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Structure of the deuteron from an analysis of bremsstrahlung
emission in proton-deuteron scattering in cluster models
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Background: Emission of bremsstrahlung photons in the scattering of protons off deuterons is investigated on
the microscopic cluster basis in a wide region of beam energy from low energies up to 1.5 GeV.
Purpose: Our aim is to construct a model extracting new information about the structure of the deuteron from
analysis of accompanying bremsstrahlung in proton-deuteron scattering.
Methods: A three-cluster model of bremsstrahlung is constructed. The formalism includes the form factor of the
deuteron, which characterizes the dependence of bremsstrahlung cross sections on the structure of the deuteron.
This gives a possibility to investigate the structure of nuclei from analysis of bremsstrahlung cross sections.
Results: We studied the dependence of the bremsstrahlung cross section on the structure of the deuteron. We used
three different shapes of the deuteron wave functions. Besides, we also calculated the cross section by neglecting
the internal structure of the deuteron. Analysis of the dependence of the cross section on such a parameter shows
the following. (1) At beam energies 145 and 195 MeV used in experiments, the bremsstrahlung cross section is
not sensitive enough to variations in the shape of the deuteron wave functions. (2) A stable difference between
cross sections calculated with and without the internal structure of the deuteron is observed at higher bean energy
(higher than 500 MeV). (3) The spectrum is increased as we pass from the structureless deuteron (the oscillator
length b = 0) to the deuteron described by the shell-model wave function (the realistic oscillator length) inside
the full energy region of the emitted photons.
Conclusions: Our cluster model is a suitable tool to study the structure of the deuteron with high enough
precision from bremsstrahlung analysis. We propose new experiments for such an investigation.

DOI: 10.1103/PhysRevC.110.034001

I. INTRODUCTION

The bremsstrahlung emission of photons accompanying
nuclear reactions is an important topic of nuclear physics and
has attracted the significant interest of many researchers for
a long time (see reviews [1–4]). This is explained by the
spectra of bremsstrahlung photons being calculated based on
nuclear models which include mechanisms of reactions, inter-
actions between nuclei, dynamics, and many other physical
issues. A lot of aspects of nuclear processes, such as dynam-
ics of nucleons in nuclear scattering, interactions between
nucleons, mechanisms of reactions, quantum effects, defor-
mations of nuclei, properties of hypernuclei in reactions, etc.
can be included in the model describing the bremsstrahlung
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emission (for example, see Refs. [5,6] for general proper-
ties of α decay from bremsstrahlung analysis, Ref. [7] for
extraction of information about deformation of nuclei in α

decay from experimental bremsstrahlung data, Ref. [8] for
bremsstrahlung in the nuclear radioactivity with emission of
protons, Ref. [9] for bremsstrahlung in the spontaneous fis-
sion of 252Cf, Ref. [10] for bremsstrahlung in the ternary
fission of 252Cf, and Ref. [11] for bremsstrahlung in the
pion-nucleus scattering from our research; there are many
investigations of other researchers). Note the perspectives on
studying electromagnetic observables of light nuclei based
on chiral effective field theory [12]. The measurements of
photons with analysis provide important information on these
phenomena.

Analysis of bremsstrahlung photons accompanying nuclear
reactions gives the possibility to extract additional informa-
tion on the structure of nuclei. The study of the structure
of nuclei based on bremsstrahlung analysis is one of the
most ambitious aims in nuclear physics. Analyzing the for-
malism of models, the option to investigate the structure of
nuclei exists, in principle, and is understandable. The study
of the structure of nuclei is one of the most promising re-
search directions, taking into account that photons can be
measured in experiments. However, during the long period of
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investigations of bremsstrahlung photons in nuclear physics,
a systematic study of the structure of nuclei has not been
realized yet. One can explain this by the difficulty in the
development of a mathematical formalism of models, and
it is important to reach the stability of numerical calcula-
tions that is possible at high precision. Moreover, it turns out
that not all available experimental bremsstrahlung data are
very sensitive to the structure of nuclei. In this regards, one
can recall investigations of bremsstrahlung emission in reac-
tions with light nuclei within microscopic two-cluster models
[13–27].

Summarizing all issues above, we conclude that realiza-
tion of such an idea is a perspective task. So, this is the
main idea of the paper. We would like to understand which
parameters of nuclear structure are more effective to realize
such an investigation. Of course, the best way is to construct
this model on a fully quantum basis, with the inclusion of
realistic nuclear interactions which were well tested experi-
mentally. A promising way is the cluster formalism for the
description of structure of nuclei and nuclear process. So, as a
basis of this research we will develop fully the cluster model
in combination with a bremsstrahlung formalism. The most
effective process for such a study is proton-deuteron scatter-
ing, so we will focus on the reaction p + d → p′ + d ′ + γ

in this paper. We focus on the construction of such a uni-
fied cluster formalism, and analysis of available experimental
information about bremsstrahlung for proton-deuteron scat-
tering. This paper is a continuation of our previous research
[28], where we developed a cluster model in the folding
approximation in the study of bremsstrahlung emission in
the scattering of nuclei with a small number of nucleons
and we did not analyze the possibility of extracting informa-
tion about the structure of nuclei from bremsstrahlung cross
sections.

The paper is organized in the following way. In Sec. II
cluster models of emission of the bremsstrahlung photons
in the proton-deuteron scattering are formulated. Here, we
give an explicit form of the operator of the bremsstrahlung
emission, define wave functions of the p + d system, cal-
culate matrix elements of bremsstrahlung emission, define
form factors of the deuteron (characterizing its structure),
and apply the multiple expansion approach for the calcu-
lation of matrix elements. In Sec. II K matrix elements of
bremsstrahlung emission in the folding approximation are
reviewed (following the formalism in Ref. [28]). In Sec. II L
the cross section of the bremsstrahlung emission of pho-
tons is determined and resulting formulas are summarized.
In Sec. III emission of the bremsstrahlung photons for the
proton-deuteron scattering is studied based on the model
above. We analyze the role of the deuteron wave func-
tion and its form factor in calculations of the cross section
at different energies of relative motions between the scat-
tered proton and deuteron. We also describe the experimental
bremsstrahlung data for proton-deuteron scattering based on
the model. Conclusions and perspectives are summarized in
Sec. IV. The operator of the bremsstrahlung emission in
the three-cluster model is calculated in Appendix A. Use-
ful details of the calculation of integrals are presented in
Appendix B.

II. BREMSSTRAHLUNG EMISSION IN TWO- AND
THREE-CLUSTER MODELS

A. Operator of the bremsstrahlung emission
in a three-cluster model

Consider the translationally invariant interaction of a pho-
ton with a three-nucleon system,

Ĥe(kγ , ε(α) ) = 1

2

eh̄

mN c

A=3∑
i=1

1

2
(1 + τ̂iz )[π̂∗

i A∗(i) + A∗(i)π̂∗
i ],

(1)

where

A∗(i) = ε(α) exp{−i(kγ ρi )}, π̂∗
i = i∇ρi ,

ρi = ri − Rcm, Rcm = 1

A

A∑
i=1

ri,

π̂i = p̂i − P̂cm, P̂cm = 1

A

A∑
i=1

p̂i. (2)

Here and below, an asterisk symbol ∗ means complex conju-
gation. In Eq. (1), ε(α) are unit vectors of linear polarization of
the photon emitted (ε(α),∗ = ε(α)), kγ is the wave vector of the
photon, and wγ = kγ c = |kγ |c. Vectors ε(α) are perpendicu-
lar to kγ in the Coulomb gauge. We have two independent
polarizations ε(1) and ε(2) for the photon with impulse kγ

(α = 1, 2). Also we have properties

[kγ × ε(1)] = kγ ε(2), [kγ × ε(2)] = − kγ ε(1),

[kγ × ε(3)] = 0,
∑

α=1,2,3

[kγ × ε(α)] = kγ (ε(2) − ε(1) ). (3)

Let us introduce new variables, namely Jacobi vectors r and
q:

r = 1√
2

(ρ1 − ρ2) = 1√
2

(r1 − r2),

q =
√

2

3

(
ρ3 − ρ1 + ρ2

2

)
=
√

2

3

(
r3 − r1 + r2

2

)
,

qA =
√

1

3
(r1 + r2 + r3) =

√
3Rcm.

Inverse relations are

r1 = 1√
2

r − 1√
6

q + 1√
3

qA,

r2 = − 1√
2

r − 1√
6

q + 1√
3

qA,

r3 =
√

2

3
q + 1√

3
qA. (4)

Similar relations can be written for momenta

πr = 1√
2

(π1 − π2), πq =
√

2

3

(
π3 − π1 + π2

2

)
,

πA =
√

1

3
(π1 + π2 + π3).
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FIG. 1. Diagrammatic representation of the emission of the
bremsstrahlung photons during the scattering of the proton on
deuteron.

