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Nuclear quantum many-body methods rely on integral transform techniques to infer properties of electroweak
response functions from ground-state expectation values. Retrieving the energy dependence of these responses
is highly nontrivial, especially for quantum Monte Carlo methods, as it requires inverting the Laplace transform,
a notoriously ill-posed problem. In this work, we propose an artificial neural network architecture suitable
for accurate response function reconstruction with precise estimation of the uncertainty of the inversion. We
demonstrate the capabilities of this new architecture benchmarking it against maximum entropy and previously
developed neural network methods designed for a similar task, paying particular attention to its robustness
against increasing noise in the input Euclidean responses.
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I. INTRODUCTION

The combination of sophisticated nuclear forces systemat-
ically derived within effective theories of QCD and numerical
methods solving the quantum many-body problem with high
accuracy [1–6] has enabled abinit io studies of the struc-
ture of several nuclides across the nuclear chart, including
208Pb [7]. Although existing many-body methods can describe
nuclear ground-state properties and low-energy electroweak
transitions with high accuracy [8], modeling real-time nuclear
dynamics still poses a key challenge for current computational
methods. Accessing it is crucial for achieving a fully micro-
scopic understanding of processes such as fission, heavy-ion
fusion, as well as lepton- and nucleus-nucleus scattering.
Generally, computing dynamical properties of quantum many-
body systems remains one of the paradigmatic open problems
in quantum many-body theory, primarily due to quantum
interference [9]. Computational limitations often strongly
constrain the physical regimes in which quantum many-body
dynamics can be solved on classical computers. Emerging
technologies, such as neural-network quantum states [10,11]
and quantum computing [12], hold great promise in this area,
but their applications to nuclear physics are still in their
infancy.

In this work, we will focus on the linear response regime,
whose applications are ubiquitous in physics, including neu-
tron scattering on materials and photon scattering in atomic
systems and specifically on lepton-nucleus scattering. A quan-
titative description of the latter is critical for the interpretation
of inclusive and semiexclusive electron-nucleus scattering ex-
periments, shedding light on short-range correlations and the
transition between hadronic and partonic degrees of freedom
[13–15]. Additionally, the success of the accelerator neu-
trino program hinges on precise theoretical calculations of

neutrino-nucleus scattering, as they are essential for recon-
structing the oscillated flux from measurements of particles
produced in the aftermath of the scattering process [16–18].

State-of-the-art nuclear many-body methods, such as
Green’s function Monte Carlo (GFMC) and coupled cluster,
derive information about electroweak response functions from
their integral transforms, which can be expressed as ground-
state expectation values [19–21]; a notable exception in this
regard consists in using an appropriate expansion in Cheby-
shev polynomials [22]. However, reconstructing the energy
dependence of these response functions presents nontrivial
challenges, especially when utilizing the Laplace kernel, as
in the GFMC method [23].

The maximum entropy method (MaxEnt) [24,25], widely
employed in condensed matter and lattice-QCD applications,
has proved accurate in inverting the Laplace transform and
reconstructing smooth response functions, characterized by a
single broad quasielastic peak. On the other hand, MaxEnt
struggles in the low-energy region, which is often character-
ized by several peaks, corresponding to low-energy nuclear
transitions. For this reason, to retrieve the electromagnetic
response of 12C these transitions had to be removed from the
Euclidean response, using available experimental data [19].
Such shortcomings also yield certain discrepancies between
GFMC and exact Faddeev results for the 3H muon capture rate
near the nuclear breakup threshold, corresponding to energies
of a few MeV [26].

Inspired by earlier machine-learning applications [27–31],
in Ref. [32] a ‘physics informed” artificial neural network
(Phys-NN) was introduced for approximating the inverse of
the Laplace transform. Phys-NN has been proved to out-
perform MaxEnt in both the low-energy transfer and the
quasielastic regions, and to be more robust against noise in
the input Euclidean responses. However, similarly to MaxEnt,
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Phys-NN is not able to propagate the statistical uncertainties
of the Euclidean response into the response function and to
quantify the systematic errors due to the approximate inver-
sion of the Laplace transform.

In this work, we overcome this limitation by developing
an artificial neural network architecture that provides accu-
rate response functions with quantified uncertainties, dubbed
“UQ-NN.” To achieve this goal, we capitalize on a flexible
parametrization of the response functions inspired by the one
used in MaxEnt, which guarantees fast convergence of the
training phase. As a result, UQ-NN exhibits an improved
accuracy of the inversion and increased robustness to noise
as compared to Phys-NN.

