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NICER data and a σ-field-dependent stiffness of the hadronic equation of state
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Analyses for the NICER data indicate that there is no significant variation of compact star radii within the mass
range of 1.4 to 2.0 solar masses. Yamamoto et al. [Phys. Rev. C 108, 035811 (2023)] concluded recently that
“this feature cannot be reproduced by the hadronic matter due to the softening of the equation of state (EoS) by
hyperon mixing, suggesting the possible existence of quark phases in neutron-star interiors.” Using a collection
of 162 purely nucleonic, hyperonic, and quarkish EoSs from the CompOSE database and some other works, we
verify that hyperons indeed lead to a significant difference in radii of stars of 1.4 and 2.0 solar masses, which
diminishes in the presence of quarks. We compare the shapes of the mass-radius curves and show that hyperons
and quarks in the neutron star cores prefer a particular curve shape with backbending. It is argued that the shape
is controlled by the density dependence of the nuclear symmetry energy. We draw attention to the existence of
a class of purely hadronic relativistic mean-field EoSs with scalar-field dependent hadron masses and coupling
constants that satisfy the known constraints on the EoSs including the analyses of the new NICER data and the
above requirement of insignificant variation of the neutron star radii.
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I. INTRODUCTION

The advent of the multimessenger astronomy enables stud-
ies of neutron stars (NSs) through all the available tracers:
cosmic rays, neutrinos, and electromagnetic and gravitational
waves. New data provide more stringent constraints on the
main NS parameters, which are used to get insight into
hadron/nucleon interactions at suprasaturation densities [1].
Thanks to dedicated campaigns of radio pulsar timing mea-
surements, several heavy NSs with masses greater than two
solar masses were identified. The recently launched x-ray
timing telescope, the Neutron Star Interior Composition Ex-
plorer (NICER), delivered several first joint measurements of
star masses and radii. Based on the attempts to describe the
new data, works have appeared with the conclusion that a
purely hadronic equation of state (EoS) cannot fully account
for them [2,3], and that a hybrid EoS involving subhadronic
degrees of freedom (quarks, diquarks) is needed.

The purpose of this paper is, first, to restate which of the
NS properties may appear problematic for the description with
the purely hadronic EoSs, and, second, to point out a class of
hadronic models that accommodate the new data.

II. MASSES OF NEUTRON STARS

For quite some time there has been a consensus that most
NSs have masses near 1.4M� [4], being produced in super-
nova explosions with masses close to the NS maximum mass
Mmax � 1.5M� [5]. Most of the existing hadronic EoSs could
describe NSs with such masses. Also such a very narrow
NS mass distribution offered a convenient way to explain the
NS cooling data within the minimal cooling plus direct Urca
(DU) scenario [6,7] without including in-medium effects. In

contrast, a nuclear medium cooling scenario was developed
in Refs. [8–11]. It relied on the assumption that NSs with
measured surface temperatures (first data fixed only upper
limits on surface temperatures) have very different masses
and that NS neutrino emissivity depends strongly on the NS
density, i.e. the NS mass, since the in-medium pion exchange
significantly affects the two-nucleon reaction rates, whereas
the DU reaction is not allowed [8,12]. This approach has
been supported by the discovery of a light pulsar with mass
1.25M� in the double pulsar system J0737−3039 [13] and by
the growing evidence for the existence of NSs with masses
greater than 1.5M� [14]. It is now well established that NS
masses vary over a wide interval [15]. The so-far lightest NS1

with the well-measured mass of 1.174(4)M� is the pulsar
PSR J0453+1559 [16]. The masses of the heaviest pulsars
are mainly derived from analyses of Shapiro delay measure-
ments of pulsar binaries. The first well-measured masses were
1.908(16)M� of PSR J1614−2230 [17–19] and 2.01(4)M�
for PSR J0348+0432 [20]. The current highest precisely
measured mass is 2.08(7)M� for PSR J0740+6620 [21,22].
Additional information is obtained from the photometry of
binary systems of millisecond pulsars in tight <1 day or-
bits, with the companion heated and evaporated by the pulsar
spindown power—the so-called spiders: black widows with
substellar companions and redbacks with low-mass star com-
panions. Among these objects there is the fastest rotating
pulsar PSR J0952−0607 [23] whose mass is found to be
2.35(17)M�. A joint analysis including other spider pulsars

1A recent estimate for the CCO XMMU J173203.3−344518 mass,
0.77+0.20

−0.17 M�, reported in Ref. [52], will be discussed below.
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in [24] leads to the conclusion that the minimum value for
the maximum NS mass is Mmax > 2.19M� with 1σ confi-
dence. It is to be noticed that all spider NSs are fast-rotating
millisecond pulsars so one should include corrections for a
possible increase of the star mass due to rotation, which is
estimated in [25] as 3%. Therefore, the lower limit on the
maximum NS mass should be lowered and, consequently, we
would have Mmax > 2.1M�. There is also a constraint on Mmax

from above. The authors of Ref. [26] combining gravitational
wave observations of merging systems of binary NSs and qua-
siuniversal relations concluded that for a nonrotating NS the
maximum mass should satisfy the constraint Mmax < 2.33M�.
If so, the value of Mmax can be considered as a very-well-
constrained quantity, 2.1M� < Mmax < 2.33M�.

