third column specify the operators from which these RMEs are calculated, as reported in detail in Appendix A.

Int. RME Operator Order AV18 N4LO500

S l = 0 l = 1 l = 2 l = 0 l = 1 l = 2
XC

l Eq. (A14) LO −0.144 + 02 −0.229 − 02 −0.144 + 02 −0.231 − 02
Eq. (A19) NLO −0.218 + 00 +0.328 − 03 −0.806 − 01 +0.336 − 03
Eq. (A16) N2LO +0.153 + 00 −0.467 − 05 +0.103 + 00 −0.829 − 05

P l = 0 l = 1 l = 2 l = 0 l = 1 l = 2
XC

l Eq. (A28) N2LO −0.367 − 01 −0.377 − 01

V l = 0 l = 1 l = 2 l = 0 l = 1 l = 2
XC

l Eq. (A49) LO −0.293 + 01 −0.465 − 03 −0.293 + 01 −0.470 − 03
Eq. (A50) N2LO +0.289 − 04 +0.320 − 05 +0.294 − 04 +0.320 − 05

X L
l Eq. (A51) NLO −0.769 − 02 −0.120 − 05 −0.769 − 02 −0.120 − 05

X M
l Eq. (A51) NLO −0.150 − 01 −0.152 − 01

A l = 0 l = 1 l = 2 l = 0 l = 1 l = 2
XC

l Eq. (A69) NLO +0.593 − 03 +0.609 − 03
X L

l Eq. (A70) LO +0.226 + 00 +0.232 + 00
X L

l Eq. (A71) N2LO −0.469 − 03 −0.781 − 03
X E

l Eq. (A70) LO −0.319 + 00 −0.328 + 00
X E

l Eq. (A71) N2LO +0.660 − 03 +0.110 − 02

T l = 0 l = 1 l = 2 l = 0 l = 1 l = 2
X L

l (A) Eq. (A90) LO −0.422 + 00 −0.433 + 00
X L

l (B) Eq. (A93) NLO −0.280 − 02 −0.290 − 03 −0.285 − 02 −0.314 − 03
X L

l (A) Eq. (A91) N2LO +0.875 − 03 +0.687 − 03
X E

l (A) Eq. (A90) LO +0.597 + 00 +0.613 + 00
X M

l (B) Eq. (A93) NLO +0.157 − 02 +0.161 − 02
X E

l (A) Eq. (A91) N2LO −0.124 − 03 −0.978 − 03

Note the extra factor 4 in Eq. (52), coming from the evalu-
ation of JμνLμν and the presence of interference terms. The
expressions of all quantities IX

α are reported in Appendix B.

V. RESULTS

In this section, we report the results of the calculation
of the various quantities for the deuteron-DM and 4He-DM
scattering.

A. Deuteron-DM scattering

Since the deuteron has spin 1, then in the matrix elements
JA = 1. Consequently, we can have RMEs of multipoles l =
0, 1, 2. However, due to the well-defined parity of the nuclear
ground state and of the multipolar transition operators, some
of the multipoles vanish. In Table I we report the nonvanishing
RMEs for the various cases and the various chiral orders. The
deuteron ground state wave functions have been calculated
using the Argonne V18 (AV18) potential [38] and a chiral
potential developed at next-to-next-to-next-to-next-to-leading
order (N4LO) in Ref. [39]. There are three versions of such
a potential, depending on the cutoff used to regularize it for
large momenta. In Table I, we have used the potential reg-
ularized with cutoff of 500 MeV, hereafter denoted as the
N4LO500 potential.

As it can be seen by inspecting the table, the LO transition
operators give the largest RMEs. The dependence of these
RMEs from the nuclear interaction is rather weak. The RMEs
coming from NLO and N2LO operators are noticeably sup-
pressed, although their dependence on the nuclear interaction
is more sizable. In any case, in the S, V, A, and T cases,
the cumulative RMEs are dominated by the LO contributions,
and therefore almost no dependence on the interaction is
observed. In the P case, the only contribution comes from a
N2LO operator, but the dependence on the NN interaction is
still weak. For the scalar case, we have also calculated the
RME coming from the operator given in Eq. (A17), which,
for the AV18 interaction, turns out to be 1.922 × 10−2, much
smaller than the LO, NLO, and N2LO values reported in
Table I. Therefore, also numerically, we have the confir-
mation that the contribution of this operator can be safely
neglected.

In Fig. 1, the various deuteron form factors calculated with
the AV18 potential and the transition currents at LO, NLO,
and N2LO are shown. The form factors are calculated for q
values up to q = 0.2 fm−1 (corresponding to deuterons recoil-
ing with an energy of q2/2M2 ≈ 390 keV). As it can be seen
from this figure, the effect of the NLO and N2LO components
in the transition operators are rather tiny, confirming what was
shown in Table I for the RMEs at q = 0.05 fm−1. In the V
case the dominant form factor is F1, while in the A case the
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FIG. 1. The cumulative deuteron form factors for the various
cases calculated with the AV18 potential [38]. Black dashed, solid
red, and solid green denote the form factors calculated at LO, NLO,
and N2LO, respectively.

dominant ones are F3 and F4. For the T case, the dominant
form factors are F A

3 and F A
4 .

In Fig. 2 we report the same form factors calculated
with the N4LO450, N4LO500, and N4LO550 NN interac-
tions [39]. The N4LO450 and N4LO550 are NN potentials
derived at N4LO in the framework of χEFT, but regularized at
large momenta with cutoff 450 and 550 MeV, respectively. In
all cases, we have used the full transition currents up to N2LO
operators. All the results are shown as bands (some of them
very narrow), their widths reflecting the spread of theoretical
results using the three different cutoff values. Therefore, the
band width reflects our incomplete knowledge of the nuclear
dynamics and gives a first estimate of the associated theoreti-
cal uncertainty. Strictly speaking, such a procedure yields only
a lower bound on the theoretical uncertainty [40]. In future,
we plan to perform a better estimate of such a theoretical
uncertainty, in particular, using the calculations performed
with the interactions and transition currents at various chiral
orders and using the Bayesian procedure of Refs. [41–43].
At present we limit ourselves to noting that the band widths
are rather narrow, so this theoretical uncertainty seems to
be well under control in this kinematic regime of low q
values.