The present paper is structured as follows. In Sec. II we
state the problem to be solved and discuss the relevant features
of the nuclear electromagnetic responses. In Sec. III we de-
scribe our artificial-neural network architecture. In Sec. IV we
present our results, and in Sec. V we discuss our conclusions.

II. ELECTROWEAK RESPONSES
FROM THEIR LAPLACE TRANSFORMS

The nuclear response functions relevant to describing
inclusive lepton-nucleus scattering cross sections in the one-
boson exchange approximation can be generically written as

R(q, ω) =
∑∫

f
〈0| j†(q, ω)| f 〉〈 f | j(q, ω)|0〉

× δ(E f − ω − E0). (1)

In the above equation, |0〉 and | f 〉 are the initial and final
nuclear states, where the latter can be bound or unbound,
with energies E0 and E f , respectively, and j(q, ω) denotes the
electroweak current operators.

In order to avoid computing all transitions induced by the
current operator—which is impractical except for very light
nuclear systems [33,34]—the GFMC method infers properties
of the response functions from their Laplace transform [35],
which is defined as

Eα (q, τ ) =
∫ ∞

0
dω e−ωτ Rα (q, ω). (2)

Fixing the intrinsic energy dependence of the charge
and current operators to the quasielastic (QE) peak, ωQE =√

q2 + m2 − m, where m denotes the mass of the nucleon, one
can express the Euclidean responses as ground-state expecta-
tion values:

Eα (q, τ ) = 〈0| j†
α (q, ωQE)e−(H−E0 )τ j(q, ωQE)|0〉,

where H is the nuclear Hamiltonian. These expectation values
can be evaluated by using the GFMC method on a uniform
grid of nτ imaginary-time points [23,35]. Standard GFMC
calculations entail nτ = 150, with a maximum imaginary time
of 0.07 MeV−1. A set of noisy estimates for Eα (q, τi ) can be
obtained by performing independent imaginary-time propaga-
tions, from which the average Euclidean response Ēα (q, τi ),
and their associated statistical errors σi can be readily
estimated.

In addition to the imaginary time, the continuous variables
ω is also discretized on nω grid points, so that Eq. (2) becomes

Ei =
nω∑
j=1

Ki jR j (3)

where Ki j = e−ω jτi�ω j and Rj ≡ R(q, ω j ). For brevity, the
dependence of the responses on the momentum transfer will
be omitted from now on. The response functions reconstructed
from GFMC calculations are typically tabulated on a grid of
nω = 2000 points with a maximum of ωM = 2 GeV. The log-
likelihood of the reconstructed responses is proportional to

χ2[R, Ē] = 1

nτ

∑
i

( ∑
j Ki jR j − Ēi

)2

σ 2
i

. (4)

where Ē ∈ Rnτ , R ∈ Rnω . Note that, GFMC calculations pro-
vide the sample covariance matrix between the data at τ = τi

and τ = τ j , which is typically nondiagonal because of corre-
lations among the imaginary-time points [19,23,35]. However,
the likelihood reduces to the one of Eq. (4) once the data
and the Laplace kernel are rotated in the basis where the
covariance is a diagonal [25].

Due to the smoothing effect of the Laplace kernel, a simple
minimization of χ2 results in multiple response functions
that are consistent, within errors, with the GFMC Euclidean
response. Maximum entropy methods [24,25] aim to address
this ambiguity by treating the response functions, both pos-
itive definite and normalizable, as probability distributions.
According to the the principle of maximum entropy, their
values are determined by maximizing the entropy, defined as

S[R, M] =
nω∑

i=1

[
Ri − Mi − Ri ln

(
Ri

Mi

)]
�ωi, (5)

The positive valued function M(ω) serves as the default model
and incorporates prior knowledge about R(ω) when no data is
available and M ∈ Rnω . The entropy quantifies the deviation
between the response function and the default model and it is
closely related with the Kullback-Leibler divergence [36]. It
has a maximum value of zero when R = M and it is negative
otherwise. When reconstructing the response functions from
GFMC calculations, a flat noninformative default model is
typically used: M(ω) = θ (ωM − ω), where θ (ω) is the step
function.

By applying Bayes’ theorem, MaxEnt identifies the most
probable response function, minimizing the quantity

Q[R, Ē, M] = 1
2χ2[R, Ē] − αS[R, M], (6)

with respect to R. Here α is a parameter that determines the
balance between the entropy and the log-likelihood. When
α = 0, the standard ill-posed minimization is recovered, and
for α � 1, R converges to the default M. In our study,
we carry out all benchmarks against the historic MaxEnt
approach [37], which selects α such that χ2 = 1. More so-
phisticated methods like the classic MaxEnt [38] and Bryan
MaxEnt [24] tend to overfit the data [39,40]. The arbitrari-
ness in choosing α hampers a robust reconstruction of R(ω)
in the small-ω region. Specifically, too small α results in
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overfitting E (τ ) and uncontrolled oscillations in the recon-
structed responses.