III. HYPERON AND � PUZZLES

Many purely nucleonic EoSs can satisfy the constraint
Mmax > 2.1M�; see Ref. [27] and the review of Skyrme
models [28]. In the relativistic mean-field (RMF) modified
Walecka models this inequality can be easily satisfied by
choosing a sufficiently small effective nucleon mass at the sat-
uration density as an input parameter; see Fig. 6 in Ref. [29].
However, allowing for the existence of strange particles in
the model and the population of the corresponding Fermi
seas, one realizes [30,31] that, by employing an empirically
motivated two-body hyperon—nucleon potential, hyperons
appear in NS matter already at baryon densities >∼ (2–3)n0,
where n0 � 0.16 fm−3 is the nuclear saturation density. The
coupling constants of hyperons with vector mesons were inter-
related by SU(6) symmetry relations; cf. [32]. As a result, the
maximum masses of NSs with hyperons fall below not only
2M� but also below 1.4M�. This was called in the literature
the “hyperon puzzle,”, which can be avoided by artificially
preventing the appearance of hyperons or by including the
hyperon-nucleon and/or hyperon-hyperon density-dependent
repulsion, e.g., due to three-body forces [33]; see the dis-
cussion in Ref. [34]. In the framework of RMF models one
can include the hyperon-hyperon repulsion mediated by a
φ-meson mean field and/or use a different choice of hyperon-
meson coupling constants beyond the quark counting within
the SU(6) symmetry (see, e.g., Ref. [35]) to increase the NS
mass. The similar “� puzzle” with the occupation of � isobar
Fermi seas was identified in Ref. [36].

Another aspect of the hyperon puzzle is that the presence
of hyperons in the NS interiors allows efficient DU reactions
on hyperons (HDU), e.g., � → p + e + ν̄, leading to very fast
cooling of NSs with masses M > MHDU, where MHDU is the
NS mass at which the first hyperons appear in the star center.
This second part of the problem is solved within the nuclear
medium cooling scenario in [37,38].

IV. RADII OF NEUTRON STARS

In the early 2000s, experimental data on NS radii began
to appear: from analyses of quasiperiodic oscillations in the
low-mass x-ray binary system 4U 0614+09 [39], the thermal
emission of the bright isolated NS RX J1856.5−3754 [40],
thermonuclear x-ray bursts from NSs in low-mass
x-ray binaries [41,42], and pulse-phase-resolved x-ray

spectroscopy [43,44]. See also the Bayesian analysis of
combined data in [45]. In most of these works, the masses
of the studied objects were poorly constrained and only
broad regions on the mass-radius plane (in some cases not
even overlapping) were marked as allowed. This situation
began to change with the launch of the NICER observatory.
In its first measurement campaigns NICER studied the
millisecond pulsar PSR J0030+0451, whose mass was found
in two independent analyses to be 1.34+0.15

−0.16 M� [46] and
1.44+0.15

−0.14M� [47] and the inferred radius was determined
to be 12.71+1.14

−1.19 km in [46] and 13.02+1.24
−1.06 km in [47].

NICER then turned to one of the heaviest NSs, object PSR
J0740+6620. The radius was found to be 13.7+2.6

−1.5 km in [48]
and 12.39+1.30

−0.98 km in [49]. Applying the two-star radius
measurements with the tidal deformability constraints to
three different frameworks for EoS, Ref. [48] provided the
following 68% credible intervals of the radius estimates:

R1.4M� = 12.45(65) km, R2.0M� = 12.35(75) km. (1)

The NICER data [46–49] have been incorporated, in Ref. [50],
into the joint analysis of the NS EoS, using a nonparamet-
ric EoS model based on Gaussian processes and combining
information from other x-ray, radio, and gravitational wave
observations of NSs. The results are

R1.4M� = 12.56+1.00
−1.07 km [47] and 12.34+1.01

−1.25 km [46], (2)

R2.0M� = 12.41+1.00
−1.10 km [48] and 12.09+1.07

−1.17 km [49]. (3)

These analyses show that, despite significant statistical uncer-
tainties, the derived NS radii are consistent with being equal
over a wide mass range, with a radius difference of

�R(1.4–2.0)M� ≡ R1.4M� − R2.0M�

=
{

0.12+0.85
−0.83 km

(
Miller et al. [47,48]

)
,

0.20+0.8
−0.82 km

(
Riley et al. [46,49]

)
;
(4)

see Table II in [50]. The results of the combined analy-
ses collected in Table 4 in Ref. [48] assume that −0.48 <∼
�R(1.4–2.0)M�

<∼ 0.35 km. The lower limit �R(1.4–2.0)M� �
−0.68 km follows from the direct NICER measurement by
Miller et al. [47,48], while the results by Riley et al. [46,49]
give the upper limit �R(1.4–2.0)M� � 0.32 km. Reference [51]
investigated the additional effect on the EoS of the jointly
estimated mass and radius of PSR J0740+6620 presented
in [49] by analyzing a combined data set from x-ray telescopes
NICER and XMM-Newton. They concluded that R1.4M� ≈
R1.8M� ≈ R2.0M� within 1 km precision.

