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We examine the behavior of charged pions in neutron-rich matter using heavy-baryon chiral perturbation
theory. This study is motivated by the prospect that pions, or pionlike excitations, may be relevant in neutron-rich
matter encountered in core-collapse supernovae and neutron star mergers. We find, as previously expected, that
the π− mass increases with density and precludes s-wave condensation at nB � nsat , where nsat ≈ 0.16 fm−3

is the nuclear saturation density, and the mass of the π+ mode decreases with density. The uncertainty in
these predictions increases rapidly for nB � nsat because low-energy constants associated with the two-pion-two-
nucleon operators in chiral perturbation theory are poorly constrained. These uncertainties are especially large
in symmetric nuclear matter and should be included in the analysis of pion-nucleus interactions at low-energy
and pionic atoms. In neutron-rich matter, accounting for the self-energy difference between neutrons and protons
related to the nuclear symmetry energy has several effects. It alters the power counting of certain higher-order
contributions to the pion self-energy. Previously unimportant but attractive diagrams are enhanced, resulting in
a modest reduction of the pion masses. Furthermore, in the long-wavelength limit, a collective mode with the
quantum numbers of the π+ appears.
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I. INTRODUCTION

The study of pions in dense nuclear matter has a long his-
tory. In pioneering work in the 1970s, Sawyer and Scalapino
[1–3] and independently Migdal and collaborators [4–6] pro-
posed that pion condensation might lower the free energy
density of nuclear matter at high density. In subsequent years,
several authors studied its manifestation and implications for
nuclei and neutron stars in some detail using models for the
pion-nucleon interaction [7–15].

Pion condensation occurs at low temperatures when the
energy to produce a pion is less than its associated chem-
ical potential. Earlier work has addressed the possibility of
condensation of negatively charged pions in neutron stars
because the chemical potential for a negative charge, which
we denote throughout as μ̂, increases rapidly with density. In
the outer core of the neutron star, where the baryon density
nB ≈ nsat where nsat ≈ 0.16 fm−3 is the nuclear saturation,
μ̂ ≈ 100 MeV and could be as large as 300 MeV in the
inner core. Without interactions, a pion condensate with zero
momentum will occur when μ̂ � mπ , where mπ ≈ 140 MeV
is the mass of the pion. However, repulsive s-wave interac-
tions between π− and neutrons increased the pion energy in.
neutron stars and disfavored condensation of zero-momentum
pions. In contrast, a strongly attractive p-wave interaction
between pions and nucleons was shown to favor condensation
of pions with momentum kπ ≈ mπ and led to a nonuniform
ground state [4,5,9]. In the 1980s, more sophisticated but
model-dependent analyses, including many-body corrections
and correlations between nucleons at short distances, found

that even p-wave condensation may not be robust at the densi-
ties encountered in neutron stars (for a comprehensive review
of these developments see Ref. [16]).

In this paper, we revisit calculating the mass of charged
pions in dense neutron-rich matter using heavy-baryon chiral
perturbation theory (HBχPT). We do so for the following rea-
sons. First, earlier calculations were based on the mean-field
approximation and used simple models for the pion-nucleon
interaction, which were poorly constrained by pion-nucleon
scattering data. Second, the role of pion coupling to two-
nucleon currents has not been studied, and their inclusion
is shown to be relevant at the densities of interest. Third,
earlier calculations neglected the effect of the nuclear sym-
metry energy, which induces a large energy self-difference
between neutrons and protons in neutron-rich matter. Finally,
even in the absence of pion condensation, the mass of pionic
excitations in the medium is relevant to the description of
the ground state and response properties of dense nuclear
matter at finite temperatures realized in extreme astrophysical
phenomena such as neutron star mergers and core-collapse
supernovae. In hot and dilute matter, a reliable description
of the contribution of thermal pions can be obtained using
the virial expansion [17]. In this case, the second-viral co-
efficient can be calculated using the measured pion-nucleon
phase shifts. The results in Ref. [17] indicate that at high tem-
peratures when typical pion momenta pπ ≈ √

3mπT ≈ 100
MeV, the strongly attractive p-wave pion-nucleon interaction
induced by the � resonance dominates. However, to assess
the role of pions in warm, partially degenerate dense matter
and to go beyond the linear density approximation requires the
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inclusion of quantum effects in the medium and knowledge of
the energy and momentum dependence of the pion-nucleon
interaction. The calculation of the pion masses at T = 0,
which is dominated by s-wave contributions and is the focus
of this study, is a step toward more systematic calculations of
the pion dispersion relation in warm, dense matter.

We present results for the pion mass in dense neutron-rich
matter using HBχPT and augment the calculation with a
model for the nucleon self-energy. This nucleon self-energy
incorporates energy shifts of the neutrons and protons in the
dense nuclear medium. We find that previously neglected
two-loop diagrams (involving p-wave interactions in the in-
termediate state) and the inclusion of in-medium nucleon
self-energies lower the pion self-energy relative to previous
estimates. In particular, small energy denominators in per-
turbation theory are produced when the energy difference
between neutrons and protons becomes of the order of the
pion mass. These small energy denominators promote the
importance of certain attractive Feynman diagrams, which
lower the π− energy. Modified power counting is corroborated
by a recent analysis of experimental data suggesting that the
nuclear symmetry energy—the in-medium energy difference
between protons and neutrons—can be large at densities of
interest to neutron stars. Another important consequence of
this energy difference is a negative-energy collective mode
with the quantum numbers of the π+ in the medium.

The calculation presented here improves upon the calcula-
tions of the pion self-energy in asymmetric matter using χPT
presented in Refs. [18,19]. We include all diagrams consid-
ered by previous authors while including several others that
make a relevant contribution at nB ≈ nsat and elucidate the
role of the pion coupling to two-nucleon currents. The latter
is particularly important in an effective-field-theory (EFT)
approach as they can encode short-distance physics that have
been expected to play a role in pion condensation [11].

The material in this paper is organized as follows. Sec-
tion II describes our calculation of the pion self-energy in
isospin-asymmetric dense matter. In Sec. III, we present a
parametric model to account for strong nucleon interactions
and study its effect on the pion self-energy. In Sec. IV A,
we discuss implications for symmetric nuclear matter; in
Sec. IV B, we discuss neutron-rich matter. Finally, we offer
some conclusions in Sec. V.

II. CALCULATION

To compute the self-energy of charged pions at nonzero
baryon and isospin density, we use HBχPT. This EFT of
mesons and nucleons includes all interactions consistent with
the symmetries of QCD and organizes them in a small mo-
mentum expansion. We aim to compute the pion self-energy
up to O(q6), where q is an expansion parameter of the EFT.
While it is clear which single-nucleon interactions contribute
to the pion self-energy up to O(q6), it is less clear in the mult-
inucleon sector, and we achieve our goal with limited success.
In the following, we will take both mπ and the nucleon Fermi
momenta, denoted as k f to be O(q).

To calculate the charged pion masses in the medium, we
define the self-energy of the negatively charged pion at zero

momentum, �(ω, kn, kp), through the relation

∫
d4x eiωt 〈T {π−(x)π−†(0)}〉 = i

ω2 − m2
π − �(ω, kn, kp)

,

(1)

where 〈..〉 denotes an ensemble average at finite neutron
and proton densities characterized by Fermi momenta kn and
kp, respectively. Isospin symmetry implies �(ω, kn, kp) =
�(−ω, kp, kn). We will calculate �(ω, kn, kp) in diagram-
matic perturbation theory, and we will see that both one-
and two-nucleon operators contribute to the sixth order.
We separate these contributions for clarity of presentation:
We first present all diagrams up to O(q6) generated by single-
nucleon operators alone, and then we present the two-nucleon
graphs. Single nucleon operators contribute to the self-energy
at O(q4), while two-nucleon operators contribute at higher
order. The Lagrangian of our theory is

L = Lππ + LπN + LπNN , (2)

where Lππ includes terms with only pion fields, LπN includes
single-nucleon terms, and LπNN two-nucleon terms. Each of
these terms will be explicitly written below.

Before proceeding to the calculation we discuss some
bookkeeping. First, to implement nonzero baryon and isospin
density, we use the technique described in Ref. [18]; namely
nucleon propagators are

iG f (p) = i

p0 + i0+ − 2πδ(p0)θ (k f − | �p|), (3)

where f denotes the nucleon species and k f its Fermi momen-
tum. The first term is the vacuum heavy-baryon propagator,
while the second term arises from the finite density. Second,
we interest ourselves only in zero-momentum pions; opera-
tors that produce diagrams that vanish for such kinematics
can be discarded. Finally, we neglect all purely pion self-
energy graphs in vacuum. These renormalize bare parameters
to match the vacuum properties of the pion and contribute no
finite-density information.