In Fig. 3 we report the numbers of scattered deuterons
per day as function of the angle between V and P′

d by a
100 ton target of deuterium, per unit of energy (keV) and
solid angle (sr). This quantity is calculated from Eq. (47)
multiplying by the number of seconds in a day. For all cases
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FIG. 2. The deuteron form factors for the various cases calcu-
lated with the N4LO chiral potentials [39]. The results are presented
as bands; all the calculations are performed including the transition
operators up to N2LO.

we have taken Mχ = 10 GeV and CX
+ = 10−4 for the sake

of comparison. Moreover, we have assumed NA ≈ 3 × 1031

and Nχ = 6 × 10−2 cm−3 (calculated from the estimated local
energy density of DM, ρχ = 0.3 GeV cm−3 [6]). Several
observations are in order: (1) there is a large dependence
on the angle θ = cos−1(V̂ · P̂

′
d ), coming from the quantity

A in the exponential in Eq. (46). The rates are peaked at
θ = 180 deg since a terrestrial target moves with average
velocity V in the (supposed) WIMP cloud: in the laboratory
most of the scattered deuterons would be observed to recoil in
the direction −V . (2) The number of events also depends crit-
ically on the kinetic energy of the detected recoiling deuteron,
smaller being better. (3) It also depends on the DM-quark
interaction type, assuming the same coupling constant CX

+ ,
X = S,P,V,A,T; the largest number of events would corre-
spond to a scalar coupling between WIMP and quarks; such
a type of interactions is already severely constrained by the
existing limits provided by the experiments. (4) The results
shown in the figure are actually bands; the bands gather the
rates calculated with the N4LO450, N4LO500, and N4LO550
NN interactions and, for each interaction, those obtained with
transition currents from LO to N2LO; therefore each band in-
cludes the results of nine different calculations (for the P case,
three calculations); due to the figure scale, the width of the
bands cannot be well appreciated, and this is a confirmation
that the results weakly depend on the NN interaction and that
the LO transition operators give the dominant contribution.
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FIG. 3. The number of scattered deuterons per day as function of the angle between V and P′
d by a 100 ton target of deuterium, per unit of

energy (keV) and solid angle (sr). For all cases we have taken Mχ = 10 GeV and CX
+ = 10−4 for the sake of comparison. The left (right) panel

reports the number of events for scattered deuterons of recoil energy 30 (50) keV. All the results are presented as (very narrow) bands (see the
main text for more detail).

(5) We note that the number of events for the P case increases
relatively to the other cases at E ′

d = 50 keV. This is due to the
fact that the RME for the P case increases as q2, while for the
other cases the dominant RMEs are only weakly dependent
on q.

Finally, in Fig. 4 we report the number of events for the
S-type interaction for three different values of the WIMP
mass Mχ . Clearly, for lighter WIMPs, the recoil deuterons
at a given energy decrease noticeably. This dependence on
the WIMP mass is particularly critical for light WIMPs, with
mass around 1 to 10 GeV. For mass greater than 10 GeV the
dependence is less relevant.

B. 4He-DM scattering

In the case of the scattering off the 4He nucleus, which
has spin 0, only the multipoles with l = 0 contribute. Dis-
regarding the very tiny components with negative parity of
their wave function, we are left with XC

0 and X L
0 RMEs for

the S, V, and T cases. Furthermore, we disregard the RMEs of
the isovector operators, since the 4He wave function is with
a very good approximation of an almost pure state of total
isospin T = 0. In Table II we report the calculated RMEs at
q = 0.05 fm−1. The 4He wave functions have been obtained
using two interactions: the first is given by the AV18 NN
potential augmented by the Urbana IX (UIX) three-nucleon
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FIG. 4. The number of scattered deuterons per day as function of the angle between V and P′
d by a 100 ton target of deuterium, per unit of

energy (keV) and solid angle (sr), for three different values of the WIMP mass Mχ . Here we have considered the S interaction with CS
+ = 10−4.

The left (right) panel reports the number of events for scattered deuterons of recoil energy 30 (50) keV. All the results are presented as (very
narrow) bands (see the main text for more detail).
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TABLE II. The RMEs XC
0 and X L

0 contributing to DM scattering
off 4He calculated for AV18/UIX and N4LO/N2LO500 interactions
(see the main text for details). Here q = 0.05 fm−1. In the fourth
column, we report the order of the transition operator. Since 4He has
predominantly zero isospin, only the RMEs of the isoscalar operators
are reported. For the S and V (T) cases, XC and X L are predominantly
real (imaginary), and therefore we have reported only those parts. As
in Table I, the equation numbers reported in the third column specify
the operators from which these RMEs are calculated, as reported in
detail in Appendix A.

Int. RME Operator Order AV18/UIX N4LO/N2LO500

S l = 0 l = 0
XC

l Eq. (A14) LO −0.169 + 02 −0.168 + 02
Eq. (A19) NLO −0.273 + 00 +0.144 + 00
Eq. (A16) N2LO +0.521 + 00 +0.313 + 00

V l = 0 l = 0
XC

l Eq. (A49) LO −0.343 + 01 −0.341 + 01
Eq. (A50) N2LO +0.325 − 04 +0.336 − 04

X L
l Eq. (A51) NLO −0.444 − 02 −0.438 − 02

T l = 0 l = 0
X L

l (B) Eq. (A93) NLO −0.315 − 02 −0.325 − 02

(3N) interaction [44]; the second is given by the N4LO500
NN potential augmented by a N2LO 3N interaction, derived
in the framework of χEFT [45]. The two free parameters
in this N2LO 3N potential, usually denoted as cD and cE ,
have been fixed in order to reproduce the experimental values
of the A = 3 binding energies and the Gamow-Teller matrix
element (GTME) of the tritium β decay [46,47]. These pa-
rameters have been determined in Ref. [48]. The cutoff in
this 3N interaction has been chosen to be consistent with the
corresponding value of the NN interaction, therefore the full
NN interaction will be denoted as N4LO/N2LO500. With
both interactions, AV18/UIX and N4LO/N2LO500, the ex-
perimental 4He binding energy is well reproduced.

In Fig. 5, the various 4He form factors calculated for q
values up to q = 0.2 fm−1 with the AV18 potential and the
transition currents at LO, NLO, and N2LO are shown. For
q = 0.2 fm−1, the 4He recoil energies are q2/2M4 ≈ 195 keV.
As can be seen from this figure, for the S case, the effect of
the NLO and N2LO components in the transition operators are
more sizable, while in the V case they are rather tiny. The only
contribution for the T case now comes from a NLO transition
current, therefore the only nonvanishing form factor, F 3,B(q),
is very small and varying as q2. We expect therefore that the
rate for the T case to depend noticeably on the 4He recoil
energy.

In Fig. 6 we report the same form factors calcu-
lated with the N4LO/N2LO450, N4LO/N2LO500, and
N4LO/N2LO550 NN interactions (as specified, for each
N4LO NN interaction we have added the N2LO 3N interac-
tion regularized with the same cutoff). As for the deuteron
case, we have used the transition currents up to N2LO and
the results are shown as band (some of them very narrow),
their widths reflecting the spread of theoretical results using
� = 450, 500, or 550 MeV cutoff values. The width for the
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FIG. 5. The same as Fig. 1 but for 4He.

S case is sizable, while for all other cases they are practically
negligible.

In Fig. 7 we report the numbers of scattered 4He per day
as function of the angle between V and P′

d by a 100 ton target
of 4He, per unit of energy (keV) and solid angle (sr). For all
cases we have taken Mχ = 10 GeV and CX

+ = 10−4 for the
sake of comparison. Now, NA ≈ 3 × 1031, while we have kept
Nχ = 6 × 10−2 cm−3. A similar behavior is observed as in
Fig. 3, with the only difference being that now the rate for
the T case is suppressed, due to the previously discussed very
small size of the (only contributing) form factor F 3,B(q). In
this figure, we have also reported the number of scattered 4He
per day due to the background neutrino flux of atmospheric
origin; see Sec. V C for more details. Furthermore, a compari-
son between the rates for deuteron and 4He is shown in Fig 8.