The lightest NS identified as the central compact object
XMMU J173203.3−344518 could have a rather small radius
10.4+0.86

−0.78 km within 1σ confidence according to Ref. [52]. If
confirmed, it would be an intriguing possibility of a super-
dense compact object different from a NS [53]. However, as
pointed in Ref. [54], the results of Ref. [52] would change if
the distance to the object is revised. The authors of Ref. [54]
used the Gaia parallax measurements of the optical star and
estimated the distance to the object to be shorter by a fac-
tor 1.28. Consequently, they obtained the larger mass of
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0.83+0.17
−0.13 M� and the larger radius 11.25+0.53

−0.37 km for XMMU
J173203.3−344518.

V. EoS AND EMPIRICAL CONSTRAINTS

Typical hadronic EoSs are challenged by the requirement
of simultaneous fulfillment of empirical constraints gained in
studies of various nuclear systems: atomic nuclei, heavy-ion
collisions, and astrophysics. The most difficult task is to unite
the description of the particle flow in heavy-ion collision
requiring a soft EoS for the isospin-symmetric matter [55]
and a large value of the maximum NS mass requiring a stiff
EoS for the NS matter; see the discussion in Ref. [27]. To
resolve this problem in the framework of RMF models, the
baryon-density dependence of hadron coupling constants was
suggested in Refs. [56,57]. In this case, the construction of
thermodynamically consistent quantities requires additional
care. In Ref. [29] we proposed the RMF model with scaling of
hadron masses and coupling constants, the SHMC model, in
which hadron masses and meson–baryon coupling constants
are dependent on the σ mean field. For infinite nuclear matter,
the scaling functions for masses and coupling constants enter
the EoS only as a ratio, whose dependence on the σ field is
chosen to gain the best description of empirical constraints
that minimizes the number of fitted parameters. The σ -field
scaling of RMF mass terms was motivated by experimental
hints on the modification of hadronic masses and widths in
hadronic matter and arguments for partial symmetry breaking
with a baryon density increase. So, it looks natural that within
the RMF approach not only baryon mass terms but also the
mass terms of σ , ω, ρ, and φ meson fields should be similarly
dependent on the σ field in the medium. In the SHMC models
we deal with the usual Lagrangian approach, and the deriva-
tion of thermodynamic quantities follows without difficulty.
The models KVR and KVOR of such a type, formulated
in [29] and named so in [27], satisfied most of the constraints
on the EoS known at that time from analysis of nuclei, heavy-
ion collisions, and NSs, including the particle flow, DU, and
maximum NS mass constraints; cf. Table V in Ref. [27].
To describe the new data on NS masses together with the
flow constraint, two families of models (labeled MKVOR
and KVORcut) were constructed in Refs. [58–60] based on
the KVOR model. The models implement various versions
of the stiffening mechanism (the cut mechanism) developed
in [61], which aims at leveling off the sigma-field increase
at some specified value. As a result, the effective baryon
masses stop decreasing at some chosen value of the density
n∗ >∼ (2–4)n0. Some microscopic support for such in-medium
nucleon mass variation can be found in the renormalization
group approach [62]. Also, if the decrease of the nucleon
mass is determined by a decrease of the quark condensate in
the medium, several mechanisms lead to a strong reduction
of the condensate decrease rate at higher densities [63]. In
the KVORcut family, the cut mechanism (strong variation of
parameters with σ ) is included in the ω-field sector, whereas
in the MKVOR family the cut-mechanism is implemented in
the ρ-meson sector. Therefore, we could push up the max-
imum NS mass and simultaneously satisfy the particle flow

constraint from heavy-ion collisions since there is no ρ meson
contribution for the isospin-symmetric matter.

The SHMC models were used in studies of heavy-ion col-
lisions and NSs in Refs. [37,38,58–61,64–68], demonstrating
that the maximum NS mass is Mmax > (2–2.2)M� even in
the presence of hyperons and � baryons. Also, the mod-
els fulfill the constraints on the EoS of isospin symmetric
matter from the nucleon flow and kaon production, giant
monopole resonances, the constraints on the symmetry en-
ergy from neutron-proton elliptic flow difference measured
by the FOPI-LAND experiment, and nuclear analog isobaric
states. The MKVOR model was tuned to produce the EoS
of purely neutron matter, which lies within the uncertainty
region estimated within the chiral effective field theory in
Ref. [69]. Comparison with the recent chiral calculations
collected in Ref. [70] shows that also KVORcut03 model
passes through the uncertainty region. The models describe
appropriately optical nucleon potential U (n), and for n <∼ n0