A. Single-nucleon contributions

The terms Lππ and LπN are given by:

Lππ = f 2
π

4
tr(∂μU∂μU † + χ+), (4)

LπN = N̄ (iv · D + gAS · u)N

+ N̄

(
− igA

2M
{S · D, v · u} + c1trχ+

+
(

c2 − g2
A

8M

)
(v · u)2 + c3 u · u

)
N

+
23∑

i=1

biN̄OiN, (5)
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FIG. 1. Feynman diagrams contributing to the negative pion
self-energy. Solid and dashed lines represent nucleons and pions,
respectively, and vertices are labeled by their chiral order. Red, green,
and blue diagrams are O(q4), O(q5), and O(q6).

where we have defined the following symbols. U is an SU (2)
matrix defined in terms of pion fields (π+, π0, π−) as

U = exp

[
i

fπ

(
π0

√
2π+√

2π− −π0

)]
, (6)

where χ+ = m2
π (U + U †) introduces explicit chiral symme-

try breaking (we take mπ = 139 MeV), and fπ = 92.4 MeV
is the pion decay constant. N is the nucleon field, contain-
ing both proton and neutron components, vμ = (1, �0) is the
nucleon four-velocity, Sμ = (0, �σ/2) the spin-vector of the
nucleon, and gA = 1.27 is the axial-vector coupling constant.
The chiral covariant derivative and axial-vector quantity are
defined in terms of ξ = √

U as Dμ = ∂μ + 1
2 [ξ †, ∂μξ ] and

uμ = i(ξ †∂μξ − ξ∂μξ †). The low-energy constants ci, bi and
the operators Oi are described in detail in Ref. [20].

The three lines of LπN are, respectively, the leading-
order (LO), next-to-leading-order (NLO), and next-to-next-
to-leading-order (N2LO) interactions of HBχPT in the
single-nucleon sector. As the lowest-order self-energy graphs
are O(q4), is necessary to consider N2LO interactions to reach
O(q6).

All diagrams up to O(q6) arising from single-nucleon in-
teractions are shown in Fig. 1. Dotted lines denote pions while
solid arrows denote nucleons. The labels on each vertex (LO,
NLO, etc.) denote any interaction from LπN at the order indi-
cated. The zero-momentum of the pion restricts the number of
contributing graphs; for example, any graph where an external
pion connects to a leading-order axial coupling vanishes.

Since the nucleon propagator can be separated into a sum
of vacuum and finite density pieces, each diagram in Fig. 1
can be decomposed into a sum of terms with an increasing
number of finite-density insertions: from zero to the number
of nucleon lines. Contributions with zero finite-density inser-
tions either vanish or renormalize vacuum parameters; single
finite density insertions produce terms linear in the density;
two or more finite density insertions produce higher (often
fractional) powers of the density. Because any given diagram
may contribute at several orders in the density, we combine
contributions from various diagrams in a way that is most

useful for us. We attempt, however, to make the accounting
of all terms clear.

We denote the sum of all diagrams in Fig. 1 as �πN , and it
is given by:

�πN (ω, kn, kp) =�ld (ω, kn, kp) + �ds(ω, kn, kp)

+ �ph(ω, kn, kp) + �cor (ω, kn, kp). (7)

The first term, �ld, gathers all contributions linear in the
density and equals

�ld(ω, kn, kp) = T −(ω)
k3

n − k3
p

3π2
− T +(ω)

k3
n + k3

p

3π2
. (8)

where kn, kp are the neutron and proton Fermi momenta.
Within �ld are all O(q4) and O(q5) diagrams, as well as
single density insertions from all O(q6) diagrams except the
particle-hole diagram (which goes as k5

f ). Interestingly, higher
density insertions of the fourth diagram vanish due to the
appearance of a δ′(p0) in the momentum integral [19]. T +(ω)
and T −(ω) are, respectively, the isoscalar and isovector scat-
tering amplitudes, and the diagrams summed in �ld build up
these scattering amplitudes to N2LO.

The real part of the isoscalar amplitude is1

T +(ω) = σN − βω2

f 2
π

+ 3g2
Am3

π

16π f 4
π

+ 3g2
AmπQ2ζ

64π f 4
π

, (9)

where σN = −4c1m2
π − 9g2

Am3
π/64π f 2

π is the pion-nucleon
sigma term [21] and β = −2(c2 + c3) + g2

A/4M. To fix low-
energy constants we adopt the same strategy as Ref. [19],
namely c1 is chosen to reproduce σN ≈ 45 ± 15 MeV, the
range probed by phenomenological and lattice calculations
[22,23], and the combination c2 + c3 is tuned to obtain the
empirical value T +(mπ ) ≈ 0. Finally, the parameter ζ re-
flects freedom of choice in the interpolating field for the pion
[24,25]; as in Ref. [19] we set ζ = 0, a condition obtained
by requiring the residue of the propagator at the pion pole be
equal to 1.

The real part of the isovector amplitude is

T −(ω) = ω

2 f 2
π

+ γω3

8π2 f 4
π

− ω2Q

8π2 f 4
π

ln
|ω + Q|

mπ

, (10)

where Q = √
ω2 − m2

π and γ = (gAπ fπ/M )2 + ln(2�/mπ )
[19]. The first term is due to the leading-order Weinberg-
Tomozawa interaction [26,27], while subsequent terms are
N2LO corrections. It will be noticed that none of the bi

coefficients explicitly appear in T −. A part of their effect
is incorporated in the tuning of � such that the empirical
value of T −(mπ ) = 1.85 fm is obtained. The residual O(ω3)
dependence these operators introduce into T − has little effect
on the calculation outcome and are ignored.

1In this work, we focus solely on properties of the pion obtainable
from the real part of the self-energy.
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Next, �ds comes from the double-scattering diagram with two density insertions and is given by

�ds(ω, kn, kp) = ω2

3(4π fπ )4
{L(ω; kn, kn) + L(ω; kp, kp) + 2L(ω; kn, kp)}, (11)

with the logarithmic function

L(ω; kn, kp) = 4knkp
(
3k2

n + 3k2
p + Q2

) + 8Q
(
k3

n − k3
p

)
ln

|Q + kn − kp|
|Q − kn + kp| − 8Q

(
k3

n + k3
p

)
ln

Q + kn + kp

|Q − kn − kp|

+ [
3
(
k2

n − k2
p

)2 + 6Q2
(
k2

n + k2
p

) − Q4
]

ln
|(kn − kp)2 − Q2|
|(kn + kp)2 − Q2| , when ω2 − m2

π > 0

= 4knkp
(
3k2

n + 3k2
p − q2

) + 16q

[(
k3

n − k3
p

)
arctan

kn − kp

q
− (

k3
n + k3

p

)
arctan

kn + kp

q

]

+ [
3
(
k2

n − k2
p

)2 − 6q2
(
k2

n + k2
p

) − q4
]

ln
(kn − kp)2 + q2

(kn + kp)2 + q2
, when ω2 − m2

π < 0, (12)

with q = √
m2

π − ω2.
The “particle-hole” diagram �ph, with two NLO axial-

vector interactions, equals

�ph(ω, kn, kp) = g2
Aω

f 2
π

(
k5

p − k5
n

10π2M2

)
. (13)

Only the single-density insertions of this diagram are nonzero.
Combined with the NLO axial-vector interaction coupling
to the nucleon (rather than the pion) momentum, this fact
produces the k5

f dependence. This diagram is suppressed
in systems with small isospin asymmetry and is therefore
unimportant in analyzing pionic atoms [19]. In contrast, it is
non-negligible in isospin asymmetric environments like neu-
tron stars.

Finally, the two-density insertion contributions of the final
two O(q6) diagrams combine to give

�cor (ω, kn, kp) = g2
A

20(4π fπ )4

({
Q2(ζ + 2) + 5m2

π

}
[H (kp, kp)

+ H (kn, kn)] + Q2(8ζ − 4)H (kp, kn)
)
,

(14)

where the H function is [19]

H (kp, kn) = 8kpkn
(
m2

π − k2
p − k2

n

)

+ 16mπ

(
k3

p + k3
n

)
arctan

kp + kn

mπ

− 16mπ

∣∣k3
p − k3

n

∣∣arctan
|kp − kn|

mπ

+ 2
[(

k2
p − k2

n

)2 − 4m2
π

(
k2

p + k2
n

) − m4
π

]

× ln
m2

π + (kp + kn)2

m2
π + (kp − kn)2

. (15)

As previously pointed out, �cor is numerically small [19].
This concludes a full accounting of the finite-density contri-
butions to the pion self-energy generated by single-nucleon
interactions up to O(q6). We note that such an account was
already accomplished by one of us in Refs. [18,19] (a similar
calculation is presented in Ref. [24]). We have included this

known information because it will be useful later and to de-
marcate between our work and others. The new contributions
we include are described in the following section.