Inverse relations

π1 = 1√
2
πr− 1√

6
πq+ 1√

3
πA,

π2 = − 1√
2
πr− 1√

6
πq+ 1√

3
πA,

π3 =
√

2

3
πq+ 1√

3
πA.

Now we fix the position of nucleons. We assume that vector
r measures the distance between proton and neutron which
form a deuteron. We also assume that r1 is a coordinate of
the first proton and r2 is a coordinate of a neutron. Vector
r3 determines the location of the second proton. With such
definitions, the operator Ĥe(kγ , ε(α) ) is [see Appendix A for
details; also we take into account that (ε(α), kγ ) = 0]

Ĥe(kγ , ε(α) ) = 1

2

eh̄

mN c

{
2√
2

exp

{
−i

1√
2

(kγ r)

}
(ε(α), π∗

r )

× exp

{
i

1√
6

(kγ q)

}
−
√

2

3
exp

{
−i

1√
2

(kγ r)

}
× exp

{
i

1√
6

(kγ q)

}
(ε(α), π∗

q ) + 2

√
2

3

× exp

{
− i

√
2

3
(kγ q)

}
(ε(α), π∗

q )

}
. (5)

This is the universal and model-independent form of the
operator of the bremsstrahlung emission for a system com-
prising two protons and one neutron. The diagrammatic
representation of the emission of the bremsstrahlung photons
in the proton-deuteron scattering is depicted in Fig. 1.

To calculated cross section of bremsstrahlung emission in
the process of a proton scattering from a deuteron, we need to
formulate model which provides a realistic description of the
p + d scattering in an economical way, i.e., with the minimum
of computations but with a reliable output. As the output, we
need to determine wave functions of the p + d scattering at
selected energies of initial and final states of bremsstrahlung
emission. For this aim, we select the resonating group method
(RGM), which is the most rigorous and self-consistent real-
ization of a cluster model. We will use three different variants
of the RGM: two- and three-cluster variants and the so-called
folding approximation. These three variants of the RGM are
explained in detail in the next section.

B. Two- and three-cluster models of the p + d system

The three-nucleon system 3He and its decay channel p + d
will be studied in the framework of two- and three-cluster
models. In a two-cluster model, the wave function of the
system is

� = Â{φ(S)(d, r)φ(p)ψE (q)}, (6)

where φ(S)(d, r) is the deuteron wave function from the os-
cillator shell model, φ(p) is a wave function of the proton
represented by its spin and isospin parts, and ψE (q) is a wave
function of the relative motion of the proton and deuteron. The
antisymmetrization operator Â makes wave functions of the
p + d system fully antisymmetric. The three-cluster model
suggests the following form for a three-nucleon system:

� = Â{φ(n)φ(p1)φ(p2) f (r, q)}, (7)

The wave function φ(p2) f (r, q) of the relative motion of
nucleons has to be determined by solving the Schrödinger
equation or the Faddeev equations.

By assuming that the shape of a deuteron does not change
when a proton is approaching, the three-particle wave function
can be represented as

� = Â{φ(d, r)φ(p)ψE (q)}, (8)

where φ(d, r) is a wave function of the bound state of
deuteron. The wave function φ(d, r) is a solution of the two-
body Schrödinger equation with selected nucleon-nucleon
potential.

Note that in both two-cluster and three-cluster models the
wave function of the deuteron is assumed to be antisymmetric,
so the antisymmetrization operator Â in Eqs. (6) and (8)
consists of the unit operator and two permutation operators.
As a result, the antisymmetrization operator Â creates three
terms in Eqs. (6) and (8) that are similar to the terms in curly
brackets.

If one ignores the full antisymmetrization in Eqs. (6) and
(8) by omitting the operator Â, one obtains a simple version
of the two- and three-cluster models which is called a folding
approximation or folding model. To avoid bulky expressions,
we will use this approximation to present matrix elements of
Ĥe(kγ , εμ) between the initial and final states of the p + d
system.

To construct wave functions of the system p + d in differ-
ent approximations (models), we need to solve the appropriate
Schrödinger equations. For this aim we employ the algebraic
version of the resonating group method (RGM), formulated in
Refs. [29,30]. This version of the RGM uses the full basis of
oscillator functions to expand wave functions of the relative
motion of clusters. As a result, the Schrödinger equation is re-
duced to a system of linear algebraic equations for expansion
coefficients. Besides, the algebraic version implements proper
boundary conditions in discrete, oscillator representation.

To study the p + d system in a three-cluster approximation,
we will employ a three-cluster model developed in Ref. [31].

C. Wave functions of the p + d system in the cluster formalism

We need to construct wave functions of the p + d system
to calculate matrix elements of the operator Ĥe(kγ , ε(α) ). If
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we neglect the Pauli principle and employ an adiabatic ap-
proximation, then the wave function of the system can be
constructed in a separable form,

�(r, q) = φ(r)ψ (q), (9)

where wave function of the deuteron, φ(r), is a solution of the
two-body Schrödinger equation

(Ĥd − Ed )φ(r) = 0, (10)

Ĥd = − h̄2

2m

d2

dr2
+ V̂NN (r) (11)

where m is the mass of nucleon. If the nucleon-nucleon poten-
tial VNN (r) is used in the form

V̂NN (r) =
∑

S=0,1

∑
T =0,1

V2S+1,2T +1(r)P̂SP̂T , (12)

where P̂S (P̂T ) is the projection operator projecting onto the
spin S (the isospin T ) of the two-nucleon system, then in
Eq. (11) V̂NN (r) should be replaced with the even component
V31(r), as the deuteron has spin S = 1 and isospin T = 0.

The wave function which describes the interaction of the
proton with the deuteron obeys the equation

(Ĥp − Ep)ψ (q) = 0, (13)

where

Ĥp = − h̄2

2m

d2

dq2
+ V̂pd (q)

and the potential energy V̂pd (q) equals

V̂pd (q) = 〈φ(r)|
∑
i=1,2

V̂NN (r3 − ri ) +
∑
i=1,2

V̂C (r3 − ri )|φ(r)〉.

Here, integration is performed over vector r, and nucleon-
nucleon V̂NN and Coulomb V̂C potentials are involved in the
definition of V̂pd (q). Equation (13) determines both the initial
ψEi (q) and final ψE f (q) wave functions of the p + d system.

D. Matrix elements of bremsstrahlung emission
in the cluster formalism

Based on assumptions made, we have the matrix element
of transitions from initial to final states

〈φ(r)ψE f (q)|Ĥe(kγ , ε(α) )|φ(r)ψEi (q)〉.
We suggest calculating these matrix elements in two steps. In
the first step, we calculate the matrix element

Ĥe(q) = 〈φ(r)|Ĥe(kγ , ε(α) )|φ(r)〉
by integrating over vector r. By using Eq. (5), we obtain

Ĥe(q) = 〈φ(r)|Ĥe(kγ , ε(α) )|φ(r)〉

= 1

2

eh̄

mN c

{
2√
2
〈φ(r)| exp

{
−i

1√
2

(kγ r)

}
(ε(α), π∗

r )

× |φ(r)〉 exp

{
i

1√
6

(kγ q)

}
−
√

2

3
〈φ(r)| exp

{
−i

1√
2

(kγ r)

}
|φ(r)〉

× exp

{
i

1√
6

(kγ q)

}
(ε(α), π∗

q )

+ 2

√
2

3
exp

{
−i

√
2

3
(kγ q)

}
(ε(α), π∗

q )

}
(14)

and then〈
φ(r)ψE f (q)

∣∣Ĥe(kγ , ε(α) )
∣∣φ(r)ψEi (q)

〉
= 1

2

eh̄

mN c

{
2√
2
〈φ(r)| exp

{
− i√

2
(kγ r)

}
(ε(α), π∗

r )|φ(r)〉

× 〈ψE f (q)
∣∣ exp

{
i√
6

(kγ q)

}∣∣ψEi (q)
〉

−
√

2

3
〈φ(r)| exp

{
− i√

2
(kγ r)

}
|φ(r)〉〈ψE f (q)

∣∣
× exp

{
i√
6

(kγ q)

}
(ε(α), π∗

q )
∣∣ψEi (q)

〉+ 2

√
2

3

〈
ψE f (q)

∣∣
× exp

{
−i

√
2

3
(kγ q)

}
(ε(α), π∗

q )
∣∣ψEi (q)

〉}
. (15)

Thus we need to calculate a few basic integrals:

〈φ(r)| exp

{
− i√

2
(kγ r)

}
|φ(r)〉,

〈φ(r)| exp

{
− i√

2
(kγ r)

}
(ε(α), π∗

r )|φ(r)〉,

〈
ψE f (q)

∣∣ exp

{
i√
6

(kγ q)

}∣∣ψEi (q)
〉
,

〈
ψE f (q)

∣∣ exp

{
i√
6

(kγ q)

}
(ε(α), π∗

q )
∣∣ψEi (q)

〉
. (16)

Note that with such a definition of coordinates (4), the
wave vectors of initial and final states are defined as ki =√

2mEi / h̄2, k f =
√

2mE f / h̄2, where energies Ei and E f are
in MeV and are in the center-of-mass motion.