C. Rate for ν- 4He scattering

An important background for DM experiments is that
given by the nuclear recoils due to the flux of neutrinos.
These neutrinos may have different origins. For nuclear re-
coils in the range 30–50 keV the most important flux is
due to atmospheric neutrinos [49]. The differential cross-
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FIG. 6. The same as Fig. 2 but for 4He.

section for ν- 4He can be calculated starting from the effective
Lagrangians

L = − GV√
2

j�μJμ
N , (59)

where GV is the Fermi constant, j�μ = ψνγμ(1 − γ 5)ψν the
leptonic neutrino current, and Jμ

N the neutral nuclear current.
The latter quantity can be obtained using the χEFT approach,
following the same lines detailed in this paper. In the present
paper, we consider the neutral weak current derived at N4LO
in Refs [32,50,51]. The differential ν- 4He cross section is
given by

d2σ

dE ′
4d�4

= G2
V

π
P′

4M4[(1 + k̂ · k̂′)|C0|2

+ (1 − k̂ · k̂′ + 2k̂ · q̂k̂′ · q̂)|L0|2
− (k̂ · q̂ + k̂′ · q̂)2 Re(C0L∗

0 )]δ(k − E ′
4 − k′),

(60)

TABLE III. Minimal values of the Wilson coefficients CX
+ so that

the rate of recoiling 4He nuclei with kinetic energy T due to DM be
greater than that due to the neutrino scattering. The calculations have
been performed using the N4LO/N2LO500 potential. Here we have
considered Mχ = 10 GeV.

T (keV) CS
+ CV

+ CT
+

30 4.5 × 10−13 2.1 × 10−12 7.0 × 10−7

50 1.6 × 10−7 7.7 × 10−7 1.7 × 10−1

where k (k′) is the incoming (outgoing) neutrino momentum,
while E ′

4 and P′
4 = k − k′ ≡ q the kinetic energy and momen-

tum of the recoiling 4He nucleus. Moreover, C0 and L0 are the
RMEs calculated from the matrix elements 〈�4|Jμ

N |�4〉. The
factors multiplying the combinations of RMEs comes from
the traces of the lepton currents over the neutrino spins. The
energy conservation imposes that k · P′

4 = T (k + M4), where
hereafter T = E ′

4. Typically the neutrino energies are in the
range of MeV, while T ≈ keV. So, disregarding all terms
proportional to T/k and integrating over �′

4, one obtains the
typical cross section for neutrino-nucleus scattering [49]

dσ

dT
= G2

V

4π
M4Q2

W

(
1 − T M4

2k2

)
FW (q), (61)

where FW (q)=4π |C0|2/(Q2
W /4), and QW =2(1− 4 sin2 θW )−

2 is the 4He “weak charge” [in this way FW (0) ≈ 1]. Above
θW is the Weinberg angle, sin2 θW ≈ 0.223.

The flux of atmospheric neutrinos is nearly isotropic, peaks
at k = k0 ≈ 30 MeV, and at k = 103 MeV is reduced by a
factor 100 [49,52]. Then, the rate of 4He recoils due to the
flux of atmospheric neutrinos is given by

d2R

dT d�′
A

= NA

∫
dk̂

4π
dk

dφ(k)

dk

d2σ

dT d�′
4

, (62)

where N4 is the number of 4He nuclei in the target (we
assume as before to have a 100 ton target). Moreover, we
approximate dφ(k)/dk ≈ φ0 exp[−(k − k0)2/(2σν )2], where
φ0 ≈ 10−2 cm−2MeV−1s−1 [49] and σν = 226 MeV, so that
dφ(103 MeV)/dk = 10−2φ0. Note that the uncertainty on this
atmospheric neutrino flux is approximately 20% [49], there-
fore the rates calculated in the following have to be considered
as order-of-magnitude estimates.

The expected number of events due to the atmospheric
neutrinos in a day calculated for T = 30 and 50 keV have
been reported in Fig. 7. This number is clearly isotropic with
respect to the direction of V and it is of order of 10−11 events
per keV and per sr. From this number, we can estimate the
minimal values for the Wilson coefficients CX

+ which can be
measured in an experiment, asking that d2RDM at θ = 180
deg be greater than d2Rν . The obtained results are reported
in Table III.

VI. CONCLUSIONS

In this paper, we have studied the scattering of WIMPs
off some light nuclei. The aim is twofold. First of all, we
have explicitly written down most of the transition currents
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FIG. 7. The same as Fig. 3 but for 4He. The horizontal blue lines denote the number of scattered 4He per day due to the background
neutrino flux of atmospheric origin; see Sec. V C for more details.

for various types of DM-quark interactions, assuming DM is
composed of heavy Dirac particles. The transition currents,
developed up to N2LO in the framework of χEFT, have been
coded in a way to be used for a general nuclear system; for
example, using the shell model approach. Second, we have
set up the calculation directly for the rate of nuclear recoils,
in order to be ready for a direct comparison with (eventual)
experimental yields. We have also set up the calculation of
the rate induced by the flux of terrestrial or cosmological
neutrinos (in particular, atmospheric), calculating the matrix
elements of the nuclear neutral current.

We have performed calculations for two targets composed
either of deuterons or 4He nuclei, the latter nucleus being
actually considered for an experiment [22]. The deuteron has
total isospin T = 0, and also the ground state of 4He can
be well approximated to have total isospin T = 0. Therefore,

only the isoscalar transition currents play a role in these cases.
We have found that the scalar and vector interactions give
large values for the form factor F1, deriving from the matrix
elements of the operator

∑A
j=1 eiq·r̃ j (multiplied by some com-

binations of LECs). These matrix elements for small values
of q are therefore proportional to the number of nucleons A;
they are not difficult to be calculated also for large nuclei.
Clearly, in these cases, the rates would be rather large unless
the corresponding Wilson coefficients CS

+, CV
+ are extremely

small. For other interactions, the rate is found to be suppressed
(in particular, for a purely pseudoscalar quark-DM interac-
tion). In those cases, the form factors derive from the matrix
elements of more complicated operators and therefore sophis-
ticated nuclear structure calculations would be necessary.

Regarding the construction of the nuclear wave functions,
we have limited ourselves to employ the AV18 potential and
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some chiral interactions differing for their cutoff value. In this
way we have explored the dependence of the results on the
nuclear interaction, giving a first idea of the theoretical uncer-
tainty related to our not complete knowledge of this quantity.
In future, we plan to perform more detailed study using
the Bayesian formalism [43]. Regarding the convergence of
the chiral expansion of the transition current, this appears to
be well under control, due to the low q values involved in the
processes.

For the scalar case, for both the deuteron and 4He targets,
we find that the NLO two-body currents modify the LO results
by a few percent only, as found in Ref. [21], and that their
contribution is rather dependent on the nuclear interaction
used to calculate the ground-state wave functions. A similar
result is again observed in Ref. [21], where the effect was
traced back to the dependence on the D-wave percentage of
the wave functions.