B. Two-nucleon contributions

The systematic inclusion of nucleon-nucleon (NN) interac-
tions presents several challenges, as the unnaturally large NN
scattering lengths require a nonperturbative approach. Despite
significant effort, a systematic EFT framework to describe
NN interactions, including pions, remains elusive even in the
vacuum. In an approach pioneered by Weinberg, called chiral
EFT, one derives a potential by systematically including the
contributions of pion loops and associated contact interactions
(see Ref. [28] for a review). This potential is then employed
in the Schrodinger equation to include nonperturbative effects.
While this approach has been phenomenologically successful,
it relies on a fine-tuned range of values for the UV cutoff,
which obscures systematic power counting [29]. On the other
hand, a modified power-counting scheme that preserves renor-
malization group invariance developed by Kaplan, Savage,
and Wise, which includes short-distance physics nonpertur-
batively and pions perturbatively, works well in some partial
waves but fails to converge in others [29].

Coupling to a finite density of nucleons complicates mat-
ters further, as it introduces kF as an additional dimensionful
scale which is not small (kF ≈ 300 MeV at nuclear saturation
density, nsat = 0.16 fm−3). Furthermore, as already pointed
out by Weinberg, nucleon propagators can scale as O(q−1)
or O(q−2) depending on kinematics [30,31]. This complicates
power counting: in the first case, NN interactions begin con-
tributing to the pion self-energy at O(q6), while in the second
at O(q5). An in-medium power counting scheme where all
nucleon propagators are counted as O(q−2) was proposed
in Ref. [32]. This scheme requires a nonperturbative resum-
mation of NN interactions, and it was found that all O(q5)
diagrams cancel. This suggests that NN interactions begin to
contribute to the pion self-energy at O(q6), which is why we
face this problem in this work.

Absent a clear optimal scheme for power-counting NN in-
teractions, we model them instead. The main ingredient of our
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FIG. 2. A diagram that is nominally O(q7), that can be promoted
to order O(q6) in asymmetric matter.

model is a nucleon self-energy, fit to dense matter data, that
dresses nucleon lines. To estimate uncertainties, we include
the effects of the lowest-order ππNNNN operators. These
multinucleon operators have unknown coefficients, which
may be large, and it will be seen that they can render the
pion mass quite uncertain. We further estimate uncertainties
by computing several higher-loop diagrams.

The leading-order contribution of NN interactions in
many-body perturbation theory is obtained by replacing the
free nucleon propagator in Eq. (3) with a dressed, in-medium
nucleon propagator of the form

iG f (p) = i

p0 − � f + i0+ − 2πδ(p0 − � f )θ (k f − | �p|),
(16)

where � f is the self-energy of the nucleon with isospin label
f . This can be seen by inserting into nucleon lines a leading-
order NN contact interaction

δL = −CS (N̄N )2 − CT (N̄ �σN )2. (17)

To be clear, this is our model: We modify nucleon propagators
as specified in Eq. (16), then recompute all diagrams from
the previous section. Many diagrams are unaffected by this
change, for example those that contribute to �ld and �ds. Oth-
ers, however, do change. In particular, diagrams that contain
a particle-hole intermediate state, such as �ph, are affected
by the dressing of nucleon propagators. They are parametri-
cally enhanced in asymmetric matter where �n �= �p. When
the difference �n − �p ≈ O(mπ ), such diagrams can be pro-
moted one order in the low-momentum expansion. Exactly
how the promotion occurs will be explained later; however,
a simple pattern emerges: The net effect of NN interactions is
to multiply diagrams with particle-hole intermediate states by
the dimensionless factor

ξ (ω) = ω

ω − (�n − �p)
. (18)

Since diagrams may be promoted, O(q7) graphs must be
considered. While it is beyond the scope of this work to
enumerate all O(q7) graphs, we can enumerate the subset

FIG. 3. Two-nucleon contributions to the pion self-energy. The
label X2 denotes any of D2, D′

2, E2, E ′
2.

generated solely by pion-single-nucleon interactions. We find
a single promoted O(q7) graph, depicted in Fig. 2. This graph
includes the leading-order attractive p-wave pion-nucleon
interaction in the intermediate state. We show only one in-
termediate state in Fig. 2. Others are obtained by connecting
the p-wave vertex to the lower Fermion line, by switching
the location of the LO two-pion vertex, and by setting the
intermediate pion to be either charged or neutral. We denote
the sum of these diagrams �pw, which is equal to

�pw(ω, kn, kp) = g2
Aω

4M f 4
π

{2I (ω; kp, kp) − 2I (ω; kn, kn)

−2K (ω; kn, kp) + I (0; kp, kp) − I (0; kn, kn)

− K (0; kn, kp)}. (19)

The functions I (ω; kn, kp) and K (ω; kn, kp) arise from the fol-
lowing principal-value integrals of a pion propagator over two
Fermi spheres:

I (ω; kn, kp) =P
∫

d3l1d3l2
(2π )6

θ (kn − |�l1|)θ (kp − |�l2|)

× (�l1 − �l2)2

(�l1 − �l2)2 + m2
π − ω2

,

K (ω; kn, kp) =P
∫

d3l1d3l2
(2π )6

θ (kn − |�l1|)θ (kp − |�l2|)

× 2
(�l 2

1 − �l 2
2

)
(�l1 − �l2)2 + m2

π − ω2
. (20)

We provide explicit analytical expressions for these functions
in the Appendix.

As previously stated, we estimate the uncertainties of our
model by examining the contributions from operators that
involve pion couplings to two nucleons. These are neglected in
our NN interaction model because they involve external pion
lines. The “cD operator,” which is well studied in the context
of three-nucleon forces and is described by

δL = cD

2M� f 2
π

N̄{S · D, v · u}N N̄N (21)

produces Fig. 3(a). If cD ≈ O(1), then the cD diagram is
nominally O(q9). Since this diagram contains a particle-hole
loop, it can be enhanced in asymmetric matter for the reason
discussed earlier. Despite the promotion, this diagram is still
small at nB � 2nsat, and we neglect it. The remaining lowest-
order two-nucleon operators are

δL = − D2m2
π

(
1 − �π2

2 f 2
π

)
(NT PaN )†(NT PaN )

− D′
2m2

π

(
1 − �π2

2 f 2
π

)
(NT P′

aN )†(NT P′
aN )

+ (∂0π )2

[
E2

2 f 2
π

(NT PaN )†(NT PaN )

+ E ′
2

2 f 2
π

(NT P′
aN )†(NT P′

aN )

]
, (22)
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where Pa = 1√
8
τ2τaσ2 and P′

a = 1√
8
τ2σaσ2 project onto

the (S, I ) = (0, 1) and (S, I ) = (1, 0) channels respectively,
where S is spin and I is isospin. Note that we have only writ-
ten operators that contribute to the self-energy of a stationary
pion, and for ease, we have switched to nonrelativistic nota-
tion. The latter is simply a convenience and does not change
the final result. The operators in the first row renormalize the
1S0 and 3S1 couplings and are, in principle, accounted for in
our model self-energy. The following two rows of operators
include explicit pion fields and produce new contributions to
the pion self-energy. Their corresponding Feynman diagrams
are shown in Fig. 3(b) and contributions are

�D2 (ω, kn, kp) = −D2m2
π

4 f 2
π

(
n2

n + n2
p + nnnp

)

�E2 (ω, kn, kp) = −E2ω
2

4 f 2
π

(
n2

n + n2
p + nnnp

)

�D′
2
(ω, kn, kp) = −3D′

2m2
π

4 f 2
π

nnnp

�E ′
2
(ω, kn, kp) = −3E ′

2ω
2

4 f 2
π

npnn, (23)

with proton and neutron densities np = k3
p/3π2, nn = k3

n/3π2.
We parametrize the couplings above in the following way:

(D2, E2, D′
2, E ′

2) = 4π

Mμ

1

�NNμ
(d2(μ), e2(μ), d ′

2(μ), e′
2(μ)),

(24)

where d2, e2, d ′
2, e′

2 are dimensionless, μ = mπ and �NN =
(16π f 2

π /g2
AM ) ≈ 300 MeV We denote any of the four coeffi-

cients above as X2(μ) = [4πx2(μ)/Mμ2�NN ] as needed for
brevity. As with any effective field theory, these bare coef-
ficients’ size depends on the chosen renormalization scheme
and mass scale μ. In an EFT framework, the μ dependence
of x2 is related to the nucleon-nucleon interactions and must
be evolved consistently. However, since we employ a phe-
nomenological model for NN interactions, we explore a range
of values for x2, which is motivated below to assess the natural
size of the potential contributions from these two-nucleon
operators.

First, we discuss x2(μ) within Kaplan-Savage-Wise
(KSW’s) power counting scheme [33]. This is a more ap-
propriate choice since we are considering single perturbative
insertions of the X2 operators into the pion self-energy. In
the KSW approach, the D2 operator is needed to renormalize
the 1S0 two-nucleon scattering amplitude [33].2 However, its
value at a specific renormalization scale has not yet been ex-
tracted from nucleon-nucleon scattering data. This is because
D2 makes its first appearance only the combination C(1S0 ) +
m2

πD2, and can only be separated from C(1S0 ) in a high-
order calculation. Reference [34] suggests that |D2(μ)m2

π | �
η|CS (μ)|, where 1/15 < η < 1/5 for 3mπ > μ > mπ but
posits that it could be larger. In principle, EFT analysis of

2We thank Emanuele Mereghetti for alerting us to its importance.

FIG. 4. Additional graphs produced by NN interactions. Here V0

denotes CS or CT insertions.

pion-nucleus scattering could provide useful constraints [29],
or lattice QCD calculations of the quark mass dependence
of the two-nucleon scattering amplitude can provide more
realistic constraints in the future [34–37]. In a calculation
with heavier than physical pion masses, it was found that
|m2

πD2(μ)/C0(μ)| ≈ 0.1 at μ = 350 MeV [37]. This implies
d2(μ) ≈ O(1). For now, we shall assume that d2(μ) is uncon-
strained by data and explore the range |d2(μ)| � 1.

Comparatively fewer constraints appear in the literature
for d ′

2, e′
2 and e2. A calculation of the pion-deuteron scatter-

ing length using KSW power counting constrains the linear
combination D′

2 + E ′
2 [38]. The rather uncertain isoscalar

pion-nucleon scattering length is needed to determine these
coefficients, and the window −5 � d ′

2 + e′
2 � 5 is found. Ab-

sent constraints on the coefficients individually, we assume
|d ′

2| � 1 and |e′
2| � 1 in our analysis. We find no constraints

for e2 and similarly assume |e2| � 1.
We conclude our analysis of the X2 operators by dis-

cussing their size in Weinberg power counting. Within this
scheme, the X2 coefficients are expected to scale as X2(�b) ≈
[4πη(�b)]/( f 2

π�2
b), where the dimensionless η(�b) are ex-

pected to be O(1) at �b = 650 MeV.3 One finds the numerical
value of X2(�b) estimated in the Weinberg scheme to be
within a factor of two of the X2(μ) estimated in the KSW
scheme. The error bands in the plots to follow, therefore,
represent the uncertainty produced by perturbative insertions
of the X2 operators within both Weinberg and KSW power
counting.

The leading diagrams that include NN interactions beyond
the mean-field approximation are shown in Fig. 4. The left
diagram is a vertex correction produced by leading-order NN
interactions. While analogous diagrams are ultimately respon-
sible for suppressing p-wave condensation, the left diagram
of Fig. 4 vanishes for a zero-momentum pion because it is
proportional to the nucleon velocity, which averages to zero
in a rotationally symmetric medium. We examine the con-
tribution from the isoscalar pion-nucleon vertex to assess the
importance of the three-loop diagrams shown in Fig. 4(b). In
this case, the contribution is given by

�NN (ω, kn, kp) = T +(ω)

280π6

{
(CS − 3CT )2(11/2 − ln 2)

× (
k7

p + k7
n

) + (
C2

S + 3C2
T

)[
k7

p F (kn/kp)

+ k7
n F (kp/kn)

]}
, (25)

3We thank Evgeny Epelbaum for discussions on this point.
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where

F (x) = x

4
(15 + 33x2 − 4x4) + 1

8
(15 − 42x2 + 35x4)

× ln
|1 − x|
1 + x

+ x7 ln
x2

|1 − x2| . (26)

At low-density �NN (ω) is small compared to lower-order
diagrams due to its higher kF dependence and can safely
be neglected. Even at n = 2nsat, the highest density we con-
sider, �NN (ω) is small compared to �ld (ω). Taking CS,CT ≈
(4π/Mmπ ) (so KSW scaling), ω = 200 MeV, and n = 2nsat,
one finds that |�ld(ω)/�NN (ω)| ≈ 4. Furthermore, at twice
nuclear density, the uncertainties due to the �X2 (ω) diagrams
are much larger than those due to �NN (ω). For these reasons,
we neglect �NN (ω) in our analysis.

We conclude this section by recording once and for all the
total self-energy of the negatively charged pion

�(ω, kn, kp) = �ld (ω, kn, kp) + �ds(ω, kn, kp)

+ �cor (ω, kn, kp) + ξ (ω)[�ph(ω, kn, kp)

+ �pw(ω, kn, kp)]

+
∑

X2

�X2 (ω, kn, kp), (27)

where ξ (ω), given Eq. (18), is the enhancement factor arising
from NN interactions. In the following results, uncertainty
bands are obtained by varying −1 � x2 � 1, subject to con-
straints imposed by pionic atoms that we discuss in Sec. IV A.

III. A MEAN-FIELD MODEL FOR NN INTERACTIONS
IN ASYMMETRIC MATTER

The energy difference between neutrons and protons can
be large in dense matter. As already discussed in Sec. II B,
including this energy difference through the factor ξ defined
in Eq. (18) in calculating the pion self-energy is impor-
tant because it alters energy denominators in diagrams with
intermediate neutron-proton particle-hole states. In simple
mean-field models, ξ can be characterized by just two key pa-
rameters: the nuclear symmetry energy and the effective mass
of the nucleons. In general, the strength of phenomenologi-
cal, short-range interactions in mean-field models is chosen
to reproduce nuclear masses and bulk properties of matter,
such as its energy density, pressure, and susceptibilities. A
common feature of mean-field models is the modification of
the single-particle nucleon energies due to their coupling to
the mean field generated by other nucleons in the medium. In
a large class of these models, the neutron and proton energies
are given by

En(p) = p2

2M∗
n

+ �n, Ep(p) = p2

2M∗
p

+ �p. (28)

Calculations of the nucleon self-energy in many-body pertur-
bation theory, beyond the Hartree-Fock approximation, using
potentials derived from ChiEFT show that Eq. (28) provides a
fair description of the momentum dependence in the vicinity
of the Fermi surface [39]. This suggests that our simple model

for the nucleon propagators in Eq. (16) is adequate, espe-
cially as a first step towards a more systematic treatment of
nucleon-nucleon interactions, including pions. Here �n,p are
the mean-field energy shifts, and M∗

n,p are the effective masses
of neutrons and protons in the medium. The mean-field energy
shift and the effective masses depend on the baryon density
and the isospin asymmetry. For simplicity, we neglect the
difference between neutron and proton effective masses and
assume that M∗

n = M∗
p = M∗.

Interestingly, in beta-equilibrated neutron star matter, ξ (ω)
can be simplified by expressing �n − �p in terms of the
nuclear symmetry energy and the nucleon effective mass.
This is accomplished by first noting that the isospin chemical
potential μ̂, and the proton, neutron, and electron chemical
potentials are related through

μ̂ = μe = μn − μp, (29)

and that furthermore μe = 4S(nB)(1 − 2xp), where S(nB) is
the nuclear symmetry energy and xp the proton fraction. Sub-
stituting these relations into ξ (ω) yields

ξ (ω) = ω

ω − 4S(nB)(1 − 2xp) + (
k2

n − k2
p

)
/2M∗ , (30)

where kn = [3π2nB(1 − xp)]1/3 and kp = (3π2nBxp)1/3 are
the neutron and proton Fermi momenta. As stated previously,
ξ (ω), when large, can change the importance of Feynman
diagrams. To estimate this, note that if a pion is produced in
the medium, then its frequency is forced to ω = μe. Mak-
ing this substitution into ξ (ω) one finds that the diagram
labeled (ph), which originally contributed at O(k5

f μe) now
contributes at O(k3

f μ
2
e ); the diagram labeled (pw), which orig-

inally contributed at O(k6
f μe) now contributes at O(k4

f μ
2
e );

and the diagram labeled (cd), which originally contributed at
O(k8

f μe) now contributes at O(k6
f μ

2
e ). Crucially, in neutron-

rich matter, these enhanced diagrams are attractive for positive
frequencies.

Through its appearance in the enhancement factor ξ (ω),
the nuclear symmetry energy S(nB) plays an important role
in our calculation. The nuclear symmetry energy is defined
through the difference

S(nB) = E (nB, xp = 0) − E (nB, xp = 1/2), (31)

where E (nB, xp) is the energy per baryon at baryon density
nB and proton fraction x. Microscopic calculations and fits to
phenomenological models indicate that the energy per particle
at arbitrary proton fraction is well approximated by

E (nB, x) ≈ E (nB, xp = 1/2) + S(nB)(1 − 2xp), (32)

since higher-order terms in the expansion are small, even for
xp 
 1/2 [40]. In this case, the electron chemical potential in
neutron star matter is

μe(nB) = 4S(nB)(1 − 2xp). (33)

Recently, there has been much interest in determining the
density dependence of the symmetry energy. However, de-
spite progress in both theory and experiment, this dependence
remains poorly known at densities reached in neutron stars.
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In the vicinity of nuclear saturation density, S(nB) im-
pacts nuclear structure. Nuclear masses, measurements of the
neutron-skin thickness, and the electric-dipole polarizability
of neutron-rich nuclei such as 208Pb provide useful constraints
on S0 = S(nsat ). Its density dependence is characterized by
the slope parameter L = 3nB[dS(nB)/dnB] at nB = nsat [41].
Until recently, experiments, combined with theoretical mod-
els, suggested the empirical range S0 = 32 ± 2 MeV and
L = 50 ± 15 MeV. Theoretical calculations using nucleon-
nucleon interactions determined by χEFT predict S0 and L
compatible with this empirical range. For example, a re-
cent calculation that combines many-body perturbation theory
(MBPT) and Bayesian estimates for the truncation errors pre-
dicts S0 = 31.7 ± 1.1 MeV and L = 59.8 ± 4.1 MeV [42].
However, the recent measurement of the neutron-skin thick-
ness of 208Pb using parity-violating electron scattering imply
larger values: S0 = 38.1 ± 4.7 MeV, and L = 106 ± 37 MeV
[43,44].

The symmetry energy at higher density can be accessed in
heavy-ion experiments but is not presently well determined
[45]. At nB ≈ 1.5 nsat, a recent analysis by Estee et al. of
charged pion yields from intermediate-energy heavy-ion col-
lisions suggests that S(nB ≈ 1.5nsat ) = 52 ± 13 MeV [46].
Earlier studies by Russoto et al. of heavy-ion collisions at GSI
indicate that S(nB ≈ 2nsat ) = 50 ± 7 MeV [47].

Theoretical calculations of the equation of state using po-
tentials derived from χEFT also provide useful constraints on
the symmetry energy in the region nsat < nB < 2nsat. Quan-
tum Monte Carlo calculations by Lonardoni et al., using
local χEFT potentials predict S(1.5nsat ) ≈ 37 ± 5 MeV and
S(2nsat ) ≈ 46 ± 11 MeV [48]. In Ref. [49], Lim and Holt
use MBPT to predict S(2nsat ) ≈ 49 ± 12 MeV, and Drischler
et al., combine MBPT and Bayesian estimates of the χEFT
truncation errors (but neglect errors associated with low-
energy constants) to predict S(2nsat ) ≈ 45 ± 3 MeV [42]. In
this study, we adopt a simple ansatz for the density depen-
dence of the symmetry energy

S̃(nB) = 2S2u

2 + u
, (34)

where u = nB/nsat. Although this simple ansatz depends on a
single parameter S2 = S(2nsat ), the symmetry energy at twice
saturation density, we find that S2 in the range 45–60 MeV
satisfies all existing constraints. The high value S2 = 60 MeV
is compatible with the large S0 and L predicted by PREX and

is implied by the heavy-ion data, and the intermediate value
S2 ≈ 50 MeV is compatible with the empirical range. The
low value S2 = 45 MeV reasonably agrees with the χEFT
predictions made in Ref. [42].

IV. RESULTS

In this section, we present our results for the pion mass
in symmetric nuclear matter and neutron-rich matter en-
countered in astrophysics. The discussion of the pion mass
in symmetric matter will help illustrate the importance of
ππNNNN interactions and highlight the need for improved
constraints on the associated LECs. Results for the pion
mass in beta-equilibrated neutron matter also assess the role
ππNNNN interactions and the nuclear symmetry energy. We
find evidence for a collective mode with the quantum numbers
of the π+ and its energy is sensitive to the nuclear symmetry
energy. In the following, the πN scattering parameters are
fixed to σN = 60 MeV and γ = 2.6 and for the mean-field
model we take S2 = 50 MeV, and assume the in-medium
nucleon mass M∗(u) = M(1 − αu), with α = 0.07.

A. Pion mass in symmetric nuclear matter

As a prelude to calculating the pion masses in neutron-rich
matter, we investigate the pion mass in symmetric nuclear
matter. The calculation simplifies in this case, and the analytic
results provide insights into the convergence of the EFT ex-
pansion, assess the importance of the two-nucleon operators,
and compare with earlier work in Refs. [19,25,32,50–52]. For
symmetric matter where kn = kp = k f , several isospin-odd
contributions to the pion self-energy vanish, and since the
neutron and proton mean-field energies are equal, ξ (ω) = 1.
One finds that

�sym(ω, k f ) = �ld (ω, k f , k f ) + �ds(ω, k f , k f )

+
∑

X2

�X2 (ω, k f , k f ). (35)

While �cor is nonzero in symmetric matter, it is numerically
small compared to the other terms, and we therefore neglect
it in the expression above. The double scattering diagram
contains pions in the intermediate state and encodes quan-
tum corrections beyond the mean-field approximation. In the
region where Q2 = ω2 − m2

π > 0 and k f � Q (i.e., small pos-
itive shifts to the pion mass), we find the following analytic
approximation for the self-energy in symmetric matter:

�sym(ω, k f ) ≈ −T +(ω)nB + ω2k2
f

(2π fπ )4

[
2k2

f + Q2

(
2 ln

|Q|
2k f

− 1

)]
− 3n2

B

16 f 2
π

(
D2m2

π + D′
2m2

π + E2ω
2 + E ′

2ω
2
)
. (36)

The in-medium pion mass m∗
π is obtained by solving ω2 − m2

π − �sym(ω) = 0. Further, isospin symmetry in symmetric matter
implies that shift δm2

π = m∗
π

2 − m2
π is the same for π− and π+ and is given by the following implicit equation:

δm2
π

m2
π

=
−T +(mπ )nB

m2
π

+ 2k2
f

(2π fπ )4 − 3n2
B

16 f 2
π

(D2 + D′
2 + E2 + E ′

2)

1 − σN nB
m2

π f 2
π

+ k2
f

(2π fπ )4

[
m2

π + δm2
π − 2k2

f − (
m2

π + δm2
π

)
ln |δm2

π |
4k2

f

]
+ 3n2

B
16 f 2

π
(E2 + E ′

2)
. (37)
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FIG. 5. Plot of δm2
π/m2

π in symmetric matter. The error bands
are generated by varying x2 over the range of values allowed by
pionic atoms constraints. The dashed and dotted curves on the left
are obtained by setting all X2 = 0 and varying the sigma term σN .

Work on pionic atoms (for reviews, see Refs. [53,54])
based on the optical potential model has provided broad con-
straints on the effective mass of the pion in symmetric matter
at subsaturation density. These analyses assume a specific de-
pendence on density motivated by phenomenological models
for the optical potential denoted by Vopt (nn, np) and employ
measurements of the energy levels and widths of pion atoms to
constrain the model parameters [55]. The self-energy defined
in Eq. (36) is related to the optical potential, and the sum of the
LECs (D2 + D′

2 + E2 + E ′
2) and (E2 + E ′

2) can be constrained
by developing a new optical potential that is faithful to the
energy and density dependence predicted by Eq. (36) and
employing it refit the pionic atom data. Performing such fits
to constrain the two-pion-two-nucleon LECs is beyond the
scope of this work. Instead, we adopt a simple and approx-
imate procedure to implement constraints from pionic atom
spectroscopy. In particular, we use the models in Ref. [55]
to bound the pion mass at n = 2/3n0. We find an allowed
mass range of 0.05 � δm2

π/m2
π � 0.35, then use this to bound

the X2 coefficients, whose range produces the gray band in
Fig. 5. We find that this procedure is roughly compatible with
the estimate that |x2| � 1; however, further work is needed
to implement pionic atom constraints properly. In particular,
we have not considered correlations between the sigma term
and the X2 operators. Presumably, a proper accounting will
increase the uncertainty in the pion mass. The preceding anal-
ysis and the results in Fig. 5 provide several insights:

(i) The leading correction to the pion mass given by
−T +(mπ )nB is linear in the baryon density and de-
pends only on the on-shell pion-nucleon scattering
amplitude. This general form is expected from low-
density theorems. However, since T +(mπ ) ≈ 0, the
O(k4

f ) contribution to the pion mass and subleading

corrections play a more important role. For example,
the contribution from the O(k6

f ) X2 operators can im-
pact the density dependence of the pion mass and the
chiral condensate even at modest densities.