The key point in the inversion of the Laplace transform
resides in the minimization of Q[R, Ē, M], defined in Eq. (6)
for given Ē and M. An efficient way to accomplish this task
was first discussed in Ref. [24], and it entails performing a
singular value decomposition (SVD) of the kernel

K = V 
U T . (7)

In the above equation, U and V are nω × nω and nτ × nτ or-
thogonal matrices, while 
 is a nτ × nω rectangular diagonal
matrix. Since the kernel is effectively singular, the smallest
elements on the diagonal are essentially zero for the numerical
precision. Hence, without loss of accuracy, we keep only the
ns largest eigenvalues and disregard the others so that only the
first ns columns of U are relevant for representing the kernel.

The gradient of the log-likelihood is given by

∂χ2

∂Ri
=

∑
j

∂χ2

∂Ej

∂Ej

∂Ri
= KT

i j

∂χ2

∂Ej
. (8)

Since the columns of KT are linear combinations of the ones
of U , all the search directions for the minimum are spanned,
within machine precision, by the first ns columns of U . In this
singular space, the stationary condition of Q[R] reads

0 = ∂Q

∂Ri
= α

∂S

∂Ri
− 1

2

∂χ2

∂Ri
= 0, (9)

which implies

−α ln(Ri/Mi ) = 1

2

∑
j

KT
i j

∂χ2

∂Ej
. (10)

Thus, the solution can be represented in terms of a vector u

ln

(
Ri

Mi

)
= KT

i j u j . (11)

Since only the first ns elements of 
 are different from zero,
not all the nτ components of u are independent. Since KT and
U share the same vector space and since most of the relevant
search directions lie in the singular space, the solution can be
written in the form

Ri = Mi exp

⎛
⎝ ns∑

j=1

Ui ju j

⎞
⎠. (12)

Therefore, to the machine-precision level, the most general
solution of Eq. (10) only depends on the ns coordinates u j . In
MaxEnt applications, owing to the ranges of ω and τ in GFMC
calculations, ns � 30 	 nω = 2000. Hence, a standard New-
ton procedure to minimize Q[R, Ē, M] converges much faster
for finding uj than for the original Ri.

III. ARTIFICIAL NEURAL NETWORK
INVERSION ALGORITHM

In a recent work [32], a physics-informed artificial neu-
ral network (Phys-NN) was introduced to approximate the
inverse of the Laplace transform. Phys-NN employs a Gaus-
sian kernel basis to capture the structure of the Laplace

kernel. In this work we utilize instead the more advantageous
parametrization of Eq. (12), using artificial neural networks
to determine the coefficients u j . Formally, the reconstructed
response is given by

R̂i(θ) = mi exp

⎛
⎝ ns∑

j=1

Ui ju j (θ)

⎞
⎠, (13)

where θ denotes the collection of training parameters. This
entails a critical reduction of the artificial neural network
output dimension compared to Phys-NN, whose outputs were
directly the nω values R̂i.

A. Entropy neural network (Ent-NN)

The first architecture discussed in this work, dubbed “Ent-
NN,” takes as input the nτ discrete Euclidean response values
and provides the corresponding functions. The architecture
of Ent-NN, displayed in Fig. 1, is comprised of three central
elements: (i) the attention mechanism comprised of two feed-
forward layers with one skip connection that takes as input Ei

and generates the coefficients ui(θ), (ii) the fixed basis func-
tion Ui j , used to estimate R̂(θ) from ui(θ) as in Eq. (13), and
(iii) the discrete Laplace transform of Eq. (3) for computing
the Euclidean Ê(θ) associated with the reconstructed response
function as Êi(θ) = ∑nω

j=1 Ki jR̂ j (θ).

1. Training

As in Ref. [32], Ent-NN is trained on two distinct datasets
comprising pairs of physically relevant R(ω), E (τ ). The re-
sponses belonging to the first dataset are characterized by a
single broad asymmetric peak, corresponding to the QE reac-
tion mechanism, modeled by a skew-normal distribution. The
responses belonging to the second dataset exhibit a sharper
elastic (EL) peak at low energy, in addition to the QE one.
The corresponding Euclidean responses are obtained by ap-
plying the discrete Laplace transform of Eq. (3). Since the
simulated responses are smooth functions of ω, the numerical
integration error on the Euclidean responses is about 10−5.