In perspective, we plan to apply this formalism to study
the rate of DM scattering off heavier nuclei like argon and
xenon, currently widely used in DM detectors. We plan also to
study other possible types of DM interactions, as direct cou-
plings to photons (for example, L ≈ χσμνχFμν , Fμν being
the electromagnetic field) [53]. The extension of the present
formalism to treat either scalar or Majorana WIMPs is also
possible [8,16].

Finally, in recent years, the idea of light DM has gained
more credit (see, for example, Ref. [4]). The only change in
our formalism is the calculation of the spin sums given in
Eq. (45), which for light DM can be performed directly using
the trace formalism, as for the neutrino case. Therefore, the
present study could be easily extended to treat such a case.
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APPENDIX A: WIMP-NUCLEON INTERACTIONS

1. Scalar interaction

The scalar interaction is characterized by an external cur-
rent s(x). The terms of the chiral Lagrangian containing this
quantity are [36]

LS
int = c1N̄〈ξ+〉N + c5N̄ ξ̂+N

+ f 2
π

4
〈ξ (x)U †(x) + U (x)ξ †(x)〉 + · · · , (A1)

where c1 and c5 are LECs and

ξ+ = u†ξ u† + u ξ †u, (A2)

ξ (x) = 2Bc s(x), (A3)

U (x) = e
i

fπ �π (x)·�τ , (A4)

u(x) =
√

U (x). (A5)

Above Bc is another LEC related to the pion mass value.
In Eq. (A1) 〈· · · 〉 indicates the trace of the matrices, Â =
A − 1

2 〈A〉 and the dots represent higher order terms which are

(a) (c)(b)

FIG. 9. Diagrams contributing to the one- and two-body transi-
tion operators for the scalar case. Solid, dashed, and wiggly lines
represents nucleons, pions, and WIMPs, respectively. Only one time-
ordering of each diagram has been reported.

negligible for our purposes. Explicitly, the WIMP contribu-
tion to the density s(x) is given by Eq (12). Expanding the
Lagrangian (A1) in powers of the pion field and keeping the
terms up to the order O(π2), as will be clear later, we only
need to consider the following Lagrangian terms:

Lint = −8Bcc1
CS

+
�2

S

N̄N χ̄χ − 4Bcc5
CS

−
�2

S

N̄τzN χ̄χ

+ Bc
CS

+
�2

S

χ̄χπ2. (A6)

The interaction Hamiltonian can be obtained from the chiral
Lagrangian density using the procedure described in detail in
Ref. [32]. In most of the cases, the Hamiltonian terms are
simply given by

Hint (x) = −Lint (x), (A7)

but in special cases there are correction terms to be taken into
account.

The WIMP current in this case is given by

Lμ

k′r′,kr
= ūχ

k′r′u
χ

kr, (A8)

where uχ

kr are Dirac four-spinors. Expanding these latter quan-
tities in powers of the momenta, we have

Lk′r′,kr =
(

1 − (k + k′)2

8M2
χ

)
δr,r′ − i(k′ × k) · σr′r

4M2
χ

+ · · · ,

(A9)

where σr′r denotes the matrix element of the Pauli matrices
between the WIMP spin states.

In Fig. 9, the diagrams contributing to the one- and
two-body transition operators for the scalar case have been
reported. The diagram depicted in panel (a) gives a LO
contribution of order Q−3 plus an additional N2LO con-
tribution of order Q−1 coming from the expansion of the
Dirac four-spinors entering the NNWW vertex. The other
two diagrams contribute to NLO. Corrections to these two
diagrams due to the expansion of the Dirac four-spinors and
the energy denominators are at least of order Q0 and therefore
we will neglect them. Considering all contributions up to
N2LO, the one- and two-body and the WIMP currents are
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given by

J (1)
α,α′ =

(
8Bcc1CS

+
�2

S

δt ′t + 4Bcc5CS
−

�2
S

(τz )t ′t

)

·
[(

1 − (p + p′)2

8M2

)
δs,s′ − i(p′ × p) · σs′s

4M2

]

+ CS
+

�2
S

3g2
ABcmπ

32π f 2
π

F

(
q

2mπ

)
δt ′tδs′s, (A10)

J (2)
α1α2,α

′
1,α

′
2
= −CS

+
�2

S

Bc
g2

A

(2 fπ )2

(
2�τ1 · �τ2

ik1 · σ1 ik2 · σ2

ω2
k1
ω2

k2

)
,

(A11)

where σs′s (τt ′t ) is the matrix element of the Pauli matrix
i = x, y, z between nucleon spin (isospin) states. More-
over, hereafter we also use the notation σ1 ≡ (σs′

1,s1 ), ωk =√
m2

π + k2 , etc. Above, F (x) = (2x2+1)arctan(x)+2x
x derives from

the dimensional regularization of the pion loop in panel (c) of
Fig. 9; see Ref. [18] and references therein.

For deuteron and 4He scattering, only the isoscalar part of
the transition current will play a role, so let us write explicitly
its chiral components, order by order. Let us define

J (1)
α,α′,is = CS

+
�2

S

⎡
⎣∑

ν=0,2

J (1),ν
α,α′,is

⎤
⎦, (A12)

where the subscript “’is” specifies that we are considering the
isoscalar part, only. It is also convenient to introduce the so-
called “σ” term [18], defined as σπN = 〈N |q̄q|N〉. In χEFT,
σπN is given by [18]

σπN

mπ

= 4c1mπ + 9πg2
Am2

π

4(4π fπ )2
A

(
q

2mπ

)
+ · · · , (A13)

where the “· · · ” denotes high order terms in χPT and A(x) =
1
3 F (x) − 1. The LO, NLO, and N2LO one-body isoscalar
components can be recast in the form [18]

J (1),0
α,α′,is = 2σπN Bc

m2
π

δs,s′δt,t ′ , (A14)

J (1),1
α,α′,is = 0, (A15)

J (1),2
α,α′,is = 2σπN Bc

m2
π

[
− (p + p′)2

8M2
δs,s′ − i(p′ × p) · σs′s

4M2

]
δt,t ′ .

(A16)

The NLO term coming from the last term of Eq. (A10) has
been absorbed in the definition of σπN , while the rest, propor-
tional to A(x), gives a term which reads

J (1),3
α,α′,is = 9g2

ABcmπ

64π f 2
π

A

(
q

2mπ

)
δs,s′δt,t ′ . (A17)

However, this term is of third order, as A(x) ≈ x2, and
therefore it will be neglected in this work (see also later).
The isoscalar two-body current can be decomposed in the

(a) (b) (c)

FIG. 10. The same as in Fig. 9 but for the pseudoscalar interaction.

same way

J (2)
α1α2,α

′
1,α

′
2,is

= CS
+

�2
S

∑
ν=0,2

J (2),ν
α1α2,α

′
1,α

′
2,is

, (A18)

J (2),1
α1α2,α

′
1,α

′
2,is

= −Bc
g2

A

2 f 2
π

�τ1 · �τ2
ik1 · σ1 ik2 · σ2

ω2
k1
ω2

k2

, (A19)

and clearly J (2),0 = J (2),2 = 0.