(ii) The X2 operators would need to be included in the
analysis of pionic atoms. From Eq. (37), we can
deduce the contribution from the X2 operators is of
similar size at a density nB ≈ 0.6 nsat, which is ex-
pected to the average density probed in pionic atoms
[56]. In this context, the phenomenological optical
potential models fit to pionic atom data suggests
0.05 � δm2

π/m2
π � 0.35 at n = 2/3n0. As a first step,

we used this to bound the X2 coefficients by assum-
ing that the other LECs are fixed and σN = 60 MeV.
However, since the X2 operators make a contribution
that is comparable to that induced by the σN term in
the denominator of Eq. (37), pionic atoms constraints
on σN will likely need to be revised.

(iii) In earlier analysis that neglects the two-nucleon con-
tributions, the positive shift of the pion mass at finite
density is understood within χPT as arising due to
a combination of effects which include the energy
dependence of pion-nucleon scattering amplitude, the
double scattering contribution and the corrections due
to renormalization of the wave function at O(k6

f ) and
O(k7

f ) [19,55–57]. In these previous analyses and our
accounting, the O(k6

f ) terms are incomplete; nucleon-
nucleon interactions and low-energy constants, as
well as the X2 two-nucleon currents, all contribute
at O(k6

f ). The only firm conclusion we can draw
at this stage is that a more detailed χPT analysis
that includes the X2 operators and NN interactions
is needed to interpret data from pionic atoms. Such
an analysis can provide useful constraints on the sum
D2 + D′

2 + E2 + E ′
2.

(iv) The rapid increase of the two-nucleon contribution
with density indicates that predictions relating to
pion condensation in symmetric nuclear matter at
nB � nsat, such as those discussed in Ref. [51] which
neglected two-nucleon contributions, need to be re-
visited. The growth of the multinucleon contribution
to the pion dispersion relations seen in Fig. 5 sug-
gests the convergence of χPT becomes an issue for
nB � 1.5 nsat.

B. Pion mass in neutron-rich matter

We next consider the properties of charged pions in beta-
equilibrated nuclear matter, where μ̂ = μe = μn − μp. The
poles of the propagator, or the zeros of the inverse propagator
at zero momentum, ω2 − m2

π − �(ω, kn, kp) = 0, correspond
to real excitations in the medium. The energy and charge
associated with these excitations are determined by examining
the residue at the pole. When the mean-field splitting of the
neutron and proton energies is neglected, the propagator has
two poles, as expected in the vacuum. The pole at positive
frequency has a positive residue. Since we are examining
the two-point function of a negatively charged field defined
in Eq. (1), this implies that the charge associated with the
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FIG. 6. Masses of the charged pions and the pionlike collective
excitation in beta-equilibrated, neutron-rich matter from the full self-
energy Eq. (27). The shaded regions arise from varying x2 over the
region allowed by pionic atoms. In addition to the bands, we plot
several special cases for the π−: the leading-order result in “π− LO,”
the result without two-nucleon contributions in “π− @ X2 = 0,” and
the minimum π− mass when pionic atom constraints are neglected
in “π− w/o PA.”

pole at ω+ is negative and its effective mass m∗
π− = ω+.

The pole at negative frequency denoted by ω− has a negative
residue. It thereby corresponds to the π+ state with effective
mass m∗

π+ = −ω−. When the mean-field splitting between the
neutron and proton energy is included, as discussed below,
the pion propagator contains an additional pole. This has
a negative residue and is identified as a positively charged
collective state associated with the particle-hole excitation
spectrum. This mode is labeled as π+

s to be consistent with
the notation used in earlier work to describe a similar mode at
finite momentum [9].

Our results are summarized in Fig. 6, where the π−, π+,
and π+

s masses are plotted in black, blue, and red, respectively,
and the electron chemical potential given in Eq. (33) is plotted
in green. The leading-order s-wave WT term dominates at low
density, producing a linear increase (decrease) in the π−(π+)
mass. The nearly linear behavior of the black and blue curves
implies that corrections due to �ds, �ph, and �pw are modest
for nB < 2 nsat. This can also be seen by comparing the sold
black band to the dashed black curve, which is the pion mass
that results from the leading-order self-energy. Furthermore,
by comparing the dotted curve—which is obtained from the
full self-energy but with all X2 set to zero—to the leading-
order result, its found that higher-order corrections lower the
pion mass.

The error bands are calculated by including the contribu-
tion of the X2 operators, as described in the previous section.
If we allow all four coefficients d2, e2 and d ′

2, e′
2 to take values

between −1 and 1, then the error band, grows rapidly with
density. The lower bound on the π− mass, shown by the
dot-dashed curve, intersects μe, depicted by the green curve

TABLE I. Table of mode masses and the electron chemical po-
tential μe for low and high values of the nuclear symmetry energies
at select densities. Masses obtained by setting X2 = 0 and μe are
reported in MeV, and within every cell, the first entry corresponds
to S2 = 45 MeV and the second to S2 = 60 MeV.

nB/nsat mπ− mπ+ mπ+
s

μe

0.5 165, 164 119, 120 −58, −57 69, 88
1.0 199, 195 94, 98 −107, −97 111, 134
1.5 300, 280 59, 65 −158, −136 136, 161

at nB ≈ 1.25nsat, suggesting the possibility of pion condensa-
tion. However, when we impose the constraint obtained from
our analysis of pionic atoms in Sec. IV A, the error band
shrinks and is depicted by the dark-shaded region. In this case,
the lower bound on the π− mass increases with density and
strongly disfavors pion condensation.

In neutron-rich matter, the contribution from �D2 and �E2

are the most important X2 operators, and the latter, which
is proportional to m∗

π−
2, increases the associated uncertainty.

The uncertainty associated with the π+ mode is smaller be-
cause the leading WT contribution is attractive in this case.
This lowers m∗

π+
2 and the energy-dependent contribution �E2

is correspondingly smaller. The energy of the π+
s mode is

not sensitive to the X2 contributions. However, the energy of
this mode depends on the nuclear symmetry energy, and this
uncertainty is not included in the bands depicted in Fig. 6.

The finite energy difference between neutrons and protons
produced by mean-field effects generates a new collective
mode with an energy close to that associated with the single
neutron-hole proton-particle state. This new pole in the pion
two-point function arises because ξ (ω) is large when ω ≈
�n − �p and this enhances the �ph and �pw contributions to
the total self-energy in Eq. (27). The energy of this collective
excitation is shown by the red curve in Fig. 6. The collective
state has the quantum numbers of the π+ and arises as a
coherent proton-particle–neutron-hole excitation.

We note that the negative value for the π+
s mass does

not imply instability. Stability requires the excitation energy
ωπ+

s
= mπ+

s
+ μe > 0. Typically, we find that the electron

chemical potential is large enough to ensure that ωπ+
s

is pos-
itive. However, as we discuss below, ωπ+

s
is sensitive to the

nuclear symmetry. If the symmetry energy is small, then ωπ+
s

decreases with density and becomes negative at nB ≈ nsat. We
briefly comment on this scenario below. In Table I we show
how the changes in the nuclear symmetry energy affect the
pion masses. Since our focus here is to study the sensitivity
to the S(nB), we set X2 = 0 and choose S2 = 45 MeV to
study the low-symmetry energy case, and S2 = 60 MeV to
study the high-symmetry energy scenario. As noted earlier,
in Sec. III, substituting these values for S2 in Eq. (34) allows
us to span the range that is compatible with current theoret-
ical expectations and experimental measurements. The low
value for S2 predicts S(nsat ) = 30 MeV, and the high value
for S2 corresponds to S(nsat ) = 40 MeV. The results in the
table indicate that although μe changes significantly as would
be expected from Eq. (33), the masses are relatively
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insensitive to variation of S(nB) in this range. At nB ≈ nsat,
changing the symmetry energy by 30%, changes the π− mass
by about 2%, and the π+ mass by about 5%. Further, the dif-
ference between the π− masses obtained using these extreme
values for S2 is small compared to the uncertainty associated
with poorly constrained two-nucleon operators.

We find that the π+
s excitation energy ωπ+

s
= mπ+

s
+ μe is

sensitive to S(nB). This is to be expected, because the differ-
ence between the self-energies of the neutrons and protons is
essential for the existence of this mode. For S2 > 50 MeV,
we find, as mentioned earlier, that ωπ+

s
> 0 and the ground

state is stable for nB � 1.5nsat. However, for S2 ≈ 45 MeV,
we find that ωπ+

s
becomes negative at nB ≈ nsat implying

π+
s condensation. This interesting possibility warrants fur-

ther investigation and will require a theoretical framework
in which the nucleon and pion self-energies are treated self-
consistently. Such an investigation is beyond the scope of
this study, but efforts to develop a framework to address this
question are underway and we hope to report our findings in
the future.