For each of the one-peak and two-peaks cases, we generate
a total of 500 000 pairs (Rk, Ek ) ∈ Rnω+nτ of responses and
corresponding Euclidean responses, which we then partition
into training (T ), validation (V ), and test/out-of-sample (O)
datasets. The one-peak and two-peak test datasets comprise
1000 pairs each; the combined test dataset is just the union of
these two sets. We use 80% and 20% of the remaining data for
training the network and validation, respectively.

The optimal values for the parameters θ are found by
the standard supervised learning approach of approximately
solving

min
θ

1

|T |
∑
k∈T

�[Ek, Rk, R̂k (θ)] (14)

by using a minibatch-based stochastic gradient descent pro-
cedure to minimize an empirical loss function. Our overall
objective in the above equation is the average loss over the |T |
points in the training set. Taking inspiration from MaxEnt, for
each data and model output, we employ a loss function that is
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FIG. 1. Schematic overview of the Ent-NN architecture. The attention mechanism takes as input E (τi ) and generates the coefficients
ui(θ). The fixed basis function uses the latter to output R̂i = Mi exp[

∑ns
j=1 Ui ju j (θ)]. The discrete Laplace transform numerically integrates the

reconstructed response to obtain the corresponding Euclidean response as Êi(θ) = ∑nω

j=1 Ki jR̂ j (θ).

the sum of a response and a Euclidean cost

�[Ek, Rk, R̂k (θ)] = γR|S[R̂k (θ), Rk]| + γEχ2[R̂k (θ), Ek].

As discussed below, the positive-definite constants γR and
γE are chosen to compensate for the fact that χ2[R̂k (θ), Ek]
is typically much larger than the entropy S[R̂k (θ), Rk]. The
response cost—closely related to the Kullback-Leibler diver-
gence [36]—ensures that the reconstructed response functions
are close to the original ones. The absolute value ensures that
the response cost has a minimum value of zero when Rk =
R̂k (θ) and is positive otherwise. The Euclidean cost is aimed
at aligning the Laplace transform Ê(θ) of the reconstructed
response functions with the original Euclidean responses.

Since the inversion of the Laplace transform is an ill-
posed problem, there are many response functions, possibly
wildly different among each other, whose Laplace transform
are compatible with the original Euclidean responses within
statistical uncertainties. Consequently, there are instances in
which χ2 is small even when the reconstructed response is not
similar to the original one, leading to potential instabilities in
the minimization procedure. To tame this behavior, we split
the training into two phases.

In the first phase, we take γR = 107 and γE = 10−7 and
optimize the network using the Adam [41] optimizer with a
learning rate of 10−4. Since γR � γE , the entropy response
cost dominates the loss function and drives the reconstructed
response functions close to the original ones. Once the entropy
cost has reduced significantly, we enter the second phase of
the optimization, where we keep γR = 107 while increasing
the relative importance of the Euclidean cost by taking γE = 1

so that Ent-NN also learns to keep the Laplace transform of
the response function close to the original Euclidean response.
Reducing the learning rate in the second phase to 10−5 is nec-
essary in order to keep the reconstructed response functions
close to the optimal ones found in the previous phase.

To estimate the epistemic uncertainty of Ent-NN, we train
ten neural networks using identical architectures but with
independently initialized parameters. This approach, also em-
ployed in Ref. [32], enables us to assess how variations in the
initial conditions affect the predictions of Ent-NN, providing
insights into the accuracy and reliability of the model when
applied to unseen data.

B. Uncertainty quantification neural network (UQ-NN)

Meaningful comparisons between GFMC calculations of
the response function with experimental data require carrying
out rigorous uncertainty quantification. The latter is particu-
larly relevant when making predictions for neutrino-nucleus
scattering, as cross-section uncertainties should be carefully
propagated in the error budget of neutrino-oscillation param-
eters [42].

Approximately inverting the Laplace transform using
artificial neural-network entails two distinct sources of un-
certainty. The first one, discussed in the previous section,
is due to the choice of the neural network model, which
includes the set of optimal parameters found in the training
procedure. In Ref. [32], this effect was found to be small.
The second one concerns propagating the statistical errors
associated with GFMC estimates of E into the reconstructed
responses.
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The distribution of the computed Euclidean response com-
puted within the GFMC is Gaussian, hence

P(E) ∝ exp

(
− (E − Ē)2

2σ 2

)
. (15)

Consistent with the notation of Sec. II, we assume a diag-
onal covariance matrix and, to simplify the discussion, we
also consider the standard deviation σ to be independent of
τ ; both assumptions can be easily relaxed. The correspond-
ing probability distribution of the response functions is then
given by

P(R) =
∫

dE P(R|E)P(E) (16)

Assuming that the response functions can be accurately recon-
structed using artificial neural networks and that the training
parameters are narrowly distributed around the optimal ones
implies that

P(R|E) = δ(R − R̂(θ)). (17)

Hence, following standard Monte Carlo error propagation
procedures [43], samples of response functions distributed
according to P(R) of Eq. (16) can, in principle, be obtained by
drawing Euclidean responses from the Gaussian distribution
of Eq. (15) and applying Ent-NN to each of them.