2. Pseudoscalar interaction

The pseudoscalar external current p(x), given in Eq. (13),
enters the effective nucleonic Lagrangian through the follow-
ing operators [36]:

ξ = 2iBc p(x), (A20)

ξ± = u†ξ u† ± u ξ †u. (A21)

The interaction Lagrangian is given explicitly as [36]

LP
int = f 2

π

4
〈ξ (x)U †(x) + U (x)ξ †〉 + d18N̄

i

2
γ μγ 5[∂μ, ξ−]N

+ d19N̄
i

2
γ μγ 5[∂μ, 〈ξ−〉]N + · · · . (A22)

Expanding the above Lagrangian in powers of the pion field,
we obtain

LP
int = 2 fπBc

CP
−

�2
S

χ̄ iγ 5χπz

− 2Bc
CP

+
�2

S

(d18 + 2d19)N̄γ μγ 5N ∂μ(χ̄ iγ 5χ )

− 2Bc
CP

−
�2

S

d18N̄γ μγ 5τzN ∂μ(χ̄ iγ 5χ ), (A23)

where d18, d19 are LECs.
The WIMP current in this case is given by

Lk′r′,kr = ūχ

k′r′ iγ
5uχ

kr, (A24)

and, expanding the Dirac four-spinors in powers of the mo-
menta,

Lk′r′,kr = i
σr′r · q
2Mχ

+ · · · . (A25)

We note that Lk′r′,kr is at least of order Q.
The relevant diagrams are reported in Fig. 10. The LO

contribution is given by the diagram depicted in panel (a)
where the WIMP is scattered after absorbing a pion in flight.
It brings a contribution of order Q−3 (hereafter we include in
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the counting one Q coming from Lk′r′,kr), plus corrections at
order Q−1 coming from the expansion of the vertex functions
and energy denominators. However, these latter terms are
neglected here since they correspond to isovector transition
operators, whose contribution vanishes in the deuteron (for
4He the pseudoscalar coupling does not give any contribu-
tion). Here, we keep pseudoscalar isosvector operators at LO
only. The diagram of panel (b) gives again an isovector transi-
tion operator of order Q−1, therefore in this work we neglect
it as well.

The diagram of panel (c) derives from the vertex with the
d18 and d19 LECs. It is of order Q−1, but it has an isoscalar
term, so we take it into account. Other diagrams contribute at
order O(Q0) or higher. The final expression of the transition
density we will consider is therefore

J (1)
α,α′ =

(
2Bc

CP
−

�2
S

d18(τz )t ′t + 2Bc(d18 + 2d19)
CP

+
�2

S

δt ′t

)
iσs′s · q

+ gABc
CP

−
�2

S

(τz )t ′t

ω2
q

iσs′s · q, (A26)

while, as explained above, we neglect the pseudoscalar two-
body current in this study.

The isoscalar part, relevant in this study, is rewritten as

J (1)
α,α′,is = CP

+
�2

S

∑
ν=0,2

J (1),ν
α,α′,is, (A27)

J (1),2
α,α′,is = 2Bc(d18 + 2d19)iσs′s · q δt ′t , (A28)

while J (1),0 = J (1),1 = 0.

3. Vector interaction

In the case of vector interaction, the WIMP field con-
tributes to the quantities v(s)

μ and vμ, entering the following
Lagrangian terms [36]:

LV
int = iN̄γ μ

(
μ − iv(s)

μ

)
N

+ c6

8M
N̄σμνF+

μνN + c7

4M
N̄σμνF (s)

μν N

+ f 2
π

2
〈∂μU †(iUvμ − ivμU )〉 + · · · (A29)

with

μ = 1
2 [u†∂μu + u∂μu† − iu†vμu − iuvμu†], (A30)

F (s)
μν = ∂μv(s)

ν − ∂νv
(s)
μ , (A31)

Fμν = ∂μvν − ∂νvμ. (A32)

Above we have neglected all terms quadratic in vμ because
we suppose that the coupling constants CV ± are very small.
The LECs c6 and c7 are related to the anomalous magnetic
moment of the nucleons. In the present case J (1), J (2), and L
are four-vectors, the chiral order of their “time” and “space”
parts being different. Explicitly, the WIMP current in this case
is given by

Lμ

k′r′,kr
= ūχ

k′r′γ
μuχ

kr, (A33)

(a) (b) (c)

(e)(d)

FIG. 11. The same as in Fig. 9 but for the vector interaction.

which can be expanded up to order Q2 as follows:

(Lk′r′,kr )μ=0 =
[

1 − q2

8M2
χ

]
δr′r + i(k′ × k) · σr′r

4M2
χ

, (A34)

(Lk′r′,kr )μ=i = (k′ + k)i

2Mχ

δr′r + (iq × σr′r )i

2Mχ

, (A35)

for i = x, y, z. It can be seen that (Lk′r′,kr )μ=0 ≈ O(Q0), while
(Lk′r′,kr )μ=i ≈ O(Q).

The relevant diagrams for the vector interaction are re-
ported in Fig. 11. The WIMP-nucleon vertex appearing in
the diagram of panel (a) derives from the interaction terms
reported in the first two lines of Eq. (29). The minimal order
of the “time” component of J (1) associated to this diagram is
≈ Q−3, while the space part is ≈ Q−2.

The diagrams (b) and (c) give the contribution of the one-
pion exchanges. The time part of these diagrams is always
of order Q0. The spatial parts of the corresponding J (1) and
J (2) are of order Q−1, so we take into account them. The
spatial parts of the diagrams in panels (d) and (e) are of order
Q−1, as well. Since they give the first contribution to the form
factors of the nucleon, we include them by inserting the “phe-
nomenological” electric and magnetic form factors GE (q) and
GM (q) in our transition currents. In this way, we take into
account also high order contributions. The final expression of
the transition densities we will consider is(

J (1)
α,α′
)μ=0 = −hV (q)δs′s − [2h̃V (q) − hV (q)]

×
(

− q2

8M2
δs′s + i(p′ × p) · σs′s

4M2

)
, (A36)

(
J (1)
α,α′
)μ=i = −hV (q)

(p + p′)i

2M
+ h̃V (q)

i(q × σs′s)i

2M
, (A37)

and(
J (2)
α1,α

′
1,α2,α

′
2

)μ=0 = 0, (A38)

(
J (2)
α1,α

′
1,α2,α

′
2

)μ=i = gA

2 f 2
π

CV
−

�2
S

(τ1×τ2)z ·
[

k2 · σ2

ω2
2

iσ1+ (1↔ 2)

+ k1 · σ1k2 · σ2

ω2
1ω

2
2

i(k1 − k2)