we appropriately recover the results of the chiral perturbation
theory. In the case of the beta-equilibrium matter the DU
constraint is fulfilled. The NS cooling data are also properly
described even with hyperons taken into account [37,38]. The
NS deformability calculated with our MKVOR-based mod-
els fits within the 90% confidence region obtained from the
GW170817 gravitational wave signal. For the KVORcut03-
based model, the results lie on a border of the 90% confidence
region [71]. Thus, most of the presently known constraints
are satisfied with the purely hadronic EoSs obtained with
the SHMC model. For convenience of the reader, we briefly
discuss specifics of the energy-density functional of the
SHMC model in the Appendix. Further details can be found
in [29,58–61,67].

Usually, new degrees of freedom appearing in a phase
transition lead to a decrease of a thermodynamic potential
that necessarily results in the EoS softening. Nevertheless,
the maximum NS mass remains above the modern empirical
constraints in our SHMC models [58–60] even in the presence
of hyperons and �’s. Reference [71] also demonstrated the
possibility that in the SHMC models the most massive NSs
may contain a hadron-quark pasta phase and quark cores,
satisfying the maximum NS mass constraint. In Ref. [72]
the hybrid star cooling scenario is shown to be compatible
with the NS cooling data, provided the density dependence of
diquark gaps is taken into account and the nuclear medium
cooling scenario is used for the description of the hadronic
part of the NSs.

Description of the outer part of the NS, the crust, which is
important for the intermediate-mass stars (≈1.4M�), is rather
complicated because it requires a treatment of inhomogeneous
matter. For the full thermodynamic consistency it would be
necessary to describe the crust with a possible pasta phase
and clusters transforming into neutron reach nuclei. Since
models and, especially, methods used to derive the EoS for
high baryon densities are often not suitable for the descrip-
tion of finite nuclei, the common practice is to attach an
already established, phenomenologically constrained EoS for
the crust to the core EoS. The SHMC models, which we
consider, are matched with the BPS EoS [73], as described in
detail in Appendix A in Ref. [59]. We followed logic similar
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to that in Ref. [74]. Uncertainties of such a matching are
discussed in Refs. [75,76]. In Ref. [77] it was argued that
the thickness of the crust can be evaluated without having
detailed knowledge of the EoS in this region, solution of
the Tolman-Oppenheimer-Volkoff equation, and the condition
that the baryon chemical potential is continuous in the crust,
as it must be for fully catalyzed matter. Using Eq. (17) from
the latter work, we obtain the crust thickness of the 1.4M�
NS, which differs from the calculations with our matched EoS
by <∼ 100 m. This gives an estimate for the uncertainty of our
calculation of the radius R1.4M� . For heavier NS the crust is
thinner and the uncertainty in R2.0M� is expected to be still
smaller.

To avoid the EoS softening in the phase transition con-
structed by matching of thermodynamical potential, the
authors of Ref. [78] suggested the so-called “three-window
scenario” assuming an enforced transition from the purely
hadronic phase to a crossover phase at some density nc1 ∼
2n0, which at density nc2 ∼ (4–7)n0 changes to quark matter.
By this logic one can use the nuclear equation of state only at
densities n < nc1, some quark model at n > nc2, and a smooth
interpolation in between. Such a picture could be supported
by the quark percolation conjecture [79,80] assuming that
quarks may begin to “jump” between nucleons at nc1 and,
then, the fraction of “shared” quarks increases with a density
increase. If this were so, the hadron phase would change
smoothly to the quarkish phase even though the latter one
has a higher value of the thermodynamic potential (resulting
in a stiffer EoS) than the hadronic one; see discussions in
Refs. [2,81,82]. Within the three-window scenario the hy-
peron and � puzzles get an almost trivial solution: as soon
as the quark percolation starts, the formation of new bary-
onic states and the corresponding Fermi seas is forbidden. It
should be noticed, however, that there is currently no quantita-
tive description of the intermediate density phase. Moreover,
the density interval (2–4)n0 is well covered by low-energy
heavy-ion collision experiments, whose interpretation does
not require the introduction of quark matter. Also, the NS
masses obtained in ordinary RMF EoSs corresponding to
central densities (2–4)n0 are still low, (0.7–1.5)M�. Thus,
within this approach, questions remain about the fulfillment
of other constraints such as the flow constraint (covering den-
sities <∼ 4.5n0) and the DU constraint suggesting absence of
the neutrino DU reactions in NSs with M <∼ (1.35–1.5)M�;
cf. [27].

VI. APPLICATION OF NEW NICER DATA

Recently Ref. [3] proposed interpreting the NICER data in
favor of approximate independence of the NS radii on the star
mass in the interval of the NS masses between 1.4M� and
2.0M� and to use the relation

R1.4M� ≈ R2.0r, (5)

as a possible novel constraint on the NS EoS supported by
the analysis of [51]. A similar relation was discussed in
Ref. [83]. From attempts to satisfy this constraint the authors
of Ref. [3] concluded that it cannot be fulfilled with the
purely hadronic EoSs softened by the admixture of hyperons,

Δ Δφσ
Δφσ

FIG. 1. Radii of NSs with masses 1.4 M� and 2.0M� for the
EoSs collected in Ref. [84]. Filled symbols stand for purely nu-
cleonic EoSs (squares, N), EoSs with hyperons and/or � [circles,
H(�)], and hybrid EoSs with nucleons and quarks (returned tri-
angles, NQ). Symbols with error bars show the results by Legred
et al. [50], Eqs. (2) and (3) using the NICER data [46,49] by Riley
et al. (pentagon) and [47,48] by Miller et al. (star), and the results (1)
of the combined analysis from [48] (hexagon). The error bars of the
latter analysis are visualized by the colored rectangle. The dashed
line represents the relation R1.4M� = R2.0M� . The EoSs for the SHMC
models are depicted by open symbols: squares are for purely nucle-
onic models, MKVOR* (with the vertical cross) and KVORcut03
(with the diagonal cross); circles are for models with hyperons and
�’s, MKVORH*�φσ (with the vertical cross) and KVORcut03�φσ

(with the diagonal cross).

indicating thereby in favor of the existence of quark or hybrid
phases in NS interiors.

Before discussing the possibility of understanding new
mass and radius measurements using SHMC models of purely
hadronic EoS, including both hyperons and �’s, we ana-
lyze typical EoSs for NSs used in the literature. We benefit
from Ref. [84], where a set of cold NS EoSs was collected
mainly from the CompOSE database [85] and from other
works [86–88]. All together, 162 EoSs were selected in [84].
Dropping the EoSs with Mmax < 2.0M� we remain with 103
EoSs. In Fig. 1 we show the radii R1.4M� and R2.0M� calcu-
lated in the SHMC models and for the EoS collected in [84],
among which there are 63 purely nucleonic EoSs (N), 18
EoSs with hyperons and/or �’s [NH(�)], and 22 hybrid EoSs
with nucleons and quarks (NQ) depicted by squares, circles
and triangles, respectively. Symbols with error bars show the
results of the analyses [50] [see Eq. (3)] and [48] [see Eq. (1)].
The colored rectangle visualizes the error bars given in (1).
The dashed line stands for Eq. (5). We see that the radii for
many purely nucleonic EoSs satisfy the constraint (5), i.e.,
the corresponding squares lie close to the dashed line. Also,
many N-EoSs produce radii R1.4(2.0)M� falling within the large
experimental error bars. Open squares with crosses show two
versions of the purely nucleonic SHMC models. The minimal
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modification of the MKVOR model labeled MKVOR* in [60]
prevents the effective nucleon mass from vanishing at any
density. The MKVOR* square is closer to the dashed line than
that for KVORcut03; cf. [59]. In case of the MKVOR* model
the radius difference �R(1.4–2.0)M� is negative, −0.1 km, while
for the KVORcut03 model it is positive, +0.4 km. We stress
that these two models differ in the density dependence of
the symmetry energy, which is weaker in the first model for
n > n0.

The inclusion of hyperons (or/and �s) shifts the radii
(circles) in Fig. 1 up from the dashed line. For those H(�)
EoSs whose radii agree with Legred’s analyses, the radius
difference �R(1.4–2.0)M�

>∼ 1 km, and only one H(�) EoS
is within error bars of the constraint (1), i.e., enters the
colored rectangle. One more point satisfies this constraint
marginally. Thus, indeed, among the EoSs collected in [84],
the inclusion of hyperons complicates the fulfillment of the
condition (5). In contrast, many NQ EoSs satisfy well this
condition, and many triangles lie close to the dashed line. So,
in favor of the statement [3] it is tempting to conclude that the
quark admixture in the NS matter is necessary to reach the
agreement with condition (5). However, the purely hadronic
SHMC models with hyperons can also satisfy condition (5).
Open circles with crosses in Fig. 1 show the radii for the
models MKVOR*H�φσ and KVORcut03H�φσ [59,60].
The suffix “φ” means that in these models we included the
φ-meson mean field providing repulsion among hyperons and
took into account the scaling of the mean-field φ meson mass
term similar to the scaling of other mean-field mass terms and
the nucleon mass. As shown in Ref. [58] this scaling enhances
the hyperon-hyperon repulsion and allows the solution of the
hyperon puzzle. The suffix “σ” indicates that we include the
effect of reducing hyperon-sigma coupling with a σ field
increase, as follows, e.g., from the quark-meson coupling
model [89]. We see that the KVORcut03H�φσ point
enters the colored rectangle in Fig. 1, and MKVOR*H�φσ

marginally satisfies this constraint. For the MKVOR*H�φσ

model we have �R(1.4–2.0)M� = −0.03 km and for
KVORcut03H�φσ model 0.5 km.

The shape of the mass-radius curve can be characterized by
the sign and magnitude of the derivative R′(M ) at the inflec-
tion point of the R(M ) curve, i.e., the point where R′′(Minfl) =
0. In Fig. 2 we illustrate the correlation between �R(1.4–2.0)M�
and R′(Minfl) for different types of the EoSs. If R′(Minfl) < 0,
then M(R) is a monotonically decreasing function, shown in
the left inset plot in Fig. 2. If R′(Minfl) > 0, then M(R) curve
is nonmonotonic with a backbending, as shown in the right
inset. We see that most of the NH(�) and NQ EoSs give the
M(R) curve with backbending, while the nucleonic (N) EoSs
can produce the M(R) curves with and without backbending.
For MKVOR* and MKVOR*H�φσ EoSs, R(M ) curves have
backbending and R′(Minfl) > 0. These models are character-
ized by a softer density dependence of the symmetry energy
than the KVORcut models. Respectively, the coefficient L
characterizing the density dependence of the symmetry energy
nearby n � n0 is smaller (L � 41 MeV) for MKVOR-type
models than that (L � 71 MeV) for KVOR-type models. The
model KVORcut03H�φσ demonstrates R′(Minfl) < 0. The
KVORcut03 EoS shows a tiny negative value of R′(Minfl). The

FIG. 2. Correlation between �R(1.4–2.0)M� and the form of the
mass-radius curve characterized by the sign of the derivative R′(M )
at the inflection point (shown by crosses in the insertion plots as
an illustration) for the same set of EoSs as in Fig. 1. All symbols
have the same meaning as in Fig. 1. The color band indicates the
interval −0.68 < �R(1.4–2.0)M� < 0.35 km encompassing the results
of different analyses; see Eq. (4) and the text below it. Central
dots indicate the EoSs, which fall within the colored rectangle in
Fig. 1 satisfying the radius constraint from the combined analysis of
Ref. [48].

correlation between the density dependence of the symmetry
energy and the shape of M(R) curve is also visible in Fig. 1
of work [90] and in Fig. 5 of work [91] for the EoSs studied
there. Existing NICER data are still not sufficient to determine
if the M(R) curve has the backbending. However there is a
hope that the third generation of gravitational wave detec-
tors [92] will permit measurement of the NS radius with an
uncertainty of the order of 100m. If so, presence or absence of
the backbending will be checked experimentally with a good
accuracy.

The colored band in Fig. 2 indicates an interval of −0.68 <

�R(1.4–2.0)M� < 0.35 km motivated by the analyses [47,48].
Using central dots we additionally mark those EoSs whose NS
radii occur within the colored rectangle in Fig. 1. Only these
EoSs agree with empirical data (1) from the analysis [48].
None of the NH(�) EoSs can be found simultaneously in
the colored rectangles in Figs. 1 and 2. The SHMC EoSs
MKVOR* and MKVOR*H�φσ satisfy both constraints. The
model KVORcut03 satisfies the constraint marginally. The
model KVORcut03H�φσ does not fulfill it.

Finally, let us compare the NS mass-radius relations for
the considered SHMC models with the available empiri-
cal constraints; see Fig. 3. All four models have Mmax >

2.0M�. The NS mass constraint from the black widow pul-
sar J0952−0607 (Mmax > 2.2M�) is satisfied by the purely
nucleonic MKVOR* model and also by the MKVOR*H�φσ

model with hyperons and �’s. Accounting for the rotation cor-
rection [25], the lower edge of the constraint can be reduced
to 2.1M�, then also the KVORcut03 EoS and marginally
the KVORcut03H�φσ EoS will satisfy it. We stress that
the mass-radius curves for all four SHMC EoSs go through

025801-5



E. E. KOLOMEITSEV AND D. N. VOSKRESENSKY PHYSICAL REVIEW C 110, 025801 (2024)

FIG. 3. The mass-radius relation for a cold nonrotating NS.
Solid, dashed, dash-dotted and dotted lines show the result for
four SHMC models discussed in text. Hatched regions show the
results of NICER obtained by Miller et al. in [47,48] and Riley
et al. in [46,49], and the XMMU data after the distance correction
in Ref. [54]. The dash-dotted contour shows the M-R range from
the Bayesian probability analysis (BPAs) [45]. Filled circles show
the results of the analysis by Raaijmakers et al. [51]. The results
of the combined analysis of Legred et al. [50] using data of Miller
et al. and Riley et al. are shown by triangle and cross symbols,
respectively. Hexagons represent the analysis of the data done in
Ref. [48].

the results of extended analyses of the NICER data [50,51]
including additional empirical and theoretical information. As
for the results of the direct NICER measurements, the SHMC
EoSs do not pass through the radius range obtained by Miller
et al. [48] for the 2.0M� NS; however, all agree with the range
deduced by Riley et al. [49]. For the direct measurements pre-
sented in Refs. [46,47], the MKVOR*H�φσ model does not
pass through the 1σ range suggested for R1.4M� in Ref. [47],
but agrees with the result [46] and almost touches the 1σ

error bar (hexagon in Fig. 3) given in the analysis of [48]; see
Eq. (1). We note also that the reanalysis in Ref. [48], Eq. (1),
reduces the tension between the direct NICER results by
Miller et al. [47], R1.4M� = 13.02+1.24

−1.06 km, and the constraint
put on R1.4M� in Ref. [93], where the authors used the chiral
effective field theory and the gravitational wave observations
of the binary NS merger GW170817. They claim R1.4M� =
11.0+0.9

−0.6 km with 90% confidence. The XMMU rectangle
shows the constraint obtained after the distance correction in
Ref. [54]. The MKVOR-based models satisfy this constraint,
unlike the KVORcut-based models. This difference may be
related to the weaker density dependence of the symmetry
energy in the former ones. In Fig. 3 we also see that stars with
hyperons and �’s have smaller radii than stars without.

VII. CONCLUSION

Using a set of 103 EoSs collected in Ref. [84] from the
CompOSE database [85] and from Refs. [86–88], among

which there are 18 EoSs with hyperons and/or �’s and 22
hybrid NQ EoSs, we demonstrated that indeed most of the
used hadronic EoSs with hyperons and/or �’s [NH(�)] do
not satisfy the condition conjectured in [3] that the stellar
radius weakly changes with the mass increase from 1.4M� to
2.0M�; see Eq. (5). According to the analyses of a combined
data set from the x-ray telescopes NICER and XMM-Newton
supplemented by the gravitational wave constraints and the-
oretical constraints on the EoSs [48,50,51] discussed above,
the radius difference is limited to −0.68 < �R(1.4–2.0)M� <

0.35 km. None of the NH(�) EoSs from the EoS collection
in [84] satisfy both this constraint and the constraint (1) on
stellar radii obtained in the analysis [48]. In contrast, the
hybrid EoSs with nucleons and quarks constructed within the
three-window scenario fulfill these constraints; see Fig. 1.

We analyzed the shape of the mass-radius curve, M(R), for
different EoSs and demonstrated that for the NH(�) and NQ
EoSs it has, as a rule, backbending, as shown in Fig. 2. We also
argued that this shape favors a smoother density dependence
of the nuclear symmetry energy and a smaller value of L.

We showed that the hadronic relativistic mean-field models
with the σ -field-scaled hadron masses and coupling constants
(SHMC)—the KVORcut03- and MKVOR-based models—
constructed in Refs. [58–60] pass most of the currently
known constraints from experiments with nuclei, heavy-ion
collisions, and compact stars, including the analyses of the
new NICER mass-radius measurements. The MKVOR-type
models with and without hyperons and �’s satisfy well the
condition (5) conjectured in [3]. The KVORcut03 EoS satis-
fies it marginally. The mass-radius curves for the considered
SHMC models shown in Fig. 3 agree very well with the
constraints based on the new NICER data.

A weak variation of the NS radius of the star mass for
M > 0.5M� has been noticed already in works [58–60] and
it is now supported by the NICER data and suggested as a
constraint in Ref. [3]. We hope that our results can be treated
in favor of RMF models including σ scaling not only of
baryon masses but also of meson masses.

The presented analysis shows that the new NICER-data-
based constraints on the NS radii are very selective to the
EoS used in the NS descriptions. The future next-generation
gravitational-wave observatory [92], Cosmic Explorer, is
planned to detect NS mergers with a high rate that will enable
the determination of stellar radii with a very high precision of
100 meters. Thus, the conjecture of Ref. [3] supported by our
results [58–60] obtained with purely hadronic SHMC models
and other results illustrated in Figs. 1–3 could be, hopefully,
verified experimentally.
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APPENDIX: THE ENERGY-DENSITY FUNCTIONAL
OF SHMC MODELS

In this Appendix we briefly discuss the SHMC model con-
structed in Refs. [29,58–61,67]. The model is a generalization
of the non-linear RMF model. Our model uses the effec-
tive coupling constants g∗

mb = gmbχmb(σ ) and hadron masses
m∗

i = mi
i(σ ), which are functions of the σ field, where
index m = {σ, ω, ρ, φ} lists the included mesonic fields, b =
(N, H,�) indicates a baryon (nucleon N = p, n; hyperon
H = �,�,�; and � isobar). Index i = (b, m) stands for a
hadronic state, in general. Quantities χmb(σ ) and 
i(σ ) are
some scaling functions.