The first task is accomplished by adding stochastic noise
[31] to the simulated Euclidean responses as

Eσ
i = Ēi + εi, (18)

where εi are independent samples from a Gaussian distri-
bution with mean zero and standard deviation σ [32]. This
particular choice is consistent with GFMC calculations of
Euclidean response functions, which follow a Gaussian distri-
bution. We note that including an energy-dependent error σi,
which would more closely resemble actual GFMC estimates,
would involve drawing εi from Gaussian distributions charac-
terized by energy-dependent widths.

As for the second step above, applying Ent-NN to the
Euclidean obtained as in Eq. (18) results in exceedingly large
variations in the reconstructed responses. The reason for this
behavior has to be ascribed to the fact that adding Gaussian
noise to the Euclidean responses makes them significantly
different from the ones found in the original training dataset.
Hence, Ent-NN is forced to extrapolate, leading to inaccurate
reconstructions, as apparent by the significant discrepancies
between the reconstructed Euclidean responses Ê(θ) and the
noisy ones Eσ that are taken as input.

To remedy this shortcoming, we have developed UQ-NN.
Its architecture, schematically illustrated in Fig. 2, comprises
two Ent-NN neural networks operating in parallel. The first
takes as input the original E and returns the correspond-
ing R̂(θ) as well as Êi(θ) = ∑nω

j=1 Ki jR̂ j (θ). The second

takes as input the noisy Eσ and returns R̂σ (θ) and Êσ
i (θ) =∑nω

j=1 Ki jR̂σ
j (θ). Crucially, the training parameters are com-

mon to the two Ent-NN blocks.

FIG. 2. Schematic overview of the UQ-NN architecture. Each of
the two blocks denotes a single Ent-NN, whose outputs are R̂ and Ê ,
with the latter obtained by computing the Laplace transform of the
former numerically. Note that the two Ent-NN blocks are identical.

1. Training

The training process for UQ-NN follows the steps as in
Ent-NN, with the distinction that each batch of data also
includes the noisy Euclidean responses of Eq. (18). Hence,
the optimal values of θ are found by

min
θ

1

|T |
∑
k∈T

�[Ek, Rk, Eσ
k , R̂k (θ), R̂σ

k (θ)] (19)

Crucially, no noisy response appears among the arguments of
the loss function, as there is no direct way to generate it from
Eσ

k . The loss function is a generalization of the one of Ent-NN:

�[Ek, Rk, Eσ
k , R̂k (θ), R̂σ

k (θ)]

= γR|S[R̂k (θ), Rk]|+γE {χ2[R̂k (θ), Ek]+χ2[R̂σ
k (θ), Eσ

k ]}.
(20)

The additional term in the Euclidean cost drives the recon-
structed Eσ (θ) to be close to the input noisy Euclidean,
thereby providing a reliable reconstruction of the correspond-
ing noisy response function. Specifically, for each Euclidean
response Ek in a batch of data, we also sample Eσ

k as in
Eq. (18). We then employ UQ-NN to evaluate the corre-
sponding R̂k (θ) and R̂σ (θ). Finally, we numerically integrate
them to obtain the corresponding Euclidean, which are used
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in the cost function defined in Eq. (20). The rest of the
hyperparameters and the choice of γR and γE are identical to
the training of Ent-NN.

The training is performed for different noise levels. The
smallest is σ = 10−5, which is similar to the statistical noise
of actual GFMC calculations of 4He Euclidean electromag-
netic responses. We also consider σ = 10−4, σ = 10−3 (a
value compatible with typical GFMC calculations of 12C),
and σ = 10−2. This latter noise level corresponds to typical
auxiliary-field diffusion Monte Carlo [44] (AFDMC) calcula-
tions of 16O that are currently being performed.

IV. RESULTS

A. Model performance

To quantify the accuracy of both Ent-NN and UQ-NN,
we adopt two metrics averaged over the test/out-of-sample
dataset O. The first one is the average absolute value of the
entropy

S = 1

|O|
∑
k∈O

|S[R̂k (θ), Rