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Kohn-Luttinger effect in dense matter and its implications for neutron stars
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Repulsive short-range interactions can induce p-wave attraction between fermions in dense matter and lead
to Cooper pairing at the Fermi surface. We investigate this phenomenon, well known as the Kohn-Luttinger
effect in condensed-matter physics, in dense matter with strong short-range repulsive interactions. We find that
repulsive interactions required to stabilize massive neutron stars can induce p-wave pairing in neutron and quark
matter. When massive vector bosons mediate the interaction between fermions, the induced interaction favors
Cooper pairing in the 3P2 channel. For the typical strength of the interaction favored by massive neutron stars,
the associated pairing gaps in neutrons can be in the range of 10 keV to 10 MeV. Strong and attractive spin-orbit
and tensor forces between neutrons can result in repulsive induced interactions that greatly suppress the 3P2

pairing gap in neutron matter. In quark matter, the induced interaction is too small to result in pairing gaps of
phenomenological relevance.

DOI: 10.1103/PhysRevC.110.025804

I. INTRODUCTION

The discovery of massive neutron stars by radio observa-
tions of pulsars [1–3] confirmed that the maximum mass of
neutron stars Mmax > 2 M�, and gravitational wave and x-ray
observations constrain the radius of a neutron star with mass
� 1.4 M� to the range 11–13 km [4–8]. These constraints
and theoretical calculations of the EOS of neutron-rich matter
at nB � 2nsat [9–13], taken together strongly suggest a rapid
increase in the pressure and the speed of sound in the NS core
[14]. This, in turn, implies strong repulsive interactions are
necessary for any putative phase of high-density matter in the
core. This article addresses whether such repulsion can have
other observable consequences. In particular, we investigate if
such repulsion can lead to Cooper pairing between fermions
with nonzero angular momentum due to the Kohn-Luttinger
(KL) effect [15] in the cores of neutron stars.

The KL effect, which arises because the interaction at the
Fermi surface is modified due to screening in the medium,
implies that the Cooper pairing instability in high angular
momentum states is inevitable and occurs even when the bare
interaction is repulsive [15]. The effect has been discussed
extensively in condensed-matter physics (for a recent peda-
gogic review, see Ref. [16]). In the context of dense nuclear
matter, early work in Refs. [17–19] recognized that the in-
teraction between nucleons induced by polarization effects in
the medium would significantly alter the pairing gaps (for
recent reviews, see Refs. [20,21]). The induced interaction,
typically calculated in second-order perturbation theory or
Fermi liquid theory, naturally incorporates the KL effect.
In dilute Fermi systems with attractive s-wave short-range
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interactions, it has been known since the work of Gor’kov and
Melik-Barkhudarov that the induced interaction suppresses
the s-wave pairing gap relative to the BCS prediction [22]. In
neutron matter, when the s-wave interaction is repulsive, the
induced interaction was initially expected to increase the p-
wave attraction between neutrons [17]. However, more recent
work in Ref. [23] finds that the induced spin-orbit interaction
can dominate and result in a net suppression instead at modest
density. Here we revisit calculating the induced interaction in
high-density matter characterized by a large sound speed to
study its implications for 3P2 pairing. We consider short-range
interactions that contain central and noncentral components
and study the competition between the attractive and repulsive
components of the induced p-wave interaction and its density
dependence.

In quark matter, when the Fermi surfaces of up, down, and
strange quarks are split due to charge neutrality and a larger
strange quark mass, the KL effect provides a mechanism to
pair quarks of the same flavor and color. However, in this
case, we find that p-wave interaction induced by short-range
repulsion introduced to increase the pressure of quark matter
is too small to be of phenomenological relevance.

Our study, which relies on extrapolating results derived
from perturbation theory to strong coupling, provides order-
of-magnitude estimates for the pairing gaps. Although the
method we employ is inadequate to make quantitative pre-
dictions, it identifies a mechanism for 3P2 pairing in dense
Fermi systems with large repulsive interactions mediated by
short-range interactions mediated by heavy vector bosons.

In Sec. II, we review the KL mechanism for nonrelativis-
tic fermions. In Sec. III, we derive the induced interaction
between neutrons at high density by assuming that the bare
interaction is due to the exchange of heavy vector mesons. In
Sec. IV, we consider the possible effects of the KL mechanism
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FIG. 1. Irreducible second-order diagrams for Kohn-Luttinger mechanism.

in quark matter. We discuss the implications for neutron star
cooling in Sec. V, summarize our main findings, and discuss
open questions in Sec. VI.

II. KOHN-LUTTINGER MECHANISM

Kohn and Luttinger showed that a short-range repulsive
potential can induce attraction in large odd partial waves due
to medium effects that can overscreen the effective interaction
between fermions at finite density [15]. There has been re-
newed interest in studying the KL effect in condensed-matter
systems because calculations suggest that the induced pair-
ing gaps in p waves and low-order partial waves could be
large enough to be realized in experiments (see, for example,
Refs. [24–27]). KL’s original calculation included terms at
second order in the potential; more recent analysis [28] cal-
culates the potential up to fourth order in a constant potential
characterized by a large scattering length as well as including
retardation effects where pairing occurs away from the Fermi
surface, also contributing at fourth order.

In weak coupling, the KL effect arises naturally at second
order in the potential by evaluating the diagrams in Fig. 1. We
refer to these diagrams from left to right as the screening, ver-
tex, and exchange diagrams, respectively. The vertex diagram
also has a mirror image, which must be included. We consider
interactions that occur at the Fermi surface, so |k| = |k′| = kF .
The momentum transfer is labeled q = k′ − k.

For a short-range potential with zero range and strength de-
noted by U0, the nonrelativistic calculation of these diagrams
is straightforward. In this case, the screening diagram cancels
the contribution from the two vertex diagrams, and only the
exchange diagram contributes. The exchange diagram also
gets an overall sign since it is crossed and is given by

VKL(q) = U 2
0

1

β

∑
�0

∫
d3�

(2π )3

1

�0 − �2/2m

1

�0 − (� + q)2/2m
.

(1)

Notice that since |k| = |k′|, the frequency transfer q0 is just
zero. Taking the Matsubara sum and simplifying it gives a sin-
gular contribution to the potential. Since we are considering
the effects of interactions with the medium, the loop integral
has a factor nF (�2/2m) = 1/(eβ(�2/2m−μ) + 1) and does not
need to be regulated. At the low temperatures we consider
(T � εF = k2

F /2m) this simplifies nF (�2/2m) ≈ �(kF − �).
The momentum integral in Eq. (1) yields the Lindhard

function defined by

U (q) = − m

4π3q

∫
� d� d��

�(kF − �)

cos θq� − q/2�

= mkF

4π2

[
1 − 1

q

(
1 − q2

4

)
log

∣∣∣∣1 − q/2

1 + q/2

∣∣∣∣
]
, (2)

where q̄ = q/kF . Thus, Eq. (1) can be written as

VKL(q) = −U 2
0 U (q). (3)

For any potential, the contribution to the induced poten-
tial from the singularity at q = 2kF of the Lindhard function
scales as (−1)LL−4 for large L [15,29] where L is the angular
momentum quantum number. Since the regular contributions
to the total potential falls off exponentially with L, attraction
is guaranteed for large odd partial waves.

Although these results are only generically true for large
L, they persist for relatively low partial waves for some
potentials. It was shown in Refs. [24,28] that the constant
potential calculated above would result in p-wave attraction.
The p-wave contribution from the potential in Eq. (3) can be
found easily by making a change of integration variable from∫ 1
−1 d cos θ to

∫ 2
0 qdq. The matrix element in the Born approx-

imation should be doubled due to a diagram with outgoing
momenta switched, but we will absorb this normalization into
the gap equation to match the literature. The p-wave potential
from the exchange diagram and its crossed counterpart is then
given by

V�=1 = −U 2
0

mkF

4π

4

5π
(2 log 2 − 1). (4)

The superfluid gap due to the induced attraction in p-waves
was calculated several decades earlier in Ref. [17,30]. In the
BCS approximation, the p-wave gap

	p � εF exp

(
2

N (0)V�=1

)
= εF exp

( −5π2

4(2 log 2 − 1)(akF )2

)
,

(5)

where εF = k2
F /2m is the Fermi energy, N (0) = mkF /2π2 is

the density of states at the Fermi surface for each spin, and the
scattering length a = mU0/4π in weak coupling.