E. Introduction of form factors

We introduce the following definitions of form factors of
the deuteron (in the formalism of the three-cluster model):

F1(kγ ) = 〈φ(r)| exp

{
− i√

2
(kγ r)

}
| φ(r)〉,

F2, α (kγ ) = 〈φ(r)| exp

{
− i√

2
(kγ r)

}
(ε(α), π∗

r ) | φ(r)〉.
(17)

Then, the matrix element of emission in Eq. (15) is rewritten
as〈

�E f (r, q)
∣∣ Ĥγ (kγ , ε(α) )

∣∣�Ei (r, q)
〉

= 1

2

e h̄

mN c

(
2√
2

〈
ψE f (q)

∣∣ exp

{
i√
6

(kγ q)

}∣∣φEi (q)
〉
F2, α
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−
√

2

3

〈
ψE f (q)

∣∣ exp

{
i√
6

(kγ q)

}
(ε(α), π∗

q )
∣∣ψEi (q)

〉
F1 + 2

√
2

3

〈
ϕE f (q)

∣∣ exp

{
− i

√
2

3
(kγ q)

}
× (ε(α), π∗

q )
∣∣ϕEi (q)

〉)
, (18)

where

�Ei (r, q) = φ(r)ψEi (q), (19)

�E f (r, q) = φ(r)ψE f (q). (20)

We introduce the following notations for matrix elements:

I1(α) = 〈ϕE f (q)
∣∣ e−iαkγ q ∂

∂q

∣∣ϕEi (q)
〉
q,

I2(α) = 〈ϕE f (q)
∣∣ e−iαkγ q

∣∣ϕEi (q)
〉
q. (21)

Then, the full matrix element (18) can be rewritten as〈
�E f (r, q)

∣∣ Ĥγ (kγ , ε(α) )
∣∣�Ei (r, q)

〉
= 1

2

e h̄

mN c

(
2√
2

I2

(−1√
6

)
F2, α −

√
2

3

〈
ψE f (q)

∣∣
× exp

{
i√
6

(kγ q)

}
(ε(α), π∗

q )
∣∣ψEi (q)

〉
F1

+ 2

√
2

3

〈
ϕE f (q)

∣∣ exp

{
− i

√
2

3
(kγ q)

}
× (ε(α), π∗

q )
∣∣ϕEi (q)

〉)
. (22)

Taking into account

πq = −ih̄
d

dq
, π∗

q = ih̄
d

dq
, (23)

we rewrite〈
ψE f (q)

∣∣ exp
{±i α′ (kγ q)

}
(ε(α), π∗

q )
∣∣ψEi (q)

〉
= ih̄ ε(α) I1(∓α′). (24)

So, the full matrix element (22) obtains the following form:〈
�E f (r, q)

∣∣ Ĥγ (kγ , ε(α) )
∣∣�Ei (r, q)

〉
= − 1

2

e h̄

mN c

{
2√
2

F2, α · I2

(−1√
6

)
− ih̄

√
2

3
F1 ε(α)

× I1

(
− 1√

6

)
+ 2 ih̄

√
2

3
ε(α) I1

(√
2

3

)}
. (25)

Note that vectors ε(α) are perpendicular to kγ in the Coulomb
gauge. Taking this property into account, we obtain

(ε(α), kγ ) = 0. (26)

In the case of zero form factor F2, α = 0, the matrix element is
simplified as〈
�E f (r, q)

∣∣ Ĥγ (kγ , ε(α) )
∣∣�Ei (r, q)

〉
= − i

1

2

√
2

3

e h̄2

mN c

{
F1 εμ I1

(
− 1√

6

)
− 2 ε(α) I1

(√
2

3

)}
.

(27)

F. Multipole expansion

In further calculation of Eq. (27) one needs to find inte-
grals (21). Applying the multipolar expansion, these integrals
obtain the form [see Appendix B, Eqs. (B3) and (B6)]

I1(α) = 〈ϕE f (q)
∣∣ e−iαkγ q ∂

∂q

∣∣ϕEi (q)
〉
q

=
√

π

2

∑
lγ =1

(−i)lγ
√

2lγ + 1
∑

μ=±1

ξμ μ

× [pM
lγ μ(α) − iμ pE

lγ μ(α)
]
,

I2(α) = 〈ϕE f (q)
∣∣ e−iαkγ q

∣∣ϕEi (q)
〉
q

=
√

π

2

∑
lγ =1

(−i)lγ
√

2lγ + 1
∑

μ=±1

× [μ p̃M
lγ μ(α) − i p̃E

lγ μ(α)
]
, (28)

where [see Eqs. (B4) and (B7)]

pM
lγ μ(α) = −IM (0, l f , lγ , 1, μ)J1(α, 0, l f , lγ ),

pE
lγ μ(α) =

√
lC + 1

2lγ + 1
IE (0, l f , lγ , 1, lγ − 1, μ)

J1(α, 0, l f , lγ − 1)

−
√

lγ
2lγ + 1

IE (0, l f , lγ , 1, lγ + 1, μ)

J1(α, 0, l f , lγ + 1), (29)

p̃M
lγ μ(α) = Ĩ (0, l f , lγ , lγ , μ)J̃ (α, 0, l f , lγ ),

p̃E
lγ μ(α) =

√
lγ + 1

2lγ + 1
Ĩ (0, l f , lγ , lγ −1, μ)J̃ (α, 0, l f , lγ −1)

−
√

lγ
2lγ + 1

Ĩ (0, l f , lγ , lγ + 1, μ)

J̃ (α, 0, l f , lγ + 1), (30)

and [see Eqs. (B5) and (B8)]

J1(α, li, l f , n) =
∫ +∞

0

dRi(r, li )

dr
R∗

f (l f , r) jn(α kr) r2dr,

J̃ (α, li, l f , n) =
∫ +∞

0
Ri(r) R∗

f (l, r) jn(αkγ r) r2dr. (31)

Here, ξμ are vectors of circular polarization with opposite
directions of rotation (see Ref. [32], Eq. (2.39), p. 42). Also

034001-5



SHAULSKYI, MAYDANYUK, AND VASILEVSKY PHYSICAL REVIEW C 110, 034001 (2024)

we have the following properties [see Appendix B, Eqs. (B20)
and (B21)] ∑

α=1,2

ε(α) · I1 =
√

π

2

∑
lγ =1

(−i)lγ
√

2lγ + 1

×
∑

μ=±1

μ hμ

(
pM

lγ ,μ + pE
lγ ,−μ

)
,

(εx + εz)
∑

α=1,2

[I1 × ε(α)] =
√

π

2

∑
lγ =1

(−i)lγ
√

2lγ + 1

×
∑

μ=±1

μ hμ

(
pM

lγ ,μ − pE
lγ ,−μ

)
,

(32)

where [see Appendix B, Eqs. (B10)]

h± = ∓1 ± i√
2

, h− + h+ = −i
√

2,∑
μ=±1

μ hμ = −h− + h+ = −
√

2,

∑
α=1,2

ε(α),∗ = h−1ξ
∗
−1 + h+1ξ

∗
+1. (33)

G. Case of li = 0, l f = 1, lγ = 1

In the case of li = 0, l f = 1, lγ = 1 integrals (28) are
simplified to [see Appendix B, Eqs. (B22)]

I1 = −i

√
3π

2

∑
μ=±1

ξμ μ × [pM
lγ =1, μ − iμ pE

lγ =1, μ

]
,

I2 = −i

√
3π

2

∑
μ=±1

[
μ p̃M

lγ =1, μ − i p̃E
lγ =1, μ

]
, (34)

where matrix elements are simplified to [see details in Ap-
pendix B, Eqs. (B25)]

pM
lγ μ = 0,

pE
lγ μ = 1

6

√
1

π
J1(0, 1, 0) − 47

240

√
1

2π
J1(0, 1, 2),

p̃M
1μ(c) = μ

2
√

2π
J̃ (c, 0, 1, 1), p̃E

1μ(c) = 0. (35)

We substitute these solutions into Eq. (34) and obtain [see
Appendix B, Eqs. (B25) and (B26)]:

I1 = −1

6

√
3

2

∑
μ=±1

ξμ

(
J1(0, 1, 0) − 47

40

√
1

2
J1(0, 1, 2)

)
.