]
, (A39)
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where as usual i = x, y, z and ωi =
√

m2
π + k2

i , etc. Above we
have introduced

hV (q) = 3CV
+Gs

E (q)δt ′t + CV
−Gv

E (q)(τz )t ′t

�2
S

, (A40)

h̃V (q) = 3CV
+Gs

M (q)δt ′t + CV
−Gv

M (q)(τz )t ′t

�2
S

, (A41)

where Gs
E (q), Gv

E (q), Gs
M (q), and Gv

M (q) are the isoscalar and
isovector electric and magnetic form factors of the nucleons.
They are normalized so that

Gs
E (0) = Gv

E (0) = 1, Gs
M (0) = 1 + κp + κn,

Gv
M (0) = 1 + κp − κn, (A42)

where κp and κn are the anomalous magnetic moments of
the nucleons. In fact, as explained in Appendix A 6 we can
identify c7 = κp + κn and c6 = κp − κn. Some comments are
in order. (1) The correction given by the form factors is ap-
plied only to the one-body current, the two-body current being
already at N2LO. (2) For simplicity we have used the well-
known dipole parametrization of the form factors, namely we
have taken

Gs
X (q) = Gp

X (q) + Gn
X (q), X = E , M, (A43)

Gv
X (q) = Gp

X (q) − Gn
X (q), X = E , M, (A44)

Gp
E (q) = GD(q), Gn

E (q) = −κn
q2

4M2

GD(q)

1 + q2

M2

, (A45)

Gp
M (q) = (1 + κp)GD(q), Gn

M (q) = κnGD(q), (A46)

GD(q) = 1(
1 + q2

�2
V

)2 , (A47)

where �V = 0.84 GeV has been extracted from fits of elastic
electron scattering data off the proton and deuteron [54,55].
(3) Usually the form factors are expressed in terms of the
quantity Q2 = q2 − w2, where w is the energy transfer. How-
ever, in the present case, w = (k′2 − k2)/2Mχ � q, so we
have assumed Q ≈ q. (4) As discussed before, we need the
form factors at values of q rather small, where the dipole
parametrization is a sufficiently good approximation.

As usual, we report below the decomposition for the
isoscalar operators:

(
J (1)
α,α′,is

)μ = CV
+

�2
S

∑
ν=0,2

(
J (1),ν
α,α′,is

)μ
, (A48)

ρ
(1),0
α,α′,is = −3Gs

E (q)δs,s′δt,t ′ , (A49)

ρ
(1),2
α,α′,is = −3

[
2Gs

M (q) − Gs
E (q)

]
δt,t ′

×
[

− q2

8M2
+ i(p′ × p) · σ

4M2

]
s′s

, (A50)

J (1),1
α,α′,is = −3Gs

E (q)
p + p′

2M
δs,s′δt,t ′

+ 3Gs
M (q)

i(q × σs′s)

2M
δt,t ′ , (A51)(

J (2)
α1,α

′
1,α2,α

′
2,is

)μ = 0, (A52)

while ρ
(1),1
α,α′,is = J (1),0

α,α′,is = J (1),2
α,α′,is = 0. Here, we have adopted

the notation Jμ = (ρ, J).

4. Axial interaction

In order to describe the axial interaction we consider the
chiral Lagrangian in SU(3) space, which reads [56]

Lint = Tr

[
B̄(iγμDμ − M0)B − F

2
B̄γ μγ5[uμ, B]

+ D

2
B̄γ μγ 5{uμ, B}

]
+ f 2

M

4
〈∇μU∇μU †〉 · · · , (A53)

where D, F , and fM are LECs and the dots stand for other
contributions not relevant for this study. The quantities B, U ,
and uμ are now 3 × 3 matrices of the various baryon and
meson fields,

B =

⎛
⎜⎜⎝

�0√
2

+ �√
6

�+ p

�− − �0√
2

+ �√
6

n

�− �0 −2 �√
6

⎞
⎟⎟⎠, (A54)

and U = ei�/ fM , where

� =

⎛
⎜⎜⎝

π0√
2

+ η8√
6

π+ K+

π− − π0√
2

+ η8√
6

K0

K− K
0 −2 η8√

6

⎞
⎟⎟⎠. (A55)

Moreover, u = √
U as usual, and

uμ = i[u†∂μu − u∂μu† − iu†aμu − iuaμu†], (A56)

and aμ is the SU(3) axial current given in Eq. (26).
We can again expand the Lagrangian in the mesons field �.

Since we expect the coupling constants CA± to be small, we
will neglect the terms of the expansion that are quadratic in aμ.
Developing the traces (and retaining only the terms involving
nucleons and pions), we get

LA
int = (D + F )N̄γ μγ 5τzNa(3)

μ + (3F − D)N̄γ μγ 5N
a(8)

μ√
3

− 2 fπ∂μπza
(3)
μ + 1

fπ
N̄γ μ(�τ × �π )zNa(3)

μ + · · · .(A57)

In these terms we have identified fM = fπ . The Hamiltonian
density can be obtained using the Legendre transformation,
but particular attention has to be paid to the last term. The
interaction term appearing finally in the Hamiltonian after the
transformation reads

HA
int = · · · − 1

2 fπ
N̄γ 0(�τ × �π )zNa(3)

0

− 1

fπ
N̄γ i(�τ × �π )zNa(3)

i + · · · . (A58)

Now J (1), J (2), and L are again four-vectors, the chiral order
of their “time” and “space” parts being different. Explicitly,
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(a) (b)

(d) (e) ( f )

(c)

FIG. 12. The same as in Fig. 9 but for the axial interaction.

the WIMP current in this case is given by

Lμ

k′r′,kr
= ūχ

k′r′γ
μγ 5uχ

kr, (A59)

which, expanded up to order Q2, is given by

(Lk′r′,kr )μ=0 =
(

(k′ + k) · σ

2Mχ

)
r′r

, (A60)

(Lk′r′,kr )μ=i =
[
σi − (k′ + k)2σi

8M2
χ

+ 1

4M2
χ

(k′
i (σ · k)

+ ki(σ · k′) − i(k′ × k)i )

]
r′r

. (A61)

The relevant diagrams for the axial interaction are re-
ported in Fig. 12. The WIMP-nucleon vertex appearing in
the diagram of panel (a) derives from the interaction terms
reported in the first line of Eq. (30). The minimal order of
the space component of J (1) associated with this diagram is
≈ Q−3, while the time part is ≈ Q−2. Therefore, we include
the corrections coming from the expansion of the four-spinors
entering the vertex only in the space component. The contri-
butions of the diagram in panel (b) (the “pion-pole” diagram)
behaves analogously. In this case, only isovector transition
operators are obtained.