In strong coupling, we cannot calculate the effective inter-
action at the Fermi surface reliably, and in the following, we
shall assume that Eq. (5) provides a useful estimate. Further,
we shall also assume that the s-wave scattering amplitude
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between quasiparticles at the Fermi surface, denoted by f0,
is directly related to the strength of the bare interaction U0. In
Fermi liquid theory, the sound speed

cs = kF√
3mm∗

√
(1 + F0) , (6)

where F0 = N (0) f0 is dimensionless measure of the quasi-
particle interaction and m∗ is the fermion effective mass at
the Fermi surface. Using this relation, we can estimate the
interaction strength U0 ≈ f0 at a given density if cs and m∗
are known. If m∗ ≈ m and U0 = f0, then the induced p-wave
gap in Eq. (5) can be rewritten as

	p ≈ εF exp

(
− 5

(2 log (2) − 1)F 2
0

)
, (7)

to illustrate its extreme sensitivity to F0 and the sound speed
through Eq. (6). For example, models of high-density neutron
matter typically predict F0 � 2 for nB � 3 nsat [31]. Under
these conditions, Eq. (7) predicts robust p-wave pairing with
gaps 	p � 1 MeV due to the induced interaction.

In the next section, we will calculate the induced interac-
tion between neutrons in more realistic scenarios where the
bare potential is momentum dependent and contains central
and noncentral components.

III. INDUCED P-WAVE PAIRING
IN DENSE NEUTRON MATTER

The s-wave potential at the Fermi surface becomes repul-
sive in the neutron star core when nB � nsat/2. At these higher
densities, 3P2 pairing is favored because the bare potential in
this channel remains attractive, and noncentral components of
the interaction, especially the spin-orbit interaction, favor the
alignment of spin and orbital angular momentum. Calcula-
tions of the 3P2 pairing gap in the BCS approximation reported
in Refs. [21,32] show that the pairing gaps are model depen-
dent, especially for nB > 2nsat because the nucleon-nucleon
potentials at the relevant momenta are not well constrained
by scattering data. In these calculations, the maximum value
of the gap 	3P2

� 1–2 MeV occurs between 2 and 3 nsat and
decreases rapidly with increasing density. At lower density,
when the nucleon momenta p � 
χ where 
χ � 500 MeV is
the breakdown scale of chiral EFT, a recent study used chiral
EFT potentials and found that the maximum value 	3P2

� 0.4
MeV was reached at nB � 1.3 nsat and its decrease at higher
density was found to be sensitive to the details of the short-
distance physics [33]. Together, these findings suggest that if
neutron matter persists at the highest densities encountered in
neutron stars, the bare 3P2 potential could be small, and 	3P2

depends on model assumptions about the nuclear interaction
at short distances.

When the bare 3P2 potential weakens, the gap is espe-
cially sensitive to corrections due to induced interactions in
the medium (see, for example, the discussion in Sec. 3.4 of
Ref. [21]). In early work, the interaction induced by the central
components of the nuclear force was found to increase the
3P2 gap [17,34], as would be expected from the discussion
of the KL mechanism in Sec. II. However, as mentioned
earlier, calculations that employed realistic low-energy nu-

clear potentials with significant noncentral components found
that the interference between the central and spin-orbit com-
ponent of the nuclear force led to significant suppression of
the 3P2 gap for nB < 2nsat [23].

At nB � 2nsat, the description of nuclear interactions relies
on model assumptions since the typical nucleon momenta
p � 
χ . To investigate the competition between a strong and
repulsive central force and the spin-orbit component of the
nuclear force at high density, we revisit the calculation of the
induced interaction in simple models. In what follows, we
shall assume that the dominant contribution to the nucleon-
nucleon interaction at short distances is due to the exchange of
heavy vector mesons such as the ω and ρ mesons with masses
mω ≈ mρ � 800 MeV. For nB � 4nsat, kF /
 where 
 � mω

remains a useful expansion parameter. In this case, including
terms up to O[(kF /
)2], the interaction can be described by
the potential

V (q, q′) = C0 + C̃0σ1 · σ2 + C2(q2 + q′2) + C′
2(q′2 − q2)

+ [C̃2(q2 + q′2) + C̃′
2(q′2 − q2)]σ1 · σ2

+ iVSO q × q′ · (σ1 + σ2) + VT q · σ1q · σ2 . (8)

In neutron matter, due to the Pauli principle, only the com-
binations C̄0 = C0 − 3C̃0, C̄2 = C2 − 3C̃2, and C̄′

2 = C′
2 + C̃′

2
are relevant. In the full expansion of the vector meson po-
tential, there is also a term proportional to (q × q′ · σ1)(q ×
q′ · σ2) and higher powers of momentum in the central and
spin-orbit interactions. An exchange tensor term proportional
to q′ · σ1q′ · σ2 is also allowed by the symmetries of the in-
teraction but is not present in the vector exchange. In this
exploratory study, we shall neglect the spin-orbit squared
and tensor exchange components and truncate the potential
at order k2

F . In this case, five LECs denoted by C̄0, C̄2, C̄′
2,

VSO, and VT are adequate. The large and attractive spin-orbit
interaction, whose strength is set by VSO plays an important
role, as discussed below. Since we consider incoming and out-
going momenta at the Fermi surface with zero center-of-mass
momentum, q = k1 − k3 and q′ = k1 − k4 with the momenta
of neutrons in the initial state are given by k1 and k2, and the
final state momenta are k3 and k4.

It is straightforward to repeat the calculation of the
diagrams described in the preceding section with the po-
tential in Eq. (8). However, it is simpler to define the

FIG. 2. ZS (left) and ZS′ (right) diagrams. The hatched blobs
represent the antisymmetrized interaction defined in Eq. (9).
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antisymmetrized potential

V (q, q′) = C0(δ13δ24 − δ14δ23) + C2(q2 + q′2)(δ13δ24 − δ14δ23) + C′
2(q′2 − q2)(δ13δ24 + δ14δ23) + C̃0(σ13 · σ24 − σ14 · σ23)

+ C̃2(q2 + q′2)(σ13 · σ24 − σ14 · σ23) + C̃′
2(q′2 − q2)(σ13 · σ24 + σ14 · σ23)

+ 2iVSOq × q′ · (σ13δ24 + σ24δ13) + VT (q · σ13q · σ24 − q′ · σ14q′ · σ23) (9)

that includes the effect of the exchange processes. We use the notation δi j = χ
†
j χi and σi j = χ

†
j σχi for incoming and outgoing

two-component spinors χi and χ
†
j . In this case, the induced interaction at second order is calculated by evaluating the diagrams

depicted in Fig. 2. The diagram on the left is called the zero-sound diagram and denoted as ZS, and the diagram on the right is
called the exchange zero-sound diagram and is denoted by the symbol ZS′. A detailed derivation of the total induced interaction
Vind = V ZS

ind − V ZS′
ind is presented in Appendix A.

First, we present the result obtained by neglecting the momentum-dependent components of the bare central interaction. In
this case, the induced potential

V ind = −(C2
0 + 3C̃2

0 )[U (q)δ14δ23 − U (q′)δ13δ24] + 6C0C̃0[U (q)δ13δ24 − U (q′)δ14δ23] + (−C̃2
0 + 2C0C̃0)

× (σ13 · σ24 − σ14 · σ23)[U (q) + U (q′)] − 3C̃2
0 (σ13 · σ24 + σ14 · σ23)[U (q) − U (q′)]. (10)

The s- and p-wave potentials given by this interaction are

V ind
1S0

(0) = C̄2
0

mkF

3π2
(2 log 2 + 1)

V ind
3PJ

(0) = −C̄2
0

mkF

5π2
(2 log 2 − 1) , (11)

where again C̄0 = C0 − 3C̃0 is the momentum-independent bare 1S0 potential.
The calculation of the induced potential, including the momentum-dependent central interactions, is tedious, and the analytic

results contain a large number of terms. Details of the intermediate expressions can be found in Appendix A.
We find analytic results for the second-order induced potentials in the s and p-induced potentials. The induced 1S0 and 3PJ

potentials calculated to O(mk3
F ) are given by

V ind
1S0

= mkFC̄2
0

1

3π2
(1 + 2 log 2) + mk3

F

[
C̄0C̄2

2

3π2
(5 + 4 log 2) + C̄0C̄

′
2

2

5π2
(7 − 4 log 2) − C̄0VT

16

15π2
(2 + log 2)

]
, (12)

and

V ind
3PJ

= mkFC̄2
0

1

5π2
(1 − 2 log 2) + mk3

F

[
C̄0C̄2

2

105π2
(59 − 68 log 2) − C̄0C̄

′
2

2

105π2
(29 + 52 log 2)

+ C̄0VT
1

105π2
(91J2 − 221J + 50 + (224J2 − 544J + 220) log 2)

]
, (13)

respectively.