V. CONCLUSIONS

We have constructed a model for the pion self-energy
using a combination of heavy baryon chiral perturbation
theory for pion-nucleon interactions and a simple phenomeno-
logical model for nucleon-nucleon interactions. Within the
single nucleon sector, we include all diagrams up to O(q6)
in the low-momentum expansion. We augment these (known)
results by accounting for multinucleon interactions in two
ways. First, we account for nucleon-nucleon interactions by
introducing a self-energy into nucleon propagators. Such a
modification can be motivated by examining the effect of
leading-order NN interactions into nucleon lines. The nucleon
self-energy is constructed from a mean-field model that in-
corporates known constraints on the symmetrical energy of
nuclear matter. We construct a one-parameter model S̃(nB)
for the symmetry energy, which approximately reproduces all
known constraints. Second, and perhaps more importantly,
we include pion-multinucleon operators and find that their
contribution to the pion mass increases rapidly with density
if they are of natural size, and the associated uncertainty is
large because the relevant LECs are poorly constrained.

We found that the pion coupling to the two-nucleon current
makes a significant contribution to the pion mass shift in
symmetric nuclear matter. An approximate constraint on the
associated LECs was obtained using pionic atom data, and
we noted that these operators need to be accounted for in the
analysis of pionic atoms that aim to extract constraints on the
pion-nucleon sigma term.

In neutron-rich matter, our results for the charged pion
masses provide the following insights:

(i) The WT term [O(q4)] makes the dominant con-
tribution to mπ− over the entire range of densities
considered. The contribution from the higher-order
[O(q5) and O(q6)] diagrams arising from pion cou-
plings to single nucleons remains small. The net effect

of the O(q5) and O(q6) diagrams that neglect the X2

contributions is to lower the pion mass by about 20%.
(ii) Despite the large uncertainty associated with contri-

butions from the two-nucleon operators, which grow
rapidly with density, pionic atom constraints on the
LECs ensure that mπ− continue to increase with den-
sity and disfavors π− condensation.

(iii) The decrease of mπ+ with density is nearly linear, and
the higher-order contributions from the two-loop and
X2 operators are modest for nB < 1.5nsat.

(iv) The positively charged collective mode, π+
s , predicted

by our analysis in the long-wavelength limit, is new.
The energy of this mode is negative, and its value de-
pends on the energy splitting of neutrons and protons
in the medium, the one-loop particle-hole diagram,
and the two-loop diagram that involves a p-wave in-
teraction between pions and nucleons.

Our results have the following implications for astro-
physics and neutron stars. First, with the inclusion of
two-nucleon operators in the EFT approach and constraints
on their size from pionic atoms, we have shown that π−
condensation remains unlikely even if the nuclear symme-
try energy is large. Second, the pion masses calculated in
this study can be used to estimate the thermal population
of pions at low temperatures when T 
 EF where EF ≈
50(nB/nsat )2/3 MeV is the Fermi energy of nucleons because
the nucleon distribution functions do not change apprecia-
bly. The π+

s mode can be easily excited because its energy
ωπ+

s
= mπ+

s
+ μe can be small and its thermal population,

nπ+
s

∝ exp [−(μe + m∗
π+

s
)/T ], may be relevant. However, as

noted earlier, ωπ+
s

is sensitive to the nuclear symmetry en-
ergy, and a self-consistent treatment of the nucleon and pion
self-energies is needed to assess its relevance. The excitation
energy of the π− and π+ modes, given by ωπ− = mπ− − μe

and ωπ+ = mπ+ + μe, respectively, are significantly higher.
Our results indicate that they can be safely neglected when
nB � nsat and T � 10 MeV.

At high temperature, when the matter is nondegenerate and
dilute, a reliable description of the pion contribution can be
obtained using the virial expansion in Ref. [17]. This study
also showed that a relatively small population of charged
pions provide new reaction pathways for neutrino production
and absorption: π− ↔ μ− + ν̄μ, π− ↔ e− + ν̄e, and can alter
neutrino transport in dense environments at T � 30 MeV. To
assess the role of pions in warm dense matter when T ≈
EF , we will need to calculate, in addition to the pion mass,
the momentum dependence of the pion self-energy, includ-
ing the strongly attractive p-wave interactions, two-nucleon
currents and thermal effects on the nucleons. Further, a self-
consistent calculation of nucleon and pion self-energies within
the framework of chiral perturbation theory would be desir-
able. Our calculation at T = 0 and zero momentum, which
included the neutron-proton self-energy splitting and the two-
nucleon operators, is a first step toward such a study. The
possibility of π+

s condensation warrants further study, which,
as noted above, will require an improved treatment of the
nucleon-nucleon interaction. Even if condensation does not
occur, the low excitation energy of the π+

s mode implies that
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it could play a role at low temperatures and influence neutrino
reactions. A similar, negative-energy spin-isospin collective
mode was discussed in the context of neutrino reactions in
warm neutron-rich matter [58]. The relationship between the
spin-isospin collective mode and π+

s , their role in neutrino
reactions, and the impact on the transport of heat and lepton
number in supernovae and neutron star mergers warrants fur-
ther investigation.
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APPENDIX: LOOP FUNCTIONS

In this Appendix, we give analytical expressions for the
pertinent functions I (ω; kn, kp), I (0, kn, kn), K (ω; kn, kp) and
K (0; kn, kp) that appear in the contribution �pw(ω) to the pion
self-energy. In order to evaluate the Fermi sphere integrals in
Eq. (17), three nontrivial integrations over the cosine of an
inclined angle and two radii have to be performed. The angular
integral leads to logarithms, and treating these as logarithms
of absolute values effectively implements the principal-value
prescription. One finds:

384π4I (ω; kn, kp) = 32

3
k3

nk3
p + Q2L(ω; kn, kp), (A1)

with Q = √
ω2 − m2

π and the function L(ω; kn, kp) is written in Eq. (13). The other loop functions read:

384π4I (0; kn, kn) = 32

3
k6

n − 24k4
nm2

π + 4k2
nm4

π + 32k3
nm3

π arctan
2kn

mπ

− m4
π

(
12k2

n + m2
π

)
ln

(
1 + 4k2

n

m2
π

)
, (A2)

192π4K (ω; kn, kp) = 4knkp
(
k2

n − k2
p

)(
k2

n + k2
p − 5Q2

) + (
k2

n − k2
p

)[(
k2

n − k2
p

)2 − 6Q2
(
k2

n + k2
p

) − 3Q4
]

× ln
|(kn − kp)2 − Q2|
|(kn + kp)2 − Q2| + 8Q3

[(
k3

n + k3
p

)
ln

|kn − kp − Q|
|kn − kp + Q| + (

k3
n − k3

p

)
ln

kn + kp + Q

|kn + kp − Q|
]
, (A3)

192π4K (0; kn, kp) = 4knkp
(
k2

n − k2
p

)(
k2

n + k2
p + 5m2

π

) + (
k2

n − k2
p

)[
3m4

π − 6m2
π

(
k2

n + k2
p

) − (
k2

n − k2
p

)2]

× ln
(kn + kp)2 + m2

π

(kn − kp)2 + m2
π

+ 16m3
π

[(
k3

n + k3
p
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arctan
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mπ

+ (
k3

p − k3
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)
arctan

kn + kp

mπ

]
. (A4)

[1] R. F. Sawyer, Phys. Rev. Lett. 29, 382 (1972).
[2] D. J. Scalapino, Phys. Rev. Lett. 29, 386 (1972).
[3] R. F. Sawyer and D. J. Scalapino, Phys. Rev. D 7, 953 (1973).
[4] A. B. Migdal, Phys. Lett. B 45, 448 (1973).
[5] A. B. Migdal, O. A. Markin, and I. I. Mishustin, Zh. Eksp. Teor.

Fiz. 70, 1592 (1976) [Sov. Phys. JETP 39, 212 (1974)].
[6] A. B. Migdal, Phys. Rev. Lett. 31, 257 (1973).
[7] G. Baym, Phys. Rev. Lett. 30, 1340 (1973).
[8] G. Baym and E. Flowers, Nucl. Phys. A 222, 29 (1974).
[9] N. Chi-Kwan Au and G. Baym, Nucl. Phys. A 236, 500

(1974).
[10] R. F. Dashen and J. Manassah, Phys. Lett. B 50, 460 (1974).
[11] S. Barshay and G. Brown, Phys. Lett. B 47, 107 (1973).
[12] W. Weise and G. Brown, Phys. Lett. B 58, 300 (1975).
[13] S.-O. Bäckman and W. Weise, Phys. Lett. B 55, 1 (1975).
[14] D. K. Campbell, R. F. Dashen, and J. T. Manassah, Phys. Rev.

D 12, 979 (1975).
[15] D. K. Campbell, R. F. Dashen, and J. T. Manassah, Phys. Rev.

D 12, 1010 (1975).

[16] A. Migdal, E. Saperstein, M. Troitsky, and D. Voskresensky,
Phys. Rep. 192, 179 (1990).