The diagrams (c) and (d) give the contribution of the one-
pion exchanges. The time part of these diagrams is of order
Q−1, so we will take into account it. The WW NNπ vertex
derives from the interaction Hamiltonian given in Eq. (A58).
On the other hand the spatial parts of the corresponding J (2)

are of order Q0, so they will be neglected here. Finally, the
diagrams in panels (e) and (f) (and many others) contribute to
the axial form factor of the nucleon. These two give a pure
isovector contribution, so we will take them into account (and
many others) by including in the isovector part of the current
the phenomenological axial form factor. The corresponding
isoscalar part is not well known, so we will not include it
(in any case it appears at least at the O(Q0 order). The fi-
nal expression of the transition densities we will consider is

therefore(
J (1)
α,α′
)μ=0 = −hA(q)

(
K · σ

M

)
s′s

− GA(q)
CA

−
�2

S

(τz )t ′t

ω2
q

(
K · σ

M

)
s′s

, (A62)

(
J (1)
α,α′
)μ=i = −hA(q)

[
σi − K2σi

2M2
+ 1

4M2
(p′

i(σ · p)

+ pi(σ · p′) − i(p′ × p)i )

]
s′s

+ GA(q)
CA

−
�2

S

(τz )t ′t

ω2
q

qi

×
[

(q · σ)s′s + 1

4M2

(
2K · qK · σ

− 2K2q · σ − 1

2
q2q · σ

)]
s′s

, (A63)

(
J (2)
α2,α

′
2α1,α

′
1

)μ=0 = g2
A

2 f 2
π

CA
−

�2
S

(�τ1 × �τ2)z

ω2
2

ik2 · σ2, (A64)

(
J (2)
α2,α

′
2α1,α

′
1

)μ=i = 0, (A65)

where K = (p + p′)/2 and

hA(q) = (3F − D)CA
+δt ′t + GA(q)CA

−(τz )t ′t

�2
S

, (A66)

GA(q) = gA(
1 + q2

�2
A

)2 . (A67)

Note that D + F ≡ gA. Here we assume �A = 1 GeV, as
determined from an analysis of pion electroproduction and
neutrino scattering data [57,58] (again, we can safely assume
that Q ≈ q). Uncertainties in the value of �A do not sig-
nificantly impact predictions for the WIMP cross-section as
q � �A. In the pion-pole contribution, usually there should
appear the pseudoscalar form factor GPS(q). From our chiral
analysis, we obtain GPS(q) = GA(q)/(m2

π + q2) (the pole con-
tribution), well verified by the experimental data [59].

As usual, we report below the decomposition of the
isoscalar operators:

(
J (1)
α,α′,is

)μ = CA
+

�2
S

∑
ν=0,2

(
J (1),ν
α,α′,is

)μ
, (A68)

ρ
(1),1
α,α′,is = −(3F − D)

(
K · σ

M

)
s′s

δt ′t , (A69)

J (1),0
α,α′,is = −(3F − D)σs′sδt ′t , (A70)

J (1),2
α,α′,is = −(3F − D)

[
− K2σ

2M2
+ 1

4M2
(p′(σ · p)

+ p(σ · p′) − i(p′ × p))

]
s′s

δt ′t , (A71)

(
J (2)
α1,α

′
1,α2,α

′
2,is

)μ = 0, (A72)

while ρ
(1),0
α,α′,is = ρ

(1),2
α,α′,is = J (1),1

α,α′,is = 0. Again Jμ = (ρ, J).
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5. Tensor interaction

In the case of tensor interaction it is necessary to start
from the construction of the nucleon Lagrangian where the
current tμν appears (notice that such terms are thought to be
rather suppressed [16]). The hadronic Lagrangian for a tensor
current has been constructed in Refs. [60–62]; however, here
we will briefly recall the steps. We have previously seen that
the quark Lagrangian with external tensor current reads

Ltens
q = q̄σμνtμνq . (A73)

Since tμν = tμν †, this term can be rewritten as

Ltens
q = q̄RσμνtμνqL + q̄Lσμνtμν†qR. (A74)

Assuming that tμν transforms under chiral transformations as

tμν → RtμνL†, (A75)

tμν† → Ltμν†R†, (A76)

where L (R) represents a local rotation in the isospin space
of the left (right) components, and remembering that un-
der these transformations the nucleon field N (a doublet in
isospin space) and the pionic unitary matrix U = ei �π (x)·τ/ fπ

transform as

N → hN, (A77)

U → RuL†, (A78)

u → Ruh† = huL†, (A79)

where u = √
U and h is a SU(2) matrix depending in a com-

plicate way on L, R, and �π (x), it can be seen that Lagrangian
terms invariant under chiral transformations to the lowest or-
der are N̄σμνT μν

± N , where

T μν
± = utμν†u ± u†tμνu†. (A80)

In fact, it is easy to prove that

T μν
± → hT μν

± h†. (A81)

Considering that among the two operators (A81) only T μν
+

is invariant under parity, charge, and Hermitian conjugation,
we obtain the result that the lowest order Lagrangian of the
nucleons will be

LT
int = c̃1N̄σμν〈T μν

+ 〉N + c̃2N̄σμν T̂ μν
+ N, (A82)

where c̃1 and c̃2 are new LECs. Higher order terms can be
constructed combining T μν

± with uμ, etc. Here for simplicity
we consider only the lowest order term given above.

Expanding T μν
+ in powers of the pion fields and con-

sidering only the lowest order terms, the nucleon-WIMP
interaction Lagrangian becomes

LT
int = N̄σμν

1

�2
S

(
4c̃1C

T
+ + 2c̃2C

T
−τz
)
N χ̄σμνχ + · · · . (A83)

We remember that in this case the nucleonic and WIMP
currents are four-tensors, and clearly only the off-diagonal
elements are different from zero. The WIMP tensor in this
case is given by

Lμν

k′r′,kr
= ūχ

k′r′σ
μνuχ

kr, (A84)

FIG. 13. The same as in Fig. 9 but for the tensor interaction.

which, expanded up to order Q2, reads

(Lk′r′,kr )0i =
(

iqi

2Mχ

− (Q × σ )i

2Mχ

)
r′r

,

(Lk′r′,kr )i j = εi j�

(
σ� − σ�

q2

8M2
χ

+ q�

(q · σ)

8M2
χ

− Q�

(Q · σ )

2M2
χ

− i
(q × Q)�

4M2
χ

)
r′r

, (A85)

where Q = (k + k′)/2.
The only diagram we consider here for the tensor inter-

action is that reported in Fig. 13. The WIMP-nucleon vertex
appearing in the diagram of panel (a) derives from the inter-
action terms reported in Eq. (31). The minimal order of the
time-space component of J (1) associated to this diagram is
≈ Q−2, while the space-space part is ≈ Q−3. Since L0 is of
order Q, the product J (1)

0 L0 is nominally of order Q−1. There-
fore, we include the corrections coming from the expansion
of the four-spinors entering the vertex only in the space-space
component.

The final expressions for the antisymmetric single nucleon
operator (J (1)

α′,α )μν can be written in terms of two current vec-
tors as(

J (1)
α,α′
)i j = εi jl

(
J (A)
α,α′
)l

,
(
J (1)
α,α′
)0i = (

J (B)
α,α′
)i
, (A86)

where

J (A)
α,α′ =

(
4c̃1

CT
+

�2
S

δt ′t + 2c̃2
CT

−
�2

S

(τz )t ′t

)

×
(

σ − σ
q2

8M2
+ q

(σ · q)

8M2

− K
(σ · K )

2M2
+ i(q × K )

4M2

)
s′s

, (A87)

J (B)
α,α′ =

(
4c̃1

CT
+

�2
S

δt ′t + 2c̃2
CT

−
�2

S

(τz )t ′t

)

×
(

− iq
2M

− K × σ)

M

)
s′s

. (A88)

As usual, we report below the decomposition of the
isoscalar operators:

J (A)
α,α′,is =

(
CT

+
�2

S

) ∑
ν=0,2

J (A),ν
α,α′,is, (A89)

J (A),0
α,α′,is = 4c̃1(σ)s′sδt ′t , (A90)
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TABLE IV. LECs values used in this work.