When momentum dependence of the central interaction is
neglected, the bare spin-orbit force does not contribute to the
induced interaction, and the leading-order dependence of the
induced potential on J is determined by the tensor interaction.
See Appendix A for a detailed discussion.

These contributions have the same behavior as the leading-
order KL result. The contribution to the induced interaction in
a particular partial wave arising from terms in the bare inter-
action that do not contribute to that partial wave is strongly
influenced by the KL singularity at q = 2kF . For this rea-
son, their contribution is suppressed relative to other terms
in the interaction at the same order in the expansion. No-
tice, for example, that in the p-wave-induced potential, the
term proportional to C̄0C̄′

2 has a numerical factor five times
larger than C̄0C̄2 and fifteen times larger than C̄0VT for 3P2.

This implies that the singularity at q = 2kF does not play an
essential role when C̄′

2 is of modest size. By comparing the
relevant terms in Eq. (13), we find that the KL singularity
plays an essential role only when C̄′

2 � C̄0/(16k2
F ). In what

follows, we shall continue to use the term Kohn-Luttinger
effect to refer to the induced interaction, but it should be
borne in mind that the singularity at q = 2kF does not play
a dominant role for typical values of C̄′

2 we explore in this
study.

Since the spin-orbit force is strong and important in the
3P2 channel, we expect that it may contribute to the induced
interaction even though it enters at a higher order in the
momentum expansion. To investigate the impact of the spin-
orbit coupling, we calculate a subset of the terms that contain
the central and spin-orbit interactions at O(mk5

F ). These
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corrections to the induced potentials are given by:

V (5)
1S0

= mk5
F

[
C̄2

2
8

315π2
(277 + 96 log 2) − C̄′2

2
8

105π2
(43 + 24 log 2)

+ C̄2C̄
′
2

32

105π2
(37 + 6 log 2) + V 2

SO
8

35π2
(17 + 16 log 2)

]
, (14)

and

V (5)
3PJ

= mk5
F

[
C̄2

2
16

567π2
(83 − 24 log 2) + C̄′2

2
64

567π2
(34 − 3 log 2)

− C̄2C̄
′
2

16

2835π2
(523 + 204 log 2) + C̄′

2VSO[J (J + 1) − 4]
32

945π2
(43 + 24 log 2)

+ VT VSO[J (J + 1) − 4]
16

945π2
(43 + 24 log 2) + V 2

SO(7J2 − 17J + 10)
32

4725π2
(43 + 24 log 2)

]
. (15)

These are not all of the terms that contribute at O(mk5
F ). Not

included are terms proportional to C̄2VT , C̄′
2VT , and V 2

T .
From Eq. (15), we deduce that when the bare spin-orbit

interaction is attractive, it could enhance 3P2 pairing if

2C̄′
2 + VT + 4

5VSO > 0 . (16)

The relation of this result to the suppression of 3P2 pairing at
low density due to spin-orbit interactions found in Ref. [23],
which employed a realistic low-momentum nucleon-nucleon
potential fit to scattering data warrants further study.

We consider three scenarios to study the implications of
these results for dense neutron matter. Each scenario is defined
by a specification of the LECs that appear in the bare potential
defined in Eq. (8). In scenario A, we shall assume that the
exchange of heavy vector mesons mediates the interactions
between neutrons. When the mass of the vector meson is large
compared to the neutron Fermi momentum, and interaction is
described by a current-current four-fermion Lagrangian

Lint = −GV

2
(nγμn)(nγ μn) . (17)

Retaining only the leading terms in the k/mn expansion, the
LECs appearing in Eqs. (12) and (13) are given by

C̄0 = GV , C̄2 = 5GV

8m2
n

, C̄′
2 = 3GV

8m2
n

,

VSO = −3GV

8m2
n

, VT = GV

4m2
n

. (18)

Although the simple vector interaction cannot capture the
complex nature of interactions between neutrons, which could
involve a richer operator structure due to pion exchange and
many nucleon forces, it is able to describe the qualitative
aspects of the nucleon-nucleon interaction at high momen-
tum; it predicts negative phase shifts in the 1S0, 3P0, and 3P1

channels. The phase shift in the 3P2 channel vanishes because
VSO = −C̄′

2, and the spin-orbit interaction exactly cancels the
contribution from the central force. This aspect of short-range
vector interactions that leads to a vanishing bare potential
in the 3P2 channel is a generic feature of any four-fermion
interaction without derivative couplings since initial and fi-
nal states constructed only from spin and helicity operators

cannot be combined to form a tensor of rank greater than 1.
As a result, such an interaction cannot generate potentials in
channels with J � 2 at the tree level. Including momentum
dependence in the meson propagator, explicit derivative cou-
plings (i.e., momentum dependence beyond that found in the
Dirac spinors), or momentum dependence from loops lifts this
restriction.

The couplings are related to the Fermi liquid parameters F0

and G0. In the mean-field theory, F0 and G0 depend only on
the central components of the interaction and are given by

F0 = N (0)
[
C̄0 + 2k2

F (C̄2 + 3C̄2
′)
]
, (19)

G0 = −N (0)
[
C̄0 + 2k2

F (C̄2 − C̄2
′)
]
, (20)

where N (0) =
√

k2
F + m2

nkF /2π2 is the density of states for
each spin at the Fermi surface. Thus, if F0 and G0 are
specified, the strength of the s-wave components of the in-
teraction are constrained by the equation (2C̄0 + 4k2

FC̄2) =
(F0 − 3G0)/2N (0) and the p-wave component is obtained
using the relation C̄′

2 = (F0 + G0)/(8N (0)k2
F ). In scenario A,

the interaction contains just one parameter, GV . In this case,
F0 and G0 are not independent and GV is determined by spec-
ifying F0, which we take to be in the range 2–4 at nB = 3 nsat.

The induced and total p-wave interactions at the Fermi
surface are shown in Fig. 3 for F0 = 3 at nB = 3nsat. The
actual value shown V N (0)/2 is the quantity in the exponent
of the BCS equation. The model naturally prefers 3P2 pairing
because although the induced interaction at the Fermi surface
is attractive for all values of the total angular momentum
J = 0, 1, 2, the sum V bare + V ind is only attractive for J = 1, 2
and the net attraction is larger for J = 2. In Fig. 4, we show
the 3P2 pairing gaps calculated using the BCS formula in
Eq. (5). Results are shown for three choices of the coupling
GV obtained by setting F0 = 2, 3 and 4 at nB = 3 nsat.

To study the interplay between the central p-wave and the
spin-orbit interactions, we consider scenario B, in which we
introduce parameters ξp and ξSO to control the strength of
the central p-wave interaction and the spin-orbit interaction,
respectively. In this case, we neglect the tensor coupling, and
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FIG. 3. Total potential for heavy vector boson exchange at O(mk3
F ) (left) and at O(mk5

F ) (right). The coupling constant is tuned to F0 = 3
at 3nsat .

the LEC constants are given by:

C̄0 = GV , C̄2 = GV


2
, C̄′

2 = ξp
GV


2
,

VSO = −ξSO
GV


2
, VT = 0. (21)

As a generic choice at the same order as the nucleon and
meson masses, we take 
 = 1 GeV. Figure 5 shows curves
of constant V N (0)/2 in the space of ξp and ξSO for GV =
20 GeV−2 and GV = 40 GeV−2. Corresponding values of F0

for each value of ξp are shown on the right axis. The black
line shows where the bare interaction is zero. Above this line,
the bare interaction is repulsive, and below it is attractive. The
general behavior of the induced interaction is set by terms pro-
portional to C̄′2

2 , C̄′
2VSO, and V 2

SO with some secondary effects
from terms proportional to C̄0C̄′

2 and C̄2C̄′
2. Even though some

of these terms enter at higher order in the gradient expansion,
they are generally more important than lower-order terms in
the induced interaction because they do not rely on the KL sin-
gularity to contribute to the 3P2 potential. Of these five terms,

the only ones that can be attractive are C̄0C̄′
2 and C̄2C̄′

2 when
ξp is positive, and C̄′

2VSO when ξSO and ξp are of the same
sign. As a result, for stronger couplings, the overall interaction
is repulsive when ξp is negative and of reasonable size, even
though that corresponds to a more attractive bare interaction.
There is significant net attraction only when ξp and ξSO are
both positive and ξp is not much larger than ξSO as this leads
to a more repulsive bare interaction without producing enough
induced attraction to match.

Figure 6 shows the 3P2 gap as a function of ξSO for a few
choices of ξp and the same choices of GV . This interplay
between the relative size of ξp and ξSO sensitively determines
the size of the gap. This model is not detailed enough to
make quantitative predictions, but the general trend remains
that high-order terms in the expansion play an important role
in determining the size of the gap. An attractive spin-orbit
appears to be necessary to have gaps of a reasonable size. An
attractive bare p-wave potential precludes pairing even though
the bare interaction is stronger because of the repulsion due to
the induced interaction.

FIG. 4. The 3P2 gap corresponding to the short-range vector interaction in Eq. (17). Results at O(mk3
F ) are shown in the left panel and at

O(mk5
F ) in the right panel. The coupling constant is tuned to the given value of F0 at 3nsat .
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FIG. 5. Contours of constant 3P2 potential in model B in the ξp − ξSO plane for two choices of GV at 3nsat . F0, calculated using Eq. (19) is
also shown. The black dashed line shows where the bare interaction vanishes.

To incorporate trends observed in the nucleon-nucleon
phase shifts that have been measured up to Elab � 300 MeV
which correspond pc.m. = √

mnElab/2 � 375 MeV, we con-
sider scenario C in which we incorporate a nonzero VT by
introducing a parameter ξT that sets the strength of the tensor
interaction, and VT = −GV ξT /
2. This allows us to obtain
any desired ordering of the p-wave phase shifts for J = 0, 1, 2
and match scattering data that require a weakly attractive bare
3P2 interaction and repulsive interactions in the 3P0 and 3P1

channels. Since the induced interaction at O(mk5
F ) in Eq. (15)

neglected the part of the potential proportional to C̄′
2VT , the

results we present here are strictly only valid for ξT � ξSO.
Thus, scenario C must be viewed as an initial exploration into
the effects of VT to be continued in future work.

To obtain the correct ordering of the p-wave interactions,
the parameters must satisfy the following conditions. To
have an attractive bare 3P2 potential, ξSO > ξp and to have
a repulsive bare 3P0, ξp + 2ξSO − 3ξT /2 > 0. The condition
2ξSO/5 < ξT < 2ξSO ensures that the 3P1 potential is most
repulsive and 3P2 is most attractive. We define α and β to be

the ratio between the bare potentials given by

α ≡ V3P2

V3P0

= ξp − ξSO

ξp + 2ξSO − 3ξT /2

β ≡ V3P1

V3P0

= ξp + ξSO + ξT

ξp + 2ξSO − 3ξT /2
. (22)

Phase shifts for laboratory energies between 250 and
350 MeV favor α between −1 and −3 and β between 2 and 4.
The blue horizontal hatched and orange vertical hatched bands
in Figs. 7 and 8 identify regions −3 < α < −1 and 2 < β <

4, respectively with the correct sign for each bare potential.
We only show regions with ξSO > 0 and ξT > 0 since this is
required to obtain the correct ordering of p-wave phase shifts.
These are also the signs favored by a tensor interaction arising
from pion exchange and a spin-orbit force from heavy meson
exchange. To illustrate the relevance of the induced interac-
tion, Fig. 7 shows the interaction for scenario C broken down
into bare potential, O(mk3

F )-induced potential, and O(mk5
F )

FIG. 6. 3P2 gap as a function of ξSO in model B for a few choices of ξp and GV at 3nsat .
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FIG. 7. The bare 3P2 potential, the induced potential at O(mk3
F ), and the induced VSO at nB = 3nsat . GV = 40 GeV−2 in the upper panel and

GV = 20 GeV−2 in the lower panel. Blue horizontal hatched and orange vertical hatched bands indicate where −3 < α < −1 and 2 < β < 4,
respectively, with the correct sign for all phase shifts for α and β defined in Eq. (22).

corrections to the induced potential for a few choices of ξSO

and ξT and the same two values of GV used for scenario B. In
the right panel, ξSO is fixed to match the value of ξp so that
the bare interaction is always zero, as is found in the meson
exchange model. The range of ξp chosen is motivated by the
observation that meson exchange models predict 0.5 � ξp �
1.5 and matching to phase shifts between 250 and 350 MeV
predicts −0.5 � ξp � 0. As seen before, the O(mk3

F )-induced

interaction is dominated by the term proportional to C̄0C̄′
2 and

gives more attraction for positive ξp and repulsion for negative
ξp. The induced interaction does not exactly go through the
origin for ξp = 0, but the KL suppression of the terms that do
not include C̄′

2 or VSO is sufficient that it is not visible on this
scale. Negative values of ξp lead to more repulsive O(mk5

F )
corrections, with this effect being stronger for larger values
of ξSO.

FIG. 8. Curves of constant total potential for different choices of ξp at 3nsat . The black dashed line shows where the spin-orbit correction
vanishes. The coupling constant is GV = 40 GeV−2. Blue horizontal hatched and orange vertical hatched bands indicate where −3 < α < −1
and 2 < β < 4, respectively, with the correct sign for all phase shifts for α and β defined in Eq. (22).
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FIG. 9. 3P2 gap as a function of ξp for a few choices of GV , ξSO, and ξT at nB = 3nsat .

Figure 8 shows the contours of constant potential for sce-
nario C. As in scenario B, negative or zero ξp corresponds to
repulsion for most of the parameter space. However, unlike
scenario B, when ξT is of reasonable size, increasing ξSO

results in repulsion much more quickly. This is a result of the
term proportional to VT VSO. The contribution of the spin-orbit
terms can be easily summarized in terms of the constants of
this model:

V (5SO)
3P2

= ξSO

(
ξT + 4ξSO

5
− 2ξp

)
G2

V


4

32mk5
F

945π2
(43 + 24 log 2).

(23)

In scenario A, ξT is negative and ξSO = ξp, so the term in
parentheses is always negative, and the spin-orbit correc-
tions give additional attraction. However, when we allow
the constants to vary and take ξT positive as is favored by
pion exchange and phase shift data, much of the favored
region of the phase diagram shows suppression due to these
corrections. The black dashed line in Fig. 8 shows where
ξT + 4ξSO/5 − 2ξp = 0. The spin-orbit corrections suppress
the potential above and to the right of this line, while the
potential is enhanced below and to the left.

Figure 9 shows the 3P2 gap at 3nsat as a function of ξp for
a few choices of ξSO and ξT . For negative ξp, even though
the bare interaction is more attractive, the induced interaction
strongly suppresses the gap. The contribution of positive ξT

suppresses the gap. For positive ξp, MeV-scale gaps are pos-
sible. These results are sensitive to the value of F0, as can be
inferred by comparing the upper and lower panels of Fig. 7.
For smaller F0, the relative importance of the induced interac-
tion is diminished, and for most of the parameter space, the
induced interaction suppresses an attractive bare interaction.
This still has a significant effect as the gap is exponentially
sensitive to the potential. In this case, for almost all the ex-
plored parameter space, the induced interaction suppresses the
gap by an order of magnitude or more.

IV. INDUCED P-WAVE PAIRING IN QUARK MATTER

The inner cores of neutron stars may be made up of de-
confined quark matter. Quarks are expected to form a color

superconductor at asymptotic densities, with the dominant
pairing being in the color antitriplet channel (antisymmet-
ric). See Ref. [35] for a review. Color symmetric pairing is
generally not considered since gluon exchange in the color
sextet (symmetric) is repulsive, while the antitriplet channel is
attractive. At asymptotic densities, pairing all three colors and
flavors (up, down, and strange) in color and flavor antisym-
metric pairs is expected (the CFL phase). At lower densities
where the strange quark mass cannot be neglected, up and
down quarks can pair in the color antisymmetric channel.
This pairing involves two colors, typically denoted as red and
green, and is called the 2SC phase. In this phase, the strange
quarks and blue-up and blue-down quarks are unpaired.