(36)

Integrals do not depend on vectors of polarization. So, we
simplify further:

I1 = −1

6

√
3

2

(
J1(0, 1, 0) − 47

40

√
1

2
J1(0, 1, 2)

)
(ξμ=+1 + ξμ=−1). (37)

Also from Eqs. (34) we find

I2(α) = −i

√
3

2
J̃ (α, 0, 1, 1). (38)

H. Action on vectors of polarization

Now we calculate the summation over vectors of polariza-
tion. We use the definition of vectors of polarizations as in
Eqs. (57) and (58) in Ref. [28] (see Appendix C in that paper
for details):

ε(1) = 1√
2

(ξ−1 − ξ+1), ε(2) = i√
2

(ξ−1 + ξ+1), (39)

and

ε(1) · (ξμ=+1 + ξμ=−1) = 0, ε(2) · (ξμ=+1 + ξμ=−1)

= − i
√

2. (40)
On such a basis, from Eq. (37) we find

ε(1) · I1 = 0, ε(2) · I1(α)

= i

√
3

6
·
(

J1(α, 0, 1, 0) − 47

40

√
1

2
· J1(α, 0, 1, 2)

)
.

(41)

Now we can recalculate the matrix element (27) as (at μ = 1
it equals to zero)〈

�E f (r, q)
∣∣ Ĥγ (kγ , ε(α=2))

∣∣�Ei (r, q)
〉

=
√

2 e h̄2

12 mN c

{
F1

[
J1

(
− 1√

6
, 0, 1, 0

)
− 47

40

√
1

2
J1

(
− 1√

6
, 0, 1, 2

)]
− 2

[
J1

(√
2

3
, 0, 1, 0

)
−47

40

√
1

2
J1

(√
2

3
, 0, 1, 2

)]}
,

(42)

where integrals are defined in Eqs. (31).

I. Resonating group method

We use the algebraic version of the resonating group
method, which was formulated in Refs. [29,30] to study the
structure of two- and three-cluster systems. Two main merits
(advantages) of the algebraic version of the RGM are (i) it
employs a full set of oscillator functions to expand wave
functions of relative motion of clusters and, thus, reduces the
many-particle Schrödinger equation to a set of linear algebraic
equations, and (ii) it implements proper boundary conditions
for bound and continuous-spectrum states in discrete, oscilla-
tor space.

To solve the Schrödinger equations (10) and (13) for
the deuteron and p + d system, wave functions φEd ,l (r) and
ψE ,L(q) are expanded over the basis of oscillator functions,

φEd ,l (r) =
N max∑
n=0

C(Ed ,l )
n �nl (r, b), (43)

ψE ,L(q) =
N max∑
n=0

C(E ,L)
n �nL(q, b), (44)
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FIG. 2. Wave function of the deuteron in the coordinate space φ(r) as a function of coordinate r (left panel) and in the oscillator space Cn

as a function of n (right panel).

where �n(r, b) is an oscillator function,

�nL(r, b) = (−1)nNnL b−3/2ρLe− 1
2 ρ2

LL+1/2
n (ρ2),

ρ = r

b
, (45)

and b is the oscillator length, and

NnL =
√

2�(n + 1)

�(n + L + 3/2)
.

A set of expansion coefficients {C(Ed ,l )
n } can be considered

as the deuteron wave function in the oscillator representation,
while the expansion coefficients {C(E ,L)

n } are then the wave
functions of relative motion of proton and deuteron in the
same representation.

J. Wave function of deuteron

Let us consider the wave function of the deuteron. The
wave function of the bound state of the deuteron was ob-
tained with the Minnesota NN potential [33]. This potential
creates the bound state at Ed = −2.202 MeV, which has to
be compared with the experimental value Ed = −2.225 MeV.
The wave function of the deuteron is shown in Fig. 2 in
the coordinate space (left panel) and in the oscillator space
(right panel). This wave function was constructed with 200
oscillator functions (N max = 199). One can see that only a
small number of basis functions (0 � n � 25) give a notice-
able contribution.

In the coordinate representation, the deuteron function has
a long exponential tail,

φEd ,L=0(r) ≈ exp {−κr}/r, (46)

where

κ =
√

2m|Ed |
h̄2 =

√
2 × 2.202

41.47
= 0.325 879 fm−1.

In this case, with such a definition of κ , the vector Jacobi r is
measured in fm.

It is interesting to note that the function (46) is an exact
solution to the two-body problem with the contact interaction

V (r) = V0δ(r).

This interaction is also called the zero-range interaction and
is widely used in atomic and nuclear physics (for more details
see Ref. [34]). We will use the normalized-to-unity function

φ(r) =
√

2κ exp {−κr}/r, (47)

to approximate the correct wave function of the deuteron.
In the shell-model approximation, the wave function of the

deuteron bound state is a Gaussian function,

φ(r) = 1

b3/2
exp

{
−1

2

( r

b

)2
}
. (48)

The form factor of the deuteron is then

〈φ(r)| exp

{
− i√

2
(kγ r)

}
|φ(r)〉 = exp

{
−1

8
(kγ b)2

}
. (49)

If we take the deuteron wave function in the form

φ(r) =
√

2κ exp {−κr}/r, (50)

then we obtain the deuteron form factor

〈φ(r)| exp

{
− i√

2
(kγ r)

}
|φ(r)〉 = 2

√
2κ

kγ

arctan

(
kγ

2
√

2κ

)
.

(51)

The form factor from Eq. (51) as a function of kγ demon-
strates a slower decrease compared to the form factor of the
shell mode (49).
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K. Matrix elements in the folding approximation

The matrix element of bremsstrahlung emission of photons for two s clusters (i.e., for clusters with 1 � Aα � 4 or for n, p,
d , 3H, 3He, 4He) can be written down as (see Ref. [28], for details)

〈
�E f l f

∣∣Ĥγ (kγ , ε(α) )
∣∣�Eili

〉
fold = eh̄

mN c

{√
A2

A1 A

〈
RE f l f (r)Yl f m f (̂ri )

∣∣ exp −i

√
A2

A1 A
(kγ , r) (ε(α), π̂)

∣∣REili (r)Ylimi (̂ri )
〉
F1

−
√

A1

A2 A

〈
RE f l f (r)Yl f m f (̂ri )

∣∣ exp i

√
A1

A2 A
(kγ , r) (ε(α), π̂)

∣∣REili (r)Ylimi (̂ri )
〉
F2

}
. (52)

In the standard approximation of the resonating group method, form factor Fn equals (n = 1, 2)

Fn = 〈�n(An)|F (n)
0 |�n(An)〉 = Zn exp −1

4

An − 1

An
(k, b)2, (53)

with b as the oscillator length. Using property (24),〈
ψE f (q)

∣∣ exp{±i α′ (kγ q)} (ε(α), π∗
q )
∣∣ψEi (q)

〉 = ih̄ ε(α) I1(∓α′), (54)

the matrix element is rewritten as

〈
�E f l f

∣∣Ĥγ (kγ , ε(α) )
∣∣�Eili

〉
fold = i

eh̄2

mN c
ε(α)

{√
A2

A1 A
I1

(√
A2

A1 A

)
F1 −

√
A1

A2 A
I1

(
−
√

A1

A2 A

)
F2

}
. (55)

Now we take into account property (41),

ε(1) · I1 = 0, ε(2) · I1(α) = i

√
3

6
·
(

J1(α, 0, 1, 0) − 47

40

√
1

2
· J1(α, 0, 1, 2)

)
,

and obtain

〈
�E f l f

∣∣Ĥγ (kγ , ε(α) )
∣∣�Eili

〉
fold =

√
3 eh̄2

6 mN c

{√
A2

A1 A

[
J1

(√
A2

A1 A
, 0, 1, 0

)
− 47

40

√
1

2
J1

(√
A2

A1 A
, 0, 1, 2

)]
F1

−
√

A1

A2 A

[
J1

(
−
√

A1

A2 A
, 0, 1, 0

)
− 47

40

√
1

2
J1

(
−
√

A1

A2 A
, 0, 1, 2

)]
F2

}
. (56)

In particular, for proton-deuteron scattering we have (we choose the first index for the proton: A1 = 1, F1 = Fp; the second index
for the deuteron: A2 = 2, F2 = FD)

〈
�E f l f

∣∣Ĥγ (kγ , ε(α) )
∣∣�Eili

〉
fold =

√
3 eh̄2

6 mN c

{√
2

3

[
J1

(√
2

3
, 0, 1, 0

)
− 47

40

√
1

2
J1

(√
2

3
, 0, 1, 2

)]
Fp

−
√

1

6

[
J1

(
−
√

1

6
, 0, 1, 0

)
− 47

40

√
1

2
J1

(
−
√

1

6
, 0, 1, 2

)]
FD

}
. (57)