After minimization with respect to the ω, 
ρ, and φ mean
fields the energy of the hadronic subsystem becomes, cf.
Eqs. (1)–(8) in [60],

E [{nb}, f ] =
∑

b

Ekin(pF,b, mb
b( f )) + m4
N f 2

2C2
σ

ησ ( f )

+ 1

2m2
N

[
C2

ωn2

ηω( f )
+ C2

ρn2
I

ηρ ( f )
+ C2

φn2
S

ηφ ( f )

]
. (A1)

Here C2
M = g2

MN m2
N/m2

M are dimensionless coupling constants
of nucleons, N , interacting with the M = {σ, ω, ρ} meson
mean fields, and C2

φ = g2
ωN m2

N/m2
φ . The baryon, n, isospin

vector, nI , and strangeness, nS , densities are defined as

n =
∑

b

xωbnb, nI =
∑

b

xρbt3bnb,

nS =
∑

H

xφH sH nH , (A2)

xmb = gmb/gmN are the coupling constant ratios, t3b is the
isospin projection of baryon b, and sH is its strangeness.
The Fermi momentum of the baryon is related to the baryon
density as pF,b = [6π2nb/(2sb + 1)]1/3, where sb is the baryon
spin. The baryon kinetic energy density is

Ekin(pF, m, s) = (2s + 1)
∫ pF

0

p2d p

2π2

√
p2 + m2.

The coupling constants of hyperons and � isobars to vector
mesons in our approach are related to those of nucleons with
the help of the SU(6) symmetry relations. The scalar meson
coupling constants are constrained by hyperon and � poten-
tials, UH (�)(n0), in the isospin symmetric nucleon matter at
saturation. For hyperons these parameters are deduced from
extrapolations of hyper-nucleus data and for � from calcula-
tions and pion photoproduction data; see Sec. 2.3 in [60].

The scaling function ησ ( f ) can be expressed in terms of
the self-interaction potential U (σ ) as in the modified Walecka
model. Putting ηω = ηρ = ηφ = 1, we would recover the
standard nonlinear σ -ω model in the nonstrange sector. The
functions ηm( f ) = 
2

m/χ2
mb for m = ω, ρ, φ are the ratios of

scaling functions of vector-meson masses to the scaling func-
tion of hadron-nucleon coupling constants. We construct them
to get the best agreement of the resulting EoS with empirical
constraints. Following the concept of universality we tried
first small variations of the scaling function ησ,ω = 1 ± 0.3
(KVOR model), and took the scaling function ηρ to ensure

the steady increase of the f field with a density increase and to
suppress the symmetry energy removing thereby the threshold
for direct Urca reaction to larger densities [29]. Later, in
Ref. [59] we implemented the cut mechanism [61] in the ηω

function (KVORcut models) or in the ηρ function (MKVOR
model) and additionally in the ηω function (MKVOR* model).
The parametrizations of the functions ησ,ω,ρ for the considered
models can be found in Appendices B of Refs. [60,67]. For
the KVORcut03 and MKVOR* models used in this work the
functions ησ,ω,ρ ( f ) are shown in Fig. 1 in Refs. [60,67].

In the strange sector we add the φ meson field responsible
for hyperon repulsion [35]. The coupling constant for the φ

meson is unscaled, which results in the φ scaling function
ηφ = (1 − f )2.

Various suffixes in the model labels denote the inclusion
of hyperons (suffix H) and � isobars (suffix �) and the
particular choice of scaling functions in the strangeness sector
(φ).

For baryons we use the scaling function 
b( f ) = 1 −
xσbξσb

mN
mb

f , where ξσb( f ) = χσb/χσN . Following [29] a uni-
versal scaling was used for nucleon and meson masses,

m( f ) ≈ 
N ( f ). The universality assumes that ξσb � 1. Such
a behavior is motivated by ideas of the partial chiral symmetry
breaking with increasing density. However, in the strange-
sector we tried also a nonuniversal behavior of coupling
constant following the results of the quark-meson coupling
model [89], where the �σ coupling decreases with the den-
sity. For the models labeled by the suffix (σ ) we employed that
ξσb � 1 for n <∼ n0 and decreases for higher densities reaching
zero for densities when hyperons appear in the NS matter
n > ncH . Then, for calculations of the NS structure, there is
no need to specify explicitly the dependence χσH on f , as we
may just use vacuum masses of the hyperon H . In this work
we demonstrate results for the H�φσ models, since in these
models the NS maximum mass proved to be a bit higher than
for the H�φ models.

The coefficients Cσ,ω,ρ are adjusted to reproduce the satu-
ration properties: density n0 = 0.16 fm−3, the binding energy
ε0 = −16 MeV, and the effective nucleon mass chosen as
m∗

N (n0) = 0.805 mN for the KVORcut03-based model and
0.730 for the MKVOR-based models. Parameters of the ex-
pansion of the nucleon binding energy per nucleon near the
nuclear saturation density n0,

E = ε0 + K

2
ε2 − K ′

6
ε3 + · · ·

+ β2

(
J + Lε + Ksym

2
ε2 + · · ·

)
+ · · · , (A3)

ε = (n − n0)/3n0 and β = (nn − np)/n, which we use in our
KVORcut03 and MKVOR based models are presented in
Table I.

TABLE I. The properties of the isospin symmetric matter at
saturation for KVORcut03 and MKVOR models (in MeV).

EoS K J L K ′ Ksym

KVORcut03 275 32 71 422 −86
MKVOR 240 30 41 557 −158
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