Pairing of quarks of the same flavor and color was con-
sidered in Ref. [36] in which possible pairing channels were
found for strange quarks in color symmetric and antisymmet-
ric channels for a bare interaction with the quantum numbers
of gluon exchange. The attractive color symmetric channel
they find is model dependent and, in the case of massive
quarks with all contributions from gluon exchange, receives
competition from repulsive terms with the same spin and
angular momentum quantum numbers but different chiral-
ity. Since they consider contact interactions without explicit
derivative couplings, they explore J = 0 and 1. Pairing of
quarks of the same flavor was also studied in Ref. [37]
in which attractive color antisymmetric channels with J =
1 were considered, finding the transverse color-spin locked
phase to be favored.

The possibility that quarks left over in the 2SC phase could
pair due to the KL mechanism in QCD was first studied in
Ref. [38]. This study investigated the KL effect in gauge
theories where fermions interact via long-range forces that are
dynamically screened due to Landau damping of the magnetic
gauge bosons. Here, the energy dependence of the interaction
plays a critical role, and the results of Ref. [38] indicate that a
gap arises via a mechanism analogous to the Kohn-Luttinger
effect but conclude that it is too small to be phenomenologi-
cally relevant.

To assess if the KL mechanism could be relevant in quark
matter with short-range interactions that are independent of
energy, we shall calculate the induced interaction in the 3P2

025804-9



MIA KUMAMOTO AND SANJAY REDDY PHYSICAL REVIEW C 110, 025804 (2024)

channel between quarks of the same flavor and color due
to the short-range, flavor and color-independent, repulsive
vector interaction. Such pairing would include the strange
and the up and down blue quarks. In what follows, we shall
focus on the induced interaction between strange quarks of
the same color at moderate density when ms 
 kFs The spe-
cific question we address here is if repulsive short-range
interactions introduced to stabilize quark matter inside neu-
tron stars [39] can lead to pairing gaps of phenomenological
relevance.

For concreteness, we consider a description of quark matter
within the purview of the Nambu-Jona-Lasino (NJL) models
(see Ref. [40] for a comprehensive review). In these models,
defined by the interaction Lagrangian [39–41]

LV = G(q̄q)2 + H (q̄q̄)(qq) − gV (q̄γμq)2, (24)

where G and H are the four-fermion scalar quark-antiquark
and diquark coupling strengths, and vector coupling gV is
introduced to generate higher pressures as noted earlier. The
scalar interaction between quarks and antiquarks leads to a
nontrivial vacuum with 〈q̄q〉 = 0 that spontaneously breaks
chiral symmetry and the coefficient G is determined by hadron
masses and the pion decay constant in the vacuum. For typi-
cal momentum cutoff 
NJL ≈ 600 MeV, G
2

NJL � 2 [40]. At
densities of interest to neutron stars, chiral symmetry remains
broken. The constituent strange quark mass is expected to be
300–500 MeV, while the up and down quark masses can be
significantly smaller. The diquark coupling H and the vector
coupling gV are expected to be of similar size because they can
be thought of as arising from the same underlying high-energy
color current-current interactions in QCD [41]. Their values
at the densities of interest to neutron stars are determined phe-
nomenologically. The diquark coupling H , which encodes the
attraction in the color antisymmetric channel, leads to s-wave
pairing between quarks. For H � G, the s-wave pairing gap
between up and down quarks is about 50 MeV and is typically
inadequate to induce pairing between strange quarks and light
quarks [42], as mentioned above. The analysis of the quark
matter EOS in Refs. [39,43] concluded that vector coupling
needed to be of moderate size with gV � G to support the
large sound speed needed to support a two solar mass neutron
star.

First, we note that the contribution to the induced inter-
action from the closed fermion loop (the first diagram in
Fig. 1) is enhanced by a factor Nf Nc. This is because the bare
vector interaction introduced to stiffen the quark matter EOS
is independent of color and flavor. Thus, in contrast to the one-
component Fermi system, where the contribution from the
closed fermion loop was canceled by the diagram that encoded
the vertex corrections, in quark matter with Nf = Nc = 3, the
first diagram in Fig. 1 makes the dominant contribution to
the induced potential. In computing this diagram, the up and
down quarks must be treated as relativistic particles, leading
to a somewhat more complicated expression. After doing the
Matsubara sum and noting that ū3/qu1 = ū4/qu2 for u1 and
u2 incoming and ū3 and ū4 outgoing spinors, the induced

potential from the first diagram is given by:

V ind = g2
V (ū3γμu1)(ū4γνu2)

(
Ek + ms

2ms

)2

×
∑
f ,c

∫
�d�d��

4π3qE�

�(k f c − �)

cq� − q/2�
(2�μ�ν − gμν �� · �q).

(25)

The calculation of the induced interaction, including both
the electric (ūγ iu for i = 0) and magnetic [ūγ iu for i =
(1, 2, 3)] components is unwieldy. In what follows, we shall
focus on the electric component as the magnetic component
is suppressed by the strange quark mass. In this case, setting
μ = ν = 0 in Eq. (25) we find that

V ind = g2
V δ13δ24

2π2q

∑
c

∫
d�dcq�

cq� − q/2�

×
[ ∑

f =u,d

(2�2 − �qcq�)�(k f c − �)

+ 2�ms�(ksc − �)

]
. (26)

After performing the momentum integrals, we find that

V ind = g2
V δ13δ24

∑
c

⎧⎨
⎩

∑
f =u,d

[
− k2

f c

2π2
+ q2

2
U rel

0

(
q

k f c

)

−2k2
f cU

rel
2

(
q

k f c

)]
− 2U (q)

⎫⎬
⎭, (27)

where the relativistic Lindhard functions U rel
0 and U rel

2 defined
in Appendix B.

Note that by not including the magnetic part of the vec-
tor integration [ūγ iu for i = (1, 2, 3)], explicit dependence
on J has been removed, and all the p-waves have the same
potential. Nonetheless, the 3P2 gap remains of primary in-
terest because the bare interaction vanishes for J = 2, while
it is repulsive for J = 0, 1. Figure 10 shows the induced
p-wave potential for strange quarks of mass 350 MeV, for
gV = 2/
2

NJL and 
NJL = 600 MeV. Densities of each color
and flavor are determined assuming 2SC pairing of up and
down quarks, charge neutrality, and beta equilibrium. Since
the pairing gap 	 � μ exp (2/Vind(kF )N (0)), from Fig. 10
we can deduce that the induced potential is too small to be
relevant for neutron star phenomenology. This is mostly due to
the fact that the value of gV needed in NJL models to support
massive neutron stars is significantly smaller than the coupling
we considered for nucleons.

V. IMPLICATIONS FOR NEUTRON STARS

The thermal evolution of neutron stars, especially those
that are reheated by accretion from a companion at late times,
is sensitive to heat capacity and neutrino emissivity in their
cores [44–46]. The neutrino emissivity and the specific heat
of dense matter are both strongly modified by Cooper pairing.
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FIG. 10. Induced p-wave potential between strange quarks for
gV = 2/
2

NJL, 
NJL = 600 MeV, and ms = 350 MeV.

When the pairing gap is large compared to the temperature,
the neutrino emissivity and the specific heat are exponentially
suppressed by the factor exp (−	/kBT ). Additionally, in the
vicinity of the critical temperature, Cooper pair breaking and
formation (PBF) processes enhance the neutrino emissivity.
This enhancement is especially important for neutron Cooper
pairing in the 3P2 channel in the core of the neutron star
[45,46]. Studies of isolated neutron star cooling reported in
Ref. [45] that include the modified URCA (nn → npe−ν̄e and
e− pn → nnνe) reactions and the PBF process but discount the
possibility of other more rapid neutrino emission processes
such as direct URCA [47] find that a critical temperature
for 3P2 pairing, Tc ≈ 	3P2

/1.7, that is larger than 5 × 108 K
(≈50 keV) throughout the inner core would be disfavored
by observations. This favors a scenario in which the 	3P2

is
suppressed at the modest density encountered in the outer core
due to the competition between the interactions induced by the
central and spin-orbit components of the nuclear forces [23]
but is insensitive to the behavior of the gap at higher density.