For further analysis it is more convenient to rewrite this solution as

〈
�E f l f

∣∣Ĥγ (kγ , ε(α) )
∣∣�Eili

〉
fold =

√
2 eh̄2

12 mN c

{[
J1

(
−
√

1

6
, 0, 1, 0

)
− 47

40

√
1

2
J1

(
−
√

1

6
, 0, 1, 2

)]
FD

− 2

[
J1

(√
2

3
, 0, 1, 0

)
− 47

40

√
1

2
J1

(√
2

3
, 0, 1, 2

)]
Fp

}
. (58)

L. Definition of the cross section of bremsstrahlung emission of photons and resulting formulas

The cross-section of bremsstrahlung emission of photons is [28]

d σ (1)

d�A1 d�A2 d�γ

= Eγ

(2π h̄)4

(
p1 f

h̄c

)
sin2 θ1 sin2 θ2

sin5(θ1 + θ2)
× 1

2J + 1

∑
μMi

|〈�Ẽ L̃|Ĥγ (kγ , ε(α) )|�EL〉|2, (59)

where p1 is the momentum of the incident nucleus (cluster) A1, and θ1 and θ2 are scattering angles of the first and second clusters
in the laboratory frame.
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We write down the final formulas of matrix elements of bremsstrahlung emission in the proton-deuteron scattering. It turns
out that in the first approach [we will call it the three-cluster model; see Eq. (27)] and in the second approach [we will call it the
folding model; see Eq. (58)] matrix elements are the same:〈

�E f (r, q)
∣∣ Ĥγ (kγ , ε(α=2))

∣∣�Ei (r, q)
〉 =

√
2 e h̄2

12 mN c

{[
J1

(
− 1√

6
, 0, 1, 0

)
− 47

40

√
1

2
· J1

(
− 1√

6
, 0, 1, 2

)]
F1

− 2

[
J1

(√
2

3
, 0, 1, 0

)
− 47

40

√
1

2
· J1

(√
2

3
, 0, 1, 2

)]}
. (60)

The integrals are [see Eqs. (31)]

J1(α, li, l f , n) =
∫ +∞

0

dRi(r, li )

dr
R∗

f (l f , r) jn(α kγ r) r2dr. (61)

III. ANALYSIS, NUMERICAL CALCULATIONS

To understand the role of the deuteron structure, we are
going to perform three (four) types of calculations. They are
distinguished by the wave function of the deuteron and are
labeled by indexes 0 (C), S, and R. The index 0 means that
the deuteron is considered a structureless particle and, thus,
its internal structure is ignored. [If the wave function of the
deuteron is approximated by the case of the contact interaction
(47), we will use the index C]. The index S stands for the shell-
model approximation (48) of the wave function of deuteron,
and the last case R means that the realistic wave function (44)
of the deuteron is involved in calculations.

A. Deuteron wave functions and form factor

The key element of our model is the wave function of
the deuteron bound state. This function will determine the
interaction of the proton and deuteron. Thus we start our
analysis from deuteron wave functions in different models and
approximations. In Figs. 3 and 4 we display wave functions
of deuteron obtained with the Minnesota potential. The shell

FIG. 3. Wave functions of the deuteron obtained in the shell
model (SM) and cluster model (CM).

model (SM) and cluster model (CM) visually are very similar.
However, displaying wave functions on a logarithmic scale,
we see that they have quite different asymptotic behavior.
Deuteron form factors calculated within the shell model and
cluster model are shown in Figs. 5 and 6. If the zero-range
interaction is used to determine the wave function of the
deuteron (47), then the deuteron form factor is

F1(kγ ) = 2
√

2κ

kγ

arctan

(
kγ

2
√

2κ

)
. (62)

B. Wave functions of the p + d system

In Fig. 7 we display phase shifts of the elastic p + d scat-
tering. One can see that the strongest interaction is observed in
the 1/2+ state, where the nucleus 3He has a bound state. For
energy E > 100 MeV, all displayed phase shifts are very close
to zero. This is an additional indication that the potential of the
p + d interaction is weak and that the Born approximation can
be used for this energy range.

FIG. 4. Asymptotic form of the deuteron wave functions con-
structed in the shell model (SM) and cluster model (CM) (the
logarithm of the wave function with base of 10 is used on the vertical
axis).
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FIG. 5. Form factors of the deuteron determined in the shell and
cluster models.

We constructed wave functions of the continuous spectrum
states using the diagonalization procedure of the 100 × 100
matrix of Hamiltonian. Details and justification of this proce-
dure can be found, for example, in Refs. [35,36]. Figure 8
shows wave functions of 1/2+ states as a function of the
distance between the proton and deuteron. In Fig. 9 we display
wave functions for the 1/2− state. Note that the states 1/2+
and 1/2− can be connected by the dipole transition operator.
General features of the displayed wave functions are that they
have large amplitude at relatively small distances between
clusters (r < 5 fm) and that they slowly decrease as 1/r.

FIG. 6. Form factors of the deuteron in logarithmic scale cal-
culated in the shell and cluster models (the logarithm of the wave
function with base of 10 is used on the vertical axis).

FIG. 7. Phase shifts of the elastic p + d scattering.

C. Different NN potentials

In this section we consider how the shape of nucleon-
nucleon potential affects phase shifts of the elastic p + d
scattering. For this aim, we were involved in our calculations
of two new NN potentials. They are the Volkov potential
(VP) [37] and modified Hasegawa-Nagata potential (MHNP)
[38,39]. These potentials alongside with the Minnesota po-
tential (MP) are often used in different cluster models. It is
demonstrated in Fig. 10, where the even components V31 and
V13 of three nucleon-nucleon potentials are displayed, that
the MHNP has the largest repulsive core at a small distance
between nucleons, the VP has the smallest repulsive core,

FIG. 8. Wave functions of continuous spectrum states in the
1/2+ state of the p + d system (on the vertical axis the wave function
is in units of fm−3/2).
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FIG. 9. Wave functions of relative motion of the proton with
respect to the deuteron in the 1/2− state (on the vertical axis the
wave function is in units of fm−3/2).

and the MP represents intermediate case among three selected
potentials.

In Fig. 11 we display phase shifts of the elastic p + d
scattering in the 1/2+ state. We can see that the phase shifts
slightly depending on the shape of the nucleon-nucleon po-
tentials especially at the energy region E < 50 MeV. In the
energy range 150 < E < 200, differences of phase shifts for
different potentials are less than 20 degrees.

As a results, wave functions of the elastic p + d scat-
tering obtained with different NN potentials are very close
to one another. In Fig. 12 we display wave functions of
the p + d system for the energy 147 MeV. The noticeable

FIG. 10. The even components V31 and V13 of the MHNP, MP,
and VP nucleon-nucleon potentials as a function of the distance
between nucleons.

FIG. 11. Phase shifts of the p + d scattering in the 1/2+ state
calculated with three nucleon-nucleon potentials.

difference in wave functions is observed at small distances
r < 1 fm.

Let us consider the 1/2− states in 3He and in the p + d
elastic scattering. The 1/2− states can be connected to the
1/2+ states by the dipole transition operator. In Fig. 13 we
display phase shifts of p + d elastic scattering in the 1/2−
states, calculated with three nucleon-nucleon potentials. At
low energy ranges, phase shifts exhibit resonance-like behav-
ior, when phase shifts rapidly grow with increasing of energy
E . However, the amplitudes of growing are small, besides we
estimate that the widths of such resonance states are larger
than 20 MeV and their energies are less than 8 MeV. Thus,
such states cannot be considered as resonance states.

FIG. 12. Wave functions of the p + d system at energy 147 MeV
obtained with three different nucleon-nucleon potentials.
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FIG. 13. Phase shifts of the elastic p + d scattering in the 1/2−

state obtained with the MP, MHNP, and VP.

This conclusion can be partially confirmed by the behavior
of wave functions in the 1/2− states. In Fig. 14 we display
wave functions obtained with three nucleon-nucleon poten-
tials at the energy E = 12.7 MeV, and in Fig. 15 we show
wave functions for a larger value of the energy, E = 147 MeV.
As we can see, the wave functions at relatively small and large
energies have noticeable maxima at relatively small distances
(0.8 < r < 2.5 fm) between the proton and deuteron. We may
conclude that maxima of wave functions in the 1/2− state
at small distances are due to the interplay between effects of
nucleon-nucleon and Coulomb interactions from one side and
effects of the Pauli principle from another side.

FIG. 14. Wave functions of relative motion of proton and
deuteron with energy E = 12.7 MeV and the total angular momen-
tum Jπ = 1/2−.

FIG. 15. Wave functions of relative motion of proton and
deuteron with energy E = 147 MeV and the total angular momentum
Jπ = 1/2−.