LEC Value

gA 1.27 MeV−1

fπ 92.4 MeV−1

Bc 2.40 GeV−1

c6 3.71 GeV−2

c7 −0.12 GeV−2

d18 + 2d19 1.00 GeV−2

D 0.86 GeV−2

F 0.39 GeV−2

4c̃1 0.58 GeV−2

J (A),2
α,α′,is = 4c̃1

(
− σ

q2

8M2
+ q

(σ · q)

8M2

− K
(σ · K )

2M2
+ i(q × K )

4M2

)
s′s

δt ′t , (A91)

J (B)
α,α′,is =

(
CT

+
�2

S

) ∑
ν=0,2

J (B),ν
α,α′,is, (A92)

J (B),1
α,α′,is = 4c̃1

(
− iq

2M
− K × σ

M

)
s′s

δt ′t , (A93)

while J (A),1
α,α′,is = J (B),0

α,α′,is = J (B),2
α,α′,is = 0.

6. Values of the LECs

We report the values of the LECs entering our calculation
in Table IV. The value of Bc is related to the quark condensate
in vacuum. We have already discussed that this parameter is
also related to the pion mass. In fact, expanding the chiral
Lagrangian in terms of the pion field, and looking to the
terms proportional to the pion field square, we can identify
m2

π = 2mqBc, where mq is the average between the mass of u
and d quarks. Adopting the value mq = 3.45 MeV [63], we
can estimate Bc ≈ 2.78 GeV. Note that the relation between
m2

π and Bc will have higher order corrections coming from
L(4)

π , etc. Other estimates of Bc come from the Gell-Mann-
Oakes-Rennes relation between the mass of pseudoscalar
mesons [64], or directly from lattice calculations. The more
precise estimate obtained for Bc using the latter method is
Bc = 2.40 ± 0.03 GeV [65] (see also Ref. [66] for a more
recent estimate). In our work we have adopted the value of
Ref. [65], representing an average of the results of different
lattice calculations.

The scalar current has been written in terms of σπN

constant. Here we will assume σπ = −59.1 ± 3.5 MeV, as
extracted from a Roy-Steiner analysis of pion-nucleon scat-
tering [67] (in the following, we do not take into account the
small associated error).

The LECs d18 and d19 entering the pseudoscalar La-
grangian are not well known. Since the pseudoscalar inter-
action will produce a very small reaction rate, we will take
d18 + 2d19 = 1 GeV−2, namely a sort of “natural” value.

For the vector current, the LECs c6 and c7 are simply
related to the anomalous magnetic moment of the nucleons.
In fact, assuming that the vector external current is given by
the electromagnetic field, then the one-body nuclear current
would be given by

(
J (1)
α,α′
)μ=i

EM = (p + p′)i

2M

(1 + τz )

2
− i

(q × σ )i

2M

·
(

1 + τz

2
+ c7 + c6τz

2

)
, (A94)

from which we can identify [54]

c6 = κp − κn, c7 = κp + κn, (A95)

where κp = 1.793 (κn = −1.913) are the anomalous magnetic
moments of the proton (neutron) in unit of the nuclear magne-
ton. The values reported in Table IV are obtained from these
relations.

The values for the LECs D and F , which enter the axial
current in the SU(3) formalism, are taken from Ref. [68]. Note
that F + D ≈ 1.26 ≈ gA [68].

Finally, the values of the LECs c̃1 and c̃2 entering the
tensor case can be obtained from the results of a recent lattice
calculation on the tensor charges of the nucleons [69]. We
have found

4c̃1 ≡ gu+d
T = 0.582 ± 0.016,

2c̃2 ≡ gu−d
T = 1.004 ± 0.021, (A96)

where the quantities gu±d
T were calculated in Ref. [69].

As already stated, the values of the LECs used in this work
are summarized in Table IV. Note that here we have not tried
to quantify the propagation of the error with which these LECs
are known to the DM rates. This task will be deferred to a
successive work.

APPENDIX B: THE QUANTITIES I(a, b, c, d )

In this Appendix we list the quantities I (a, b, c, d ) entering
the expression of the rate (47) for the various cases.

(i) Scalar interaction

IS
1 = I1

(
1 − V 2 − V · q

Mχ

− q2

4M2
χ

, 2V + q
Mχ

,−1, 0

)
.

(B1)

(ii) Pseudoscalar interaction

IP
1 = I

(
q2

4M2
χ

, 0, 0, 0

)
. (B2)
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(iii) Vector interaction

IV
1 = I

(
1 − q2

4M2
χ

, 0, 0, 0
)

,

IV
2 = I

(
− V · q̂ − q

2Mχ

, q̂, 0, 0
)

,

IV
3 = I

(
(V · q̂)2 + V · q

Mχ

+ q2

4M2
χ

,

− 2q̂

[
V · q̂ + q

2Mχ

]
, 0, q̂

)
,

IV
4 = I

(
1

2
[V 2 − (V · q̂)2] + q2

4M2
χ

,

− V + q̂V · q̂,
1

2
, i

q̂√
2

)
.

(B3)

(iv) Axial interaction

IA
1 = I

(
V 2 + V · q

Mχ

+ q2

4M2
χ

,−2V − q
Mχ

, 1, 0
)

,

IA
2 = I

(
− V · q̂ − q

2Mχ

, q̂, 0, 0
)

,

IA
3 = I

(
1 + (V · q̂)2 − V 2 − q2

4M2
χ

, 2V − 2q̂(V · q̂),

−1, q̂

)
,

IA
4 = I

(
1 − 1

2
V 2 − 1

2
(V · q̂)2 − V · q

Mχ

− q2

4M2
χ

,

×V + q̂V · q̂ + q
Mχ

,−1

2
, i

q̂√
2

)
. (B4)

(v) Tensor interaction

IT,A
3 = I

(
1 − (V · q̂)2 − V · q

Mχ

− q2

4M2
χ

,

2q̂

[
V · q̂ + q

2Mχ

]
, 0, iq̂

)
, (B5)

IT,A
4 = I

(
1 − 1

2
V 2 + 1

2
(V · q̂)2 − q2

4M2
χ

,

V − q̂(V · q̂),−1

2
,

q̂√
2

)
, (B6)

IT,B
3 = I

(
V 2 − (V · q̂)2 + q2

4M2
χ

,

− 2V + 2q̂(V · q̂), 1, iq̂

)
, (B7)

IT,B
4 = I

(
V 2

2
+ (V · q̂)2

2
+ V · q

Mχ

+ q2

4M2
χ

,

−V − q̂(V · q̂) − q
Mχ

,
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