Accreting neutron stars exhibit a diversity of cooling be-
haviors, and a few neutron stars show behavior that requires
rapid neutrino cooling [44,48]. Such rapid neutrino cooling
can be realized in the dense nuclear matter when the pro-
ton fraction in the core exceeds about 11% to lift kinematic
restrictions on the direct URCA reactions e− + p → n + νe

and n → e− + p + ν̄e [47]. In addition, rapid cooling would
also require 3P2 pairing to be absent at high density. Our
finding that the induced interaction disfavors 3P2 when the
spin-orbit and tensor forces are strong and attractive provides
some insight into the conditions necessary to realize unpaired
neutron matter at high density characterized by a high sound
speed. On the other hand, if the central component of the
p-wave interaction is strongly repulsive and the noncentral
components are weak, then the induced interaction favors 3P2

pairing between neutrons, and rapid neutrino cooling cannot
be realized in nuclear matter at high density. In this scenario,
rapid cooling in neutron stars would require new ungapped
fermionic excitations, such as hyperons or quarks, to enable
the direct URCA reaction. In transiently accreting neutron

FIG. 11. Contours for 	3P2
= 10 keV for GV = 40 GeV−2 at

3nsat for a few choices of ξp. Below and to the right of the contour,
the gap is larger than 10 keV.

stars, inference of the heat deposition due to deep crustal
heating from observations of accretion outbursts and the in-
ference of the core temperature from subsequent observation
in quiescence have been used to derive a lower limit to the
neutron star core heat capacity [48,49]. Further, if the neutron
stars cooling can be observed during quiescence, an upper
limit on the core heat capacity can also be deduced from
observations [48,49]. For neutron stars in the low mass x-ray
binaries KS 1731-260, MXB 1659-29, and XTE J1701-462,
with core temperatures in the range 107–108 K, the lower limit
was found to be a factor of a few below the core heat capac-
ity expected if neutrons and protons in the core are paired.
However, upper limits from future cooling observations in
these systems could constrain the extent of neutron pairing
in the neutron star core. For example, the analysis in Ref. [48]
suggests that if the neutron star in MXB 1659-29 cools by
about 4% during a 10-year period, a very large fraction of
the neutrons in the neutron star core must be superfluid with
a gap that is much larger than a few keV. If observed, it
would disfavor a large attractive tensor interaction and would
require an attractive spin-orbit interaction as shown in Fig. 11.
Repulsive bare p-wave interactions permit larger regions of
parameter space, while attractive bare p-wave interactions are
more restrictive.

VI. CONCLUSION

We have calculated the induced potential between fermions
at the Fermi surface to study the role of polarization effects in
the dense medium. We find that short-range repulsive interac-
tions due to the exchange of heavy vector mesons between
neutrons, whose strength is related to the Fermi liquid pa-
rameter F0 and the sound speed at high density, induce an
attractive p-wave potential. Using a model that allows us
to independently vary the strength of central and noncentral
p-wave interactions, we have investigated the competition
between the bare and induced interactions to determine the
conditions necessary to realize 3P2 pairing in neutron matter at
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high density. When neutron matter is characterized by a large
speed of sound c2

s > 1/3 and F0 � 2, the induced interaction
plays an important role. We find that

(i) The contribution to the induced interaction in a par-
ticular partial wave arising from terms in the bare
interaction that do not contribute to that partial wave
are suppressed because their contribution is strongly
influenced by the KL singularity at q = 2kF . For this
reason, the bare p-wave and the spin-orbit interactions
are generally more important than lower-order terms
for the induced 3P2 potential.

(ii) The induced interaction favors 3P2 pairing if the cen-
tral component of the s-wave and p-wave interaction
are strongly repulsive and the noncentral components
are small. The resulting gap, 	3P2

, can be in the range
0.1–10 MeV in the neutron star core and is exponen-
tially sensitive to the induced potential.

(iii) When the central p-wave and the spin-orbit inter-
action are both strong and attractive, the induced
interaction is repulsive. Although the bare interaction
is strongly attractive, the induced repulsion can pre-
clude pairing or suppress 	3P2

by orders of magnitude.
(iv) In the presence of a strongly attractive spin-orbit inter-

action, the induced interaction favors 3P2 pairing when
the central p wave is repulsive. Pairing persists even
when the strength of the central p-wave repulsion is
greater than the attractive spin-orbit interaction.

An important caveat to these findings is our assumption
that the bare interaction at the Fermi surface is well repre-
sented by Eq. (8). Further, at the high momenta of relevance
when nB > 2nsat, the nucleon-nucleon potential, and thereby
the parameters of our model, are not well constrained by scat-
tering data. Nonetheless, results obtained within the purview
of the model allowed us to explore the connection between
pairing and the strong repulsive central interactions needed to

generate a high sound speed and large F0 at densities expected
in the cores of massive neutron stars. Our calculation, which
includes the effect due to strong spin-orbit forces, provides
useful formulas to gauge the interplay between repulsive cen-
tral interaction and attractive spin-orbit interactions. However,
further study of the role of strong tensor interactions warrants
further study.

Another aspect that warrants mention is the role of many-
body forces. Although we have not explicitly accounted for
them in our study here, earlier work has demonstrated that
three-body forces can be incorporated through a density-
dependent two-body potential that can then be constructed
by normal ordering the three-body force with respect to
a convenient reference state, such as the ground state of
the noninteracting many-body system [9,50]. Including the
three-body force would thereby introduce a density depen-
dence to the parameters of our model that set the strength
of the two-body s-wave and p-wave interactions in dense
matter. We believe the large range of parameter values we
explored should be sufficient to account for corrections due
to many-body forces partially. The density dependence of
the two-nucleon partial-wave matrix elements at the Fermi
surface and the correlation between the parameters induced
by the three-body forces will be explored in future work.
Finally, as cautioned earlier, the magnitude of the 3P2 gap
was calculated using the BCS approximation, which restricted
the interaction to the Fermi surface. More work is needed to
assess the reliability of this approximation.
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APPENDIX A: INDUCED INTERACTIONS

In this Appendix, we derive analytic results for the induced interaction in two steps. First, for the sake of simplicity and
clarity, we assume that the bare potential only contains a momentum-independent s-wave interaction characterized by the C0 and
C̃0, and spin-orbit force with strength VSO. In this case, the ZS diagram involves the product VL × VR, where

VL = C0(δ13δab − δ1bδa3) + C̃0(σ13 · σab − σ1b · σa3) − VSO2iq × (� + k′) · (σ13δab + σabδ13)

VR = C0(δ24δba − δ2aδb4) + C̃0(σ24 · σba − σ2a · σb4) + VSO2iq × (� − k) · (σ24δba + σbaδ24) . (A1)

Evaluating term by term, we find that the C2
0 contribution is given by

C2
0

∑
ab={↑,↓}

(δ13δab − δ1bδa3)(δ24δba − δ2aδb4) = C2
0 δ14δ23. (A2)
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To calculate the C̃2
0 contribution, we use the following identities:

∑
ab={↑,↓}

σ i
abσ

j
ba = 2δi j

∑
b={↑,↓}

σ
j

bcσ
i
ab = χ

†
b σ jσ iχa = δabδ

i j − iεi jkσ k
ab

∑
bc={↑,↓}

3∑
i=1

σ i
cdσ

j
bcσ

i
ab =

3∑
i=1

χ
†
d σ i(2δi j − σ iσ j )χa = −σ

j
ad (A3)

to find that

C̃2
0

∑
ab={↑,↓}

(σ13 · σab − σ1b · σa3)(σ24 · σba − σ2a · σb4) = C̃2
0 (4σ13 · σ24 + 3δ14δ23 + 2σ14 · σ23). (A4)

The C0C̃0 contribution is calculated by noting that
∑

ab δabσba = Tr[σ ] = 0 and
∑

b σbc · σab = 3δac. Explicitly,

C0C̃0

∑
ab={↑,↓}

[(δ13δab − δ1bδa3)(σ24 · σba − σ2a · σb4) + (σ13 · σab − σ1b · σa3)(δ24δba − δ2aδb4)]

= C0C̃0[−2(3δ13δ24 + σ13 · σ24) + 2σ14 · σ23]. (A5)

We have calculated the leading-order contributions from the spin-orbit interaction, proportional to C0 VSO and C̃0 VSO and find
that their contributions vanish. First, consider the C0 VSO term