[17] B. Fore and S. Reddy, Phys. Rev. C 101, 035809 (2020).
[18] N. Kaiser and W. Weise, Phys. Lett. B 512, 283 (2001).
[19] E. E. Kolomeitsev, N. Kaiser, and W. Weise, Phys. Rev. Lett.

90, 092501 (2003).
[20] N. Fettes, U.-G. Meissner, and S. Steininger, Nucl. Phys. A 640,

199 (1998).
[21] M. E. Sainio, PiN Newslett. 16, 138 (2002).
[22] M. Hoferichter, J. Ruiz de Elvira, B. Kubis, and Ulf-G.

Meißner, Phys. Rev. Lett. 115, 092301 (2015).
[23] S. Borsanyi, Z. Fodor, C. Hoelbling, L. Lellouch, K. K. Szabo,

C. Torrero, and L. Varnhorst, arXiv:2007.03319.
[24] T.-S. Park, H. Jung, and D.-P. Min, J. Korean Phys. Soc. 41, 195

(2002).
[25] U. G. Meissner, J. A. Oller, and A. Wirzba, Ann. Phys. 297, 27

(2002).
[26] S. Weinberg, Phys. Rev. Lett. 17, 616 (1966).
[27] Y. Tomozawa, Nuovo Cim. A 46, 707 (1966).

025803-12

https://doi.org/10.1103/PhysRevLett.29.382
https://doi.org/10.1103/PhysRevLett.29.386
https://doi.org/10.1103/PhysRevD.7.953
https://doi.org/10.1016/0370-2693(73)90640-0
http://jetp.ras.ru/cgi-bin/dn/e_043_05_0830.pdf
https://doi.org/10.1103/PhysRevLett.31.257
https://doi.org/10.1103/PhysRevLett.30.1340
https://doi.org/10.1016/0375-9474(74)90583-1
https://doi.org/10.1016/0375-9474(74)90270-X
https://doi.org/10.1016/0370-2693(74)90260-3
https://doi.org/10.1016/0370-2693(73)90581-9
https://doi.org/10.1016/0370-2693(75)90658-9
https://doi.org/10.1016/0370-2693(75)90171-9
https://doi.org/10.1103/PhysRevD.12.979
https://doi.org/10.1103/PhysRevD.12.1010
https://doi.org/10.1016/0370-1573(90)90132-L
https://doi.org/10.1103/PhysRevC.101.035809
https://doi.org/10.1016/S0370-2693(01)00584-6
https://doi.org/10.1103/PhysRevLett.90.092501
https://doi.org/10.1016/S0375-9474(98)00452-7
https://doi.org/10.1103/PhysRevLett.115.092301
https://arxiv.org/abs/2007.03319
https://doi.org/10.1006/aphy.2002.6244
https://doi.org/10.1103/PhysRevLett.17.616
https://doi.org/10.1007/BF02857517


MASS OF CHARGED PIONS IN NEUTRON-STAR MATTER PHYSICAL REVIEW C 110, 025803 (2024)

[28] E. Epelbaum, H.-W. Hammer, and Ulf-G. Meissner, Rev. Mod.
Phys. 81, 1773 (2009).

[29] H. W. Hammer, S. König, and U. van Kolck, Rev. Mod. Phys.
92, 025004 (2020).

[30] S. Weinberg, Phys. Lett. B 251, 288 (1990).
[31] S. Weinberg, Nucl. Phys. B 363, 3 (1991).
[32] J. A. Oller, A. Lacour, and U.-G. Meißner, J. Phys. G: Nucl.

Part. Phys. 37, 015106 (2010).
[33] D. B. Kaplan, M. J. Savage, and M. B. Wise, Nucl. Phys. B 534,

329 (1998).
[34] S. R. Beane and M. J. Savage, Nucl. Phys. A 717, 91 (2003).
[35] J.-W. Chen, T.-K. Lee, C.-P. Liu, and Y.-S. Liu, Phys. Rev. C

86, 054001 (2012).
[36] J. Soto and J. Tarrús, Phys. Rev. C 85, 044001 (2012).
[37] S. R. Beane, P. F. Bedaque, K. Orginos, and M. J. Savage, Phys.

Rev. Lett. 97, 012001 (2006).
[38] B. Borasoy and H. W. Griesshammer, arXiv:nucl-th/0105048.
[39] J. W. Holt and N. Kaiser, Phys. Rev. C 95, 034326 (2017).
[40] B.-A. Li, L.-W. Chen, and C. M. Ko, Phys. Rep. 464, 113

(2008).
[41] A. W. Steiner, M. Prakash, J. M. Lattimer, and P. J. Ellis, Phys.

Rep. 411, 325 (2005).
[42] C. Drischler, R. Furnstahl, J. Melendez, and D. Phillips, Phys.

Rev. Lett. 125, 202702 (2020).
[43] D. Adhikari et al. (PREX Collaboration), Phys. Rev. Lett. 126,

172502 (2021).

[44] B. T. Reed, F. J. Fattoyev, C. J. Horowitz, and J. Piekarewicz,
Phys. Rev. Lett. 126, 172503 (2021).

[45] C. J. Horowitz, E. F. Brown, Y. Kim, W. G. Lynch, R. Michaels,
A. Ono, J. Piekarewicz, M. B. Tsang, and H. H. Wolter, J. Phys.
G 41, 093001 (2014).

[46] J. Estee et al. (SπRIT Collaboration), Phys. Rev. Lett. 126,
162701 (2021).

[47] P. Russotto, S. Gannon, S. Kupny, P. Lasko, L. Acosta, M.
Adamczyk, A. Al-Ajlan, M. Al-Garawi, S. Al-Homaidhi, F.
Amorini et al., Phys. Rev. C 94, 034608 (2016).

[48] D. Lonardoni, I. Tews, S. Gandolfi, and J. Carlson, Phys. Rev.
Res. 2, 022033(R) (2020).

[49] Y. Lim and J. W. Holt, Phys. Rev. Lett. 121, 062701
(2018).

[50] V. Thorsson and A. Wirzba, Nucl. Phys. A 589, 633
(1995).

[51] D. N. Voskresensky, Phys. Rev. D 105, 116007 (2022).
[52] S. Goda and D. Jido, PTEP 2014, 033D03 (2014).
[53] C. J. Batty, E. Friedman, and A. Gal, Phys. Rep. 287, 385

(1997).
[54] E. Friedman and A. Gal, Phys. Rep. 452, 89 (2007).
[55] E. Friedman, Nucl. Phys. A 710, 117 (2002).
[56] E. Friedman, Phys. Lett. B 524, 87 (2002).
[57] W. Weise, Nucl. Phys. A 690, 98 (2001).
[58] E. Shin, E. Rrapaj, J. W. Holt, and S. K. Reddy, Phys. Rev. C

109, 015804 (2024).

025803-13

https://doi.org/10.1103/RevModPhys.81.1773
https://doi.org/10.1103/RevModPhys.92.025004
https://doi.org/10.1016/0370-2693(90)90938-3
https://doi.org/10.1016/0550-3213(91)90231-L
https://doi.org/10.1088/0954-3899/37/1/015106
https://doi.org/10.1016/S0550-3213(98)00440-4
https://doi.org/10.1016/S0375-9474(02)01586-5
https://doi.org/10.1103/PhysRevC.86.054001
https://doi.org/10.1103/PhysRevC.85.044001
https://doi.org/10.1103/PhysRevLett.97.012001
https://arxiv.org/abs/nucl-th/0105048
https://doi.org/10.1103/PhysRevC.95.034326
https://doi.org/10.1016/j.physrep.2008.04.005
https://doi.org/10.1016/j.physrep.2005.02.004
https://doi.org/10.1103/PhysRevLett.125.202702
https://doi.org/10.1103/PhysRevLett.126.172502
https://doi.org/10.1103/PhysRevLett.126.172503
https://doi.org/10.1088/0954-3899/41/9/093001
https://doi.org/10.1103/PhysRevLett.126.162701
https://doi.org/10.1103/PhysRevC.94.034608
https://doi.org/10.1103/PhysRevResearch.2.022033
https://doi.org/10.1103/PhysRevLett.121.062701
https://doi.org/10.1016/0375-9474(95)00166-X
https://doi.org/10.1103/PhysRevD.105.116007
https://doi.org/10.1093/ptep/ptu023
https://doi.org/10.1016/S0370-1573(97)00011-2
https://doi.org/10.1016/j.physrep.2007.08.002
https://doi.org/10.1016/S0375-9474(02)01126-0
https://doi.org/10.1016/S0370-2693(01)01326-0
https://doi.org/10.1016/S0375-9474(01)00934-4
https://doi.org/10.1103/PhysRevC.109.015804