D. Dependence of the bremsstrahlung cross
section on the structure of deuteron

We are interested in the question, is the bremsstrahlung
cross section dependent on the structure of the deuteron?
In the previous section we discussed several forms of the
deuteron wave functions. Two of them are presented in ana-
lytic form, and one of them is obtained numerically by solving
the two-body Schrödinger equation with the Minnesota poten-
tial. The deuteron wave function of the oscillator shell model,
displayed in Eq. (48), allows us in a simple way to study
the effects of the deuteron structure on the bremsstrahlung
cross section. Indeed, this wave function depends on the os-
cillator length b. Recall, that the oscillator length is selected
to minimize the ground state energy of the deuteron with a
selected potential. If in Eq. (48) we put b = 0, then we obtain
a structureless deuteron or, in other words, we disregard of the
internal structure of the deuteron.

The oscillator length b can be considered the variational
parameter in our two-cluster model. An optimal value of b can
be determined by comparing the theoretical and experimental
data at different energies of protons colliding with deuterons.
Variation of the oscillator length allows us to demonstrate
clearly how strongly the bremsstrahlung cross sections de-
pends on the shape of the deuteron wave function.

Some information about the structure of the deuteron is
included in its form factor, which is presented in the folding
and cluster approaches. The matrix element of bremsstrahlung
emission in both approaches is defined by Eq. (60) as (Fp =
1), where we will consider the form factor of the deuteron in
the folding approach given by Eq. (53) (ZD = 1, AD = 2 for
the deuteron),

FD(kγ ) = ZD exp −1

4

AD − 1

AD
(kγ b)2 = exp −1

8
(kγ b)2 (63)

with the oscillator length b.
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FIG. 16. Cross sections of bremsstrahlung emission for p + d (in
the experiment [40] the deuteron is the projectile and the proton is
the target) with the included structure of the deuteron and without it
calculated at deuteron beam energies of 145 MeV (Ekin = 98 MeV),
500 MeV (Ekin = 333 MeV), and 1.5 GeV (Ekin = 1.0 GeV) [Pa-
rameters of calculations: cross section is defined in Eq. (59) and
then averaged over all angles with the exception of photon emission
angle θ used in experiments (θ = 60◦; see also Ref. [45], Fig. 5);
as nonzero oscillator length for deuteron we choose b = 1.3 fm;
Rmax = 20 000 fm and 2 500 000 intervals are used in the numerical
integration; time of computer calculations is 2–4 min for 40 points
of each calculated spectrum; kinetic energy Ekin of relative motion of
proton and deuteron is used in calculations of bremsstrahlung matrix
elements, and is Ekin = (2/3)Ebeam]. Here, experimental data at 145
MeV of beam energy given by black triangles are extracted from
Ref. [40]. See also free pnγ calculation of Herrmann, Speth, and
Nakayama at 150 and 200 MeV in Ref. [41] (see also Fig. 6 in Ref.
[40]).

Results of such calculations at different energies of the
beam are presented in Fig. 16. From such results we conclude
the following.

(1) The difference between cross sections calculated with
the included structure of the deuteron and without it at
the same beam energy becomes visible and stable at
higher beam energy (higher than 500 MeV).

(2) Calculation with realistic wave functions (including
the structure of the deuteron) gives a larger cross sec-
tion of bremsstrahlung than the cross section without
the inclusion of the structure of the deuteron.

(3) In xperiment [40] the beam energy used, 145 MeV, is
not effective for such a study (it is demonstrated by
cross sections at 1.5 GeV in comparison with the cross
section at 145 MeV in this figure). At the same time,
possible new measurements of bremsstrahlung cross
sections but at higher energies (about 0.5–1.5 GeV
of beam energy) will allow us to extract information
about the structure of the deuteron (realistic oscillator
length and wave function).

(4) More precise information about the structure of the
deuteron can be obtained if one organizes unified ex-

FIG. 17. Cross sections of bremsstrahlung emission for p + d
with including the new form factor calculated at beam energies
of 145 MeV (Ekin = 98 MeV), 500 MeV (Ekin = 333 MeV), and
1.5 GeV (Ekin = 1.0 GeV) [Parameters of calculations: cross sec-
tion is defined in Eq. (59); matrix element is defined in Eq. (60);
as nonzero oscillator length for the deuteron we choose b = 1.3 fm;
Rmax = 20 000 fm and 2 500 000 intervals are used in the numerical
integration; time of computer calculations is 2–4 min for 40 points
of each calculated spectrum; kinetic energy Ekin of relative motion of
proton and deuteron is used in calculations of bremsstrahlung matrix
elements, and is Ekin = (2/3)Ebeam]. Here, experimental data at 145
MeV of beam energy given by black triangles are extracted from
Ref. [40].

periments in the measurement of the bremsstrahlung
cross section at two different energies of the beam (for
example, at 145 MeV and 500 MeV). Then, our model
will estimate the ratio between two bremsstrahlung
cross sections at such energies and provide a realistic
value of the oscillator length with high precision.

E. Dependence of bremsstrahlung cross section
on the new form factor of the deuteron

Now we will analyze how much the spectrum is changed if
one uses the new form factor of the deuteron instead of previ-
ous calculations. So, we have the matrix element in the form
(60) with the form factor of the deuteron given by Eq. (62).
Note that this form factor of the deuteron does not include the
oscillator length. Results of such calculations with the new
form factor are presented in Fig. 17. From these calculations
one can see that the inclusion of the new form factor reduces
the full cross section a little. But, general dependence of the
cross section on this form of form factor is observed at higher
energies.

IV. CONCLUSIONS AND PERSPECTIVES

In this paper, we investigated the emission of
bremsstrahlung photons in the scattering of protons off
deuterons on the full cluster basis in a wide region of the
beam energy from low energies to 1.5 GeV. To realize these
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investigations, we developed a new model. Based on such a
model we obtain the following results:

(i) It is demonstrated that the matrix elements of
bremsstrahlung emission in the deuteron-proton scat-
tering in the three-cluster formalism coincides with
the corresponding matrix elements in the folding ap-
proximation given in Ref. [28].

(ii) The formalism of the model includes the form fac-
tor of a deuteron which affects the behavior of
bremsstrahlung cross sections and reflects the struc-
ture of thedeuteron and the influence of parameters of
nucleon-nucleon interactions. This gives the possibil-
ity to investigate the structure of nuclei and properties
of interactions from analysis of bremsstrahlung cross
sections.

(iii) We studied the dependence of the bremsstrahlung
cross section on the structure of the deuteron. We find
that the oscillator length b, related to the shell-model
description of the deuteron, is a convenient parameter
for such a study. Analysis of the dependence of the
cross section on such a parameter shows the follow-
ing. At beam energies used in the experiment [40]
the cross section is not sensitive enough to variations
of oscillator length, i.e., on the internal structure of
the deuteron. However, stable differences between
cross sections calculated at zero and nonzero oscil-
lator lengths at the same beam energy are observed
at higher beam energy (higher than 500 MeV). The
spectrum of photons is increased by increasing of the
oscillator length inside the full energy region of the
emitted photons. However, using the new the deuteron

form factor in the cluster formalism [see Eq. (62)]
reduces the bremsstrahlung cross section a little.

(iv) We can obtain more precise information about the
structure of the deuteron by performing new unified
experiments for measurements of the bremsstrahlung
cross section at two different energies of the beam
(for example, at 145 and 500 MeV or above).
Then, our model will estimate the ratio between two
bremsstrahlung cross sections at such energies and
provide information about the realistic value of the os-
cillator length with high precision, or, in other words,
about the wave function of the deuteron.

We see that the formalism of our model provides a strict
basis for the description of the deuteron-proton scattering
and emission of virtual photons in the study of dilepton
production in deuteron-proton scattering (see, for example,
Refs. [41–43]). This can be interesting for further investiga-
tions and applications.
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APPENDIX A: CALCULATION OF OPERATOR OF BREMSSTRAHLUNG EMISSION IN THREE-CLUSTER MODEL

In this Appendix we will calculate the operator of the emission of bremsstrahlung photons in the three-cluster formalism.
We fix the position of nucleons. We assume that vector r measures the distance between the proton and neutron which form a
deuteron. We also assume that r1 is the coordinate of the first proton and r2 is the coordinate of the neutron. Vector r3 determines
the location of the second proton. Starting from Eq. (1), this operator is obtained in the following form:

Ĥe(kγ , ε(α) ) = 1

2

eh̄

mN c
[π̂∗

1 A∗(1) + A∗(1)π̂∗
1 + π̂∗

3 A∗(3) + A∗(3)π̂∗
3 ]

= 1

2

eh̄

mN c
{π̂∗

1 ε(α) exp{−i(kγ ρ1)} + ε(α) exp{−i(kγ ρ1)}π̂∗
1 + π̂∗

3 ε(α) exp{−i(kγ ρ3)} + ε(α) exp{−i(kγ ρ3)}π̂∗
3 }

= 1

2

eh̄

mN c

[
(ε(α)π̂∗

1 ) exp

{
−i

1√
2

(kγ r)+i
1√
6

(kγ q)