C0VSO

∑
ab={↑,↓}

[(δ13δab − δ1bδa3)2iq × (� − k) · (σ24δba + σbaδ24) + (δ24δba − δ2aδb4)2iq × (−� − k′) · (σ13δab + σabδ13)]

= 2iC0VSO[q × (� − k) · (2δ13σ24 − σ24δ13 − σ13δ24) + q × (−� − k′) · (2δ24σ13 − σ13δ24 − σ24δ13)] . (A6)

Equation (A6) can be simplified further by noting that terms proportional to q × � vanish upon integrating over the angle θq� and
using the fact that q × k = q × k′ = −q × q′/2. We find the induced interaction proportional to C0 VSO,

iC0VSO[q × q′ · (2δ13σ24 − σ24δ13 − σ13δ24 + 2δ24σ13 − σ13δ24 − σ24δ13)] = 0. (A7)

To see that q × � terms vanish, notice that the only angular dependence from the loop integral is on the angle between q
and �. Consider the integral

∫
d���̂ · û f (�̂ · q̂) where f (�̂ · q̂) contains the angular dependence of the loop integral and �̂ · û

corresponds to terms like q × � · σ . Rotate �� so that q̂ = ẑ and φ� = 0 corresponds to the azimuthal angle of û calling these
angles θq� and φu�. Also define the polar angle of û as θuq Now �̂ · û = sin θq� cos φu� sin θuq + cos θq� cos θuq. Doing the integral∫

dφu� cos φu� = 0 so the only term that survives is proportional to cos θuq. In the spin-orbit terms, � always enters as q × � · σ =
� · (σ × q) with σ × q orthogonal to q, so this contribution always vanishes.

Similarly, the contribution proportional to C̃0VSO can also be simplified by making the substitutions 2iq × (� − k) → iq × q′
and 2iq × (−� − k′) → iq × q′ and using the identities in Eq. (A3). We find that

C̃0VSO

∑
ab={↑,↓}

[(σ13 · σab − σ1b · σa3)iq × q′ · (σ24δba + σbaδ24) + (σ24 · σba − σ2a · σb4)iq × q′ · (σ13δab + σabδ13)]

= C̃0VSO iq × q′ · (2σ13δ24 − 3σ24δ13 + σ13δ24 + 2σ24δ13 − 3σ13δ24 + σ24δ13)

= 0. (A8)

Thus, spin-orbit terms do not contribute to the induced interaction at leading order in VSO. Up to this order, including all of the
nonzero terms associated with the product VL × VR and performing the particle-hole loop integration, we find that the induced
interaction due to the ZS diagram is given by

V ind
ZS = −U (q)

[(
C2

0 + 3C̃2
0

)
δ14δ23 − 6C0C̃0δ13δ24

] − U (q)
[(

4C̃2
0 − 2C0C̃0

)
σ13 · σ24 + (

2C̃2
0 + 2C0C̃0

)
σ14 · σ23

]
, (A9)
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where

U (q) = − 1

β

∑
�0

∫
d3�

(2π )3

1

�0 − �2/2m

1

�0 − (� + q)2/2m

= − m

2π2q

∫ kF

0
�d�

∫ 1

−1

d cos θq�

cos θq� − q/2�

= − mk2
F

2π2q

[
− q

2kF
+ 1

2

(
1 − q2

4k2
F

)
log

∣∣∣∣1 − q/2kF

1 + q/2kF

∣∣∣∣
]

(A10)

is the positive Lindhard function.
The contribution from the ZS′ diagram is obtained by switching indices 3 and 4 and by replacing q by q′ in the loop integral.

Explicitly,

V ind
ZS′ = −U (q′)

[(
C2

0 + 3C̃2
0

)
δ13δ24 − 6C0C̃0δ14δ23

] − U (q′)
[(

4C̃2
0 − 2C0C̃0

)
σ14 · σ23 + (

2C̃2
0 + 2C0C̃0

)
σ13 · σ24

]
. (A11)

The calculation of the momentum-dependent part of the induced potential is similar but a bit more tedious and the analytic
results involves a large number of terms. To obtain useful formula with fewer terms we present results for the spin singlet and
spin-triplet contributions. These will require the second and fourth moments of the Lindhard function denoted U2 and U4. U2 is
defined as follows:

U2(q) = − m

2π2q

∫ kF

0
�3d�

∫ 1

−1

d cos θq�

cos θq� − q/2�

= − mk4
F

2π2q

[
− q

12kF
− q3

16k3
F

+ 1

4

(
1 − q4

16k4
F

)
log

∣∣∣∣1 − q/2kF

1 + q/2kF

∣∣∣∣
]
. (A12)

U4 is defined analagously and is given by:

U4(q) = − mk6
F

2π2q

[
− q

30kF
− q3

72k3
F

− q5

96k5
F

+ 1

6

(
1 − q6

64k6
F

)
log

∣∣∣∣1 − q/2kF

1 + q/2kF

∣∣∣∣
]
. (A13)

Five momentum structures appear corresponding to the five pairings of the combinations of constants given above. The
momentum-dependent parts of VL and VR take the following form for the spin-independent terms. The spin-dependent terms
are analagous,

VL ⊃ C2(| − � − k′|2 + q2)(δ13δab − δ1bδa3) + C′
2(| − � − k′|2 − q2)(δ13δab + δ1bδa3)

VR ⊃ C2(|� − k|2 + q2)(δ24δba − δ2aδb4) + C′
2(|� − k|2 − q2)(δ24δba + δ2aδb4). (A14)

The contributions of the momentum dependence to the induced potential are as follows:

ξa(q) = 1

β

∑
�0

∫
d3�

(2π )3
	(�)	(� + q)[2q2 + | − � − k′|2 + |� − k|2]

ξb(q) = 1

β

∑
�0

∫
d3�

(2π )3
	(�)	(� + q)[−2q2 + | − � − k′|2 + |� − k|2]

ξc(q) = 1

β

∑
�0

∫
d3�

(2π )3
	(�)	(� + q)[| − � − k′|2 + q2][|� − k|2 + q2]

ξd (q) = 1

β

∑
�0

∫
d3�

(2π )3
	(�)	(� + q)[| − � − k′|2 − q2][|� − k|2 − q2]

ξe(q) = 1

β

∑
�0

∫
d3�

(2π )3
	(�)	(� + q)[(| − � − k′|2 − q2)(|� − k|2 + q2) + (|� − k′|2 + q2)(|� − k|2 − q2)] (A15)
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	(�) = (�0 − �2/2m)−1 is the fermion propagator. After doing the loop integral, these give:

ξa(q) = −2mk3
F

3π2
− (

q2 + 2k2
F

)
U (q) − 2U2(q)

ξb(q) = −2mk3
F

3π2
+ (

3q2 − 2k2
F

)
U (q) − 2U2(q)

ξc(q) = −mk3
F

π2

(
11

15
k2

F + 7

12
q2

)
−

(
k4

F + 3

2
q2k2

F + q4

8

)
U (q) − 3

2
q2U2(q) − U4(q)

ξd (q) = −mk3
F

π2

(
11

15
k2

F − 3

4
q2

)
−

(
k4

F − 5

2
q2k2

F + 17

8
q4

)
U (q) + 5

2
q2U2(q) − U4(q)

ξe(q) = −mk3
F

π2

(
22

15
k2

F − q2

6

)
−

(
2k4

F − q2k2
F − 7

4
q4

)
+ q2U2(q) − 2U4(q).

(A16)

The total central induced potential in the spin triplet channel:

V ind
S=1 = −C̄2

0 [U (q) − U (q′)] + C̄0C̄2[ξa(q) − ξa(q′)] + C̄0C̄
′
2[ξb(q) − ξb(q′)]

+ C̄2
2 [ξc(q) − ξc(q′)] + 5C̄′2

2 [ξd (q) − ξd (q′)] + C̄2C̄
′
2[ξe(q) − ξe(q′)]. (A17)

The total central induced potential in the spin singlet channel:

V ind
S=0 = C̄2

0 [U (q) + U (q′)] − C̄0C̄2[ξa(q) + ξa(q′)] + 3C̄0C̄
′
2[ξb(q) + ξb(q′)]

− C̄2
2 [ξc(q) + ξc(q′)] + 3

(
C̄′2

2 [ξd (q) + ξd (q′)] + C̄2C̄
′
2[ξe(q) + ξe(q′)]

)
. (A18)

This gives s- and p-wave central potentials:

1S0 : C̄2
0

mkF

3π2
(1 + 2 log 2) + mk3

F

[
C̄0C̄2

2

3π2
(5 + 4 log 2) + C̄0C̄

′
2

2

5π2
(7 − 4 log 2)

]
+ mk5

F

[
C̄2

2
8

315π2
(277 + 96 log 2)

− C̄′2
2

8

105π2
(43 + 24 log 2) + C̄2C̄

′
2

32

105π2
(37 + 6 log 2)

]
(A19)

3PJ : C̄2
0

mkF

5π2
(1 − 2 log 2) + mk3

F

[
C̄0C̄2

2

105π2
(59 − 68 log 2) − C̄0C̄

′
2

2

105π2
(29 + 52 log 2)

]
+ mk5

F

[
C̄2

2
16

567π2
(83 − 24 log 2)

+ C̄′2
2

64

567π2
(34 − 3 log 2) − C̄2C̄

′
2

16

2835π2
(523 + 204 log 2)

]
. (A20)

The spin-orbit potential gives an additional contribution to the p waves:

2C̄′
2VSO

1

β

∑
�0

∫
d3�

(2π )3
	(�)	(� + q)[(| − � − k′|2 − q2)iq × (� − k) · (3δ13σ24 + δ24σ13)

+ (|� − k|2 − q2)iq × (−� − k′) · (3δ24σ13 + δ13σ24)]

= C̄′
2VSOiq × q′ · (σ13δ24 + σ24δ13)ξ f (q). (A21)

The function ξ f (q) is given by:

ξ f (q) = −2mk3
F

3π2
+ (5q2 − 4k2

F )U (q). (A22)

This gives a contribution to the p waves after including the ZS′ diagram:

3PJ : [J (J + 1) − 4]C̄′
2VSO

32mk5
F

945π2
(43 + 24 log 2). (A23)

We calculate the contribution of the tensor interaction only to O(mk3
F ). The term proportional to C0VT gives:

C0VT
1

β

∑
�0

∫
d3�

(2π )3
	(�)	(� + q)[−δ13δ24(| − � − k′|2 + |� − k|2) − 2q · σ13q · σ24

+ (−� − k′) · σ23(−� − k′) · σ14 + (� − k) · σ23(� − k) · σ14]. (A24)
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Doing the calculation for the C̃0VT term gives −3 times the result for the term proportional to C0VT after reducing to spin singlet
or triplet. The potentials in these channels after including the ZS′ diagram are given by:

V ind
S=0 = −C̄0VT (2q2U (q) + 2q′2U (q′)), (A25)

V ind
S=1 = C̄0VT

[
mk3

F

6π2
(−q̂ · σ13q̂ · σ24 + q̂′ · σ13q̂′ · σ24) + U (q)

(
3

4
q · σ13q · σ24 − 1

2
q′ · σ13q′ · σ24 + q2

4

)

−U (q′)
(

3

4
q′ · σ13q′ · σ24 − 1

2
q · σ13q · σ24 + q′2

4

)
+ U2(q)(1 + q̂ · σ13q̂ · σ24) − U2(q′)(1 + q̂′ · σ13q̂′ · σ24)

]
,

(A26)

where we define the unit vector q̂ = �q/|q|. For the spin triplet, outgoing spin indices are exchanged on some terms to simplify
the equations. Doing the integrals gives:

1S0 : −C̄0VT
16mk3

F

15π2
(2 + log 2)

3P2 : −C̄0VT
4mk3

F

15π2
(1 − log 2)

3P1 : −C̄0VT
4mk3

F

21π2
(4 + 5 log 2)

3P0 : C̄0VT
2mk3

F

21π2
(5 + 22 log 2).

(A27)

The part of the interaction proportional to V 2
SO takes the form:

− 8V 2
SO

1

β

∑
�0

∫
d3�

(2π )3
	(�)	(� + q){[q × (−� − k′) · σ13][q × (� − k) · σ24] + δ13δ24[q × (−� − k′)] · [q × (� − k)]}

= −2mk3
F

3π2
[q2(σ13 · σ24 + 2δ13δ24) − (q · σ13)(q · σ24)] + U (q)[q4σ13 · σ24

− q2(q · σ13)(q · σ24) + 2(q × q′ · σ13)(q × q′ · σ24) + 8δ24δ24q2k2
F ]

− U2(q)[4q2σ13 · σ24 − 4(q · σ13)(q · σ24) + 8δ13δ24q2]. (A28)

A tedious calculation gives the following contribution:

1S0 : V 2
SO

8mk5
F

35π2
(17 + 16 log 2)

3P2 : V 2
SO

128mk5
F

4725π2
(43 + 24 log 2)

3P1 : 0

3P0 : V 2
SO

64mk5
F

945π2
(43 + 24 log 2).

(A29)

APPENDIX B: INDUCED INTERACTION BETWEEN QUARKS

Treating quarks relativistically, the screening diagram is given by

V ind = g2
V (ū3γμu1)(ū4γνu2)

(
Ek + ms

2ms

)2 ∑
f ,c

1

β

∑
�0

∫
d3�

(2π )3

Tr[γ μ(/� + /q + m f )γ ν (/� + m f )](
�2

0 − �2 − m2
f

)(
�2

0 − (� + q)2 − m2
f

) , (B1)

where f = u, d, s and c = r, g, b denotes the flavor and color of quarks that appear in the particle-hole loop. Since the screening
diagram is enhanced by the number of flavors and colors and the other diagrams are not, we calculate only this part of the
potential. We neglect antiparticle contributions by discarding the Matsubara sums that produce terms proportional to (exp[β(E +
μ)] + 1)−1, which are negligible at small temperatures. Doing the trace and noticing that ū3/qu1 = ū4/qu2 = 0, Eq. (B1) can be
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written as

V ind = g2
V (ū3γμu1)(ū4γνu2)

(
Ek + ms

2ms

)2 ∑
f ,c

∫
�d�d��

4π3qE�

�(k f c − �)

cos θq� − q/2�
(2�μ�ν − gμν �� · �q) (B2)

k f c is the Fermi momentum of flavor f and color c with the normal subscript F suppressed for readability. Since the Fermi
momentum of strange quarks is approximately the same for all colors, also suppress the color label on ks. Expanding to zeroth
order in ks/ms, only the μ = ν = 0 components contribute and we get:

V ind = g2
V δ13δ24

1

2π2q

∑
f ,c

∫
�d�√

�2 + m2
f

dcq�

cos θq� − q/2�
�(k f c − �)(2�2 + 2m2

f − 2�q cos θq�). (B3)

Setting mu = md = 0 and discarding components from the strange quark that are not proportional to ms gives:

V ind = g2
V δ13δ24

∑
c

⎧⎨
⎩

∑
f =u,d

[
− k2

f c

2π2
+ q2

2
U rel

0

(
q

k f c

)
− 2k2

f cU
rel
2

(
q

k f c

)]
− 2U (q)

⎫⎬
⎭, (B4)

where the mass in the Lindhard function U (q) is the strange quark mass and we define relativistic dimensionless Lindhard
functions in analogy with the relativistic ones (defining q̃ = q/k f c to be distinguished from q̄ = q/ks):

U rel
0 (q̃ = q/k f c ) = − 1

2π2q̃

∫
d �̄ log

∣∣∣∣1 − q̃/2�̄

1 + q̃/2�̄

∣∣∣∣
= 1

2π2q̃

[
log

∣∣∣∣1 + 2

q̃

∣∣∣∣ −
(

1 − q̃

2

)
log

∣∣∣∣1 − q̃/2

1 + q̃/2

∣∣∣∣
]

U rel
2 (q̃) = − 1

2π2q̃

∫
�̄2d �̄ log

∣∣∣∣1 − q̃/2�̄

1 + q̃/2�̄

∣∣∣∣
= 1

6π2q̃

[
q̃

2
+ q̃3

4
log

∣∣∣∣1 + 2

q̃

∣∣∣∣ −
(

1 − q̃3

8

)
log

∣∣∣∣1 − q̃/2

1 + q̃/2

∣∣∣∣
]
. (B5)

Analytical expressions for s- and p-wave potentials can easily be found with Mathematica or equivalent, but are long and
unenlightening so we do not reproduce them here.
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