}
+ exp

{
−i

1√
2

(kγ r)+i
1√
6

(kγ q)

}
(ε(α)π̂∗

1 )

+ (ε(α)π̂∗
3 ) exp

{
−i

√
2

3
(kγ q)

}
+ exp

{
−i

√
2

3
(kγ q)

}
(ε(α)π̂∗

3 )

]
and then

Ĥe(kγ , ε(α) ) = 1

2

eh̄

mN c

[(
ε(α),

1√
2
π∗

r − 1√
6
π∗

q

)
exp

{
−i

1√
2

(kγ r)+i
1√
6

(kγ q)

}
+ exp

{
−i

1√
2

(kγ r)+i
1√
6

(kγ q)

}

×
(

ε(α),
1√
2
π∗

r − 1√
6
π∗

q

)
+
√

2

3
(ε(α)π∗

q ) exp

{
−i

√
2

3
(kγ q)

}
+
√

2

3
exp

{
−i

√
2

3
(kγ q)

}
(ε(α)π∗

q )

]
.
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Collecting similar terms, we obtain

Ĥe(kγ , ε(α) ) = 1

2

eh̄

mN c

[
2

3
(ε(α), kγ ) exp

{
−i

1√
2

(kγ r)+i
1√
6

(kγ q)

}
+ 2

3
(ε(α)kγ ) exp

{
−i

√
2

3
(kγ q)

}

+ 2 exp

{
−i

1√
2

(kγ r)+i
1√
6

(kγ q)

}(
ε(α),

1√
2
π∗

r − 1√
6
π∗

q

)
+ 2

√
2

3
exp

{
−i

√
2

3
(kγ q)

}
(ε(α), π∗

q )

]
.

Taking into account that (ε(α), kγ ) = 0, we obtain

Ĥe(kγ , ε(α) ) = 1

2

eh̄

mN c

[
2√
2

exp

{
−i

1√
2

(kγ r)

}
(ε(α), π∗

r ) exp

{
i

1√
6

(kγ q)

}

−
√

2

3
exp

{
−i

1√
2

(kγ r)

}
exp

{
i

1√
6

(kγ q)

}
(ε(α), π∗

q ) + 2

√
2

3
exp

{
−i

√
2

3
(kγ q)

}
(ε(α), π∗

q )

]
.

APPENDIX B: CALCULATIONS OF INTEGRALS

1. A general case

In this Appendix we calculate integrals (21):

I1 = 〈 � f (r) | e−i kγ r d
dr

| �i(r) 〉r, I2 = 〈� f (r) | ei cp kγ r | �i(r) 〉r,

I3 = 〈� f (r) | e−i cA kγ r | �i(r) 〉r, I4 = 〈� f (r) | e−i cA kγ r V (r) | �i(r) 〉r. (B1)

Here, to two integrals in Eqs. (21) we have added two new types of integrals, which are used in calculations in other problems
of bremsstrahlung emission. V (r) is an arbitrary potential function.

We use a multipole expansion of the wave function of photons, following the formalism in Sec. D of Ref. [44] [see Eqs. (29)–
(31) and (24)–(28) in that paper]. Here, we obtain the following formulas for matrix elements:

〈k f | e−ikγ r | ki〉r =
√

π

2

∑
lγ =1

(−i)lγ
√

2lγ + 1
∑

μ=±1

[
μ p̃M

lγ μ − i p̃E
lγ μ

]
,

〈k f | e−ikγ r ∂

∂r
| ki〉r =

√
π

2

∑
lγ =1

(−i)lγ
√

2lγ + 1
∑

μ=±1

ξμ μ × [pM
lγ μ − iμ pE

lγ μ

]
. (B2)

We write solutions for integrals based on these formulas (for simplicity, we study the case of li = 0).
According to the second formula in Eqs. (B2), the first integral is

I1 = 〈� f | e−ikγ r ∂

∂r
| �i〉r =

√
π

2

∑
lγ =1

(−i)lγ
√

2lγ + 1
∑

μ=±1

ξμ μ × [pM
lγ μ − iμ pE

lγ μ

]
, (B3)

where (see Eqs. (38) at li = 0 in Ref. [44])

pM
lγ μ = −IM (0, l f , lγ , 1, μ)J1(0, l f , lγ ),

pE
lγ μ =

√
lγ + 1

2lγ + 1
IE (0, l f , lγ , 1, lγ − 1, μ)J1(0, l f , lγ − 1)

−
√

lγ
2lγ + 1

IE (0, l f , lγ , 1, lγ + 1, μ)J1(0, l f , lγ + 1) (B4)

and (see Eqs. (39) in Ref. [44])

J1(li, l f , n) =
∫ +∞

0

dRi(r, li )

dr
R∗

f (l f , r) jn(kγ r) r2dr. (B5)
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For the other integrals from Eqs. (B1) one can get similar solutions [those are directly derived from the first expansion in
Eqs. (B2), where the other corresponding radial integrals should be used]:

I2 = 〈� f | ei cp kγ r | �i 〉r =
√

π

2

∑
lγ =1

(−i)lγ
√

2lγ + 1
∑

μ=±1

[
μ p̃M

lγ μ(−cp) − i p̃E
lγ μ(−cp)

]
,

I3 = 〈� f | e−i cA kγ r | �i 〉r =
√

π

2

∑
lγ =1

(−i)lγ
√

2lγ + 1
∑

μ=±1

[
μ p̃M

lγ μ(cA) − i p̃E
lγ μ(cA)

]
,

I4 = 〈� f | e−i cA kγ r V (r) | �i 〉r =
√

π

2

∑
lγ =1

(−i)lγ
√

2lγ + 1
∑

μ=±1

[
μ p̆M

lγ μ(cA) − i p̆E
lγ μ(cA)

]
, (B6)

where [see solutions (40) at li = 0 in Ref. [44] for p̃M
lγ μ, p̃E

lγ μ, Eqs. (F14) and (F26) in Ref. [46] for all matrix elements]

p̃M
lγ μ(c) = Ĩ (0, l f , lγ , lγ , μ)J̃ (c, 0, l f , lγ ),

p̃E
lγ μ(c) =

√
lγ + 1

2lγ + 1
Ĩ (0, l f , lγ , lγ − 1, μ)J̃ (c, 0, l f , lγ − 1) −

√
lγ

2lγ + 1
Ĩ (0, l f , lγ , lγ + 1, μ)J̃ (c, 0, l f , lγ + 1),

p̆M
lγ μ(cA) = Ĩ (0, l f , lγ , lγ , μ)J̆ (cA, 0, l f , lγ ),

p̆E
lγ μ(cA) =

√
lγ + 1

2lγ + 1
Ĩ (0, l f , lγ , lγ − 1, μ)J̆ (cA, 0, l f , lγ − 1) −

√
lγ

2lγ + 1
Ĩ (0, l f , lγ , lγ + 1, μ)J̆ (cA, 0, l f , lγ + 1) (B7)

and [see solutions (41) in Ref. [44] for J̃ and the corresponding angular integral, Eqs. (F13) and (F21) in Ref. [46] for all matrix
elements]

J̃ (c, li, l f , n) =
∫ +∞

0
Ri(r) R∗

f (l, r) jn(c kγ r) r2dr, J̆ (cA, li, l f , n) =
∫ +∞

0
Ri(r) R∗

l, f (r)V (r) jn(cA kr) r2dr. (B8)

2. Linear and circular polarizations of the photon emitted

We rewrite vectors of linear polarization ε(α) through vectors of circular polarization ξμ with opposite directions of rotation
(see Ref. [32], (2.39), p. 42):

ξ−1 = 1√
2

(ε(1) − iε(2) ), ξ+1 = − 1√
2

(ε(1) + iε(2) ), ξ0 = ε(3). (B9)

where

h± = ∓1 ± i√
2

, h−1 + h+1 = −i
√

2,
∑

α=1,2

ε(α),∗ = h−1ξ
∗
−1 + h+1ξ

∗
+1. (B10)

We have (in Coulomb gauge at ε(3) = 0)

ε(1) = 1√
2

(ξ−1 − ξ+1), ε(2) = i√
2

(ξ−1 + ξ+1), (B11)

∑
μ=±1

ξ ∗
μ · ξμ = 1

2
(ε(1) − iε(2) ) (ε(1) − iε(2) )∗ + 1

2
(ε(1) + iε(2) ) (ε(1) + iε(2) )∗ = 2. (B12)

Also we will find vectorial products of vectors ξ±1. From Eqs. (B9) we obtain

ξ∗
−1 = −ξ+1, ξ∗

+1 = −ξ−1. (B13)

From here we obtain vector multiplications as

[ξ−1 × ξ+1] = −i [ε(1) × ε(2)] = −i εz, (B14)

[ξ∗
−1 × ξ+1] = − [ξ+1 × ξ+1] = 0, [ξ∗

−1 × ξ−1] = − [ξ+1 × ξ−1] = i εz,

[ξ∗
+1 × ξ−1] = − [ξ−1 × ξ−1] = 0, [ξ∗

+1 × ξ+1] = − [ξ−1 × ξ+1] = −i εz. (B15)
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3. Summation over vectors of polarizations

In this section, we will calculate multiplications of integrals on vectors of polarizations. Let us consider the first integral I1

which has the form [see Eqs. (B3)]:

I1 = 〈� f | e−ikγ r ∂

∂r
| �i〉r =

√
π

2

∑
lγ =1

(−i)lγ
√

2lγ + 1
∑

μ=±1

ξμ μ × [pM
lγ μ − iμ pE

lγ μ

]
. (B16)

We calculate

ε(1) · I1 = −
√

π

2

∑
lγ =1

(−i)lγ
√

2lγ + 1
1√
2

∑
μ=±1

[
pM

lγ μ − i μ pE
lγ μ

]
,

ε(2) · I1 = −
√

π

2

∑
lγ =1

(−i)lγ
√

2lγ + 1
i√
2

∑
μ=±1

[
μ pM

lγ μ − i pE
lγ μ

]
, (B17)

and summation over vectors of polarization is∑
α=1,2

ε(α) · I1 = −
√

π

2

∑
lγ =1

(−i)lγ
√

2lγ+1

∑
μ=±1

[
1 + i μ√

2
pM

lγ μ + 1 − i μ√
2

pE
lγ μ

]
. (B18)

There is the property∑
μ=±1

[
1 − i μ√

2
pE

lγ μ

]
=
∑

μ=±1

[
1 + i μ√

2
pE

lγ , −μ

]
,

∑
μ=±1

[
1 + i μ√

2
pM

lγ μ + 1 − i μ√
2

pE
lγ μ

]
=
∑

μ=±1

[
1 + i μ√

2
pM

lγ μ + 1 + i μ√
2

pE
lγ , −μ

]
=
∑

μ=±1

1 + i μ√
2

[
pM

lγ μ + pE
lγ , −μ

]
. (B19)

Then one can write Eq. (B18) as∑
α=1,2

ε(α) · I1 =
√

π

2

∑
lγ =1

(−i)lγ
√

2lγ + 1
∑

μ=±1

μ hμ

(
pM

lγ ,μ + pE
lγ ,−μ

)
. (B20)

We calculate properties

(εx + εz)
∑

α=1,2

[I1 × ε(α)] =
√

π

2

∑
lγ =1

(−i)lγ
√

2lγ + 1
∑

μ=±1

μ hμ

(
pM

lγ ,μ − pE
lγ ,−μ

)
. (B21)

4. Case of li = 0, l f = 1, lγ = 1

In the case of li = 0, l f = 1, lγ = 1 integrals (B4) and (B7) are simplified to

I1 = −i

√
3π

2

∑
μ=±1

ξμ μ × [pM
lγ μ − iμ pE

lγ μ

]
, I3 = −i

√
3π

2

∑
μ=±1

[
μ p̃M

lγ μ(cA) − i p̃E
lγ μ(cA)

]
,

I2 = −i

√
3π

2

∑
μ=±1

[
μ p̃M

lγ μ(−cp) − i p̃E
lγ μ(−cp)

]
, I4 = −i

√
3π

2

∑
μ=±1

[
μ p̆M

lγ μ(cA) − i p̆E
lγ μ(cA)

]
, (B22)

where [see Eqs. (B4) and (B7)]

pM
lγ μ = −IM (0, 1, 1, 1, μ)J1(0, 1, 1),

pE
lγ μ =

√
2

3
IE (0, 1, 1, 1, 0, μ)J1(0, 1, 0) −

√
1

3
IE (0, 1, 1, 1, 2, μ)J1(0, 1, 2),

p̃M
lγ μ(c) = Ĩ (0, 1, 1, 1, μ)J̃ (c, 0, 1, 1),

p̃E
lγ μ(c) =

√
2

3
Ĩ (0, 1, 1, 0, μ)J̃ (c, 0, 1, 0) −

√
1

3
Ĩ (0, 1, 1, 2, μ)J̃ (c, 0, 1, 2),
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p̆M
lγ μ(cA) = Ĩ (0, 1, 1, 1, μ)J̆ (cA, 0, 1, 1),

p̆E
lγ μ(cA) =

√
2

3
Ĩ (0, 1, 1, 0, μ)J̆ (cA, 0, 1, 0) −

√
1

3
Ĩ (0, 1, 1, 2, μ)J̆ (cA, 0, 1, 2). (B23)

The angular integrals are calculated in Appendix B in Ref. [44] [see Eqs. (B1)–(B10) in that paper]. The results of the
calculation of angular integrals are

IE (0, 1, 1, 1, 0, μ) =
√

1

24π
, IM (0, 1, 1, 1, μ) = 0, IE (0, 1, 1, 1, 2, μ) = 47

240

√
3

2π
,

Ĩ (0, 1, 1, 0, μ) = 0, Ĩ (0, 1, 1, 1, μ) = μ

2
√

2π
, Ĩ (0, 1, 1, 2, μ) = 0, (B24)

and matrix elements (B23) are simplified to

pM
lγ μ = 0, pE

lγ μ = 1

6

√
1

π
· J1(0, 1, 0) − 47

240

√
1

2π
· J1(0, 1, 2), p̃M

1μ(c) = μ

2
√

2π
· J̃ (c, 0, 1, 1), p̃E

1μ(c) = 0,

p̆M
1μ(cA) = μ

2
√

2π
· J̆ (cA, 0, 1, 1), p̆E

1μ(cA) = 0. (B25)

Now we calculate integrals in Eqs. (B25). For pM
lγ =1,μ and pE

lγ =1,μ we obtain

I1 = −i

√
3π

2

∑
μ=±1

ξμ μ × [−iμ pE
lγ =1, μ

] = −
√

3π

2
pE

lγ =1, μ (ξ−1 + ξ+1). (B26)

Taking into account the summation of vectors of polarizations (B9),

ξ−1 = 1√
2

(ε(1) − iε(2) ), ξ+1 = − 1√
2

(ε(1) + iε(2) ), ξ0 = ε(3),

we simplify Eq. (B26) as

I1 = −
√

3π

2
pE

lγ =1, μ(−i
√

2 ε(2) ) = i
√

3π pE
lγ =1, με(2). (B27)

From Eqs. (B17) we calculate products of integrals on vectors of polarizations:

ε(1) · I1 =
⎧⎨⎩−
√

π

2

∑
lγ =1

(−i)lγ
√

2lγ + 1
1√
2

∑
μ=±1

[
pM

lγ μ − i μ pE
lγ μ

]⎫⎬⎭
lγ =1

= i

√
π

2

√
3

2

∑
μ=±1

[
pM

lγ =1,μ − i μ pE
lγ =1,μ

] = i

√
3π

2
pE

lγ =1,μ

∑
μ=±1

(−i μ ) = 0, (B28)

ε(2) · I1 =
⎧⎨⎩−

√
π

2

∑
lγ =1

(−i)lγ
√

2lγ + 1
i√
2

∑
μ=±1

[
μ pM

lγ μ − i pE
lγ μ

]⎫⎬⎭
lγ =1

= −
√

π

2

√
3

2

∑
μ=±1

[
μ pM

lγ =1,μ − i pE
lγ =1,μ

] = −
√

3π

2

∑
μ=±1

[−i pE
lγ =1,μ

] = i
√

3π pE
lγ =1,μ. (B29)

Therefore, we write down the final solutions:

ε(1) · I1 = 0, ε(2) · I1 =
∑

α=1,2

ε(α) · I1 = i
√

3π pE
lγ =1,μ. (B30)

We obtain the property

I1 = i
√

3π pE
lγ =1, μ · ε(2) =

⎡⎣∑
α=1,2

ε(α) · I1

⎤⎦ · ε(2). (B31)
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Taking solution (B25) into account, rewritten via radial integrals,

pE
lγ μ = 1

6

√
1

π
· J1(0, 1, 0) − 47

240

√
1

2π
· J1(0, 1, 2),

we obtain

I1 = ε(2) · i

√
3

6

{
J1(0, 1, 0) − 47

40

√
1

2
· J1(0, 1, 2)

}
,

ε(1) · I1 = 0,

ε(2) · I1 =
∑

α=1,2

ε(α) · I1 = i

√
3

6

{
J1(0, 1, 0) − 47

40

√
1

2
· J1(0, 1, 2)

}
. (B32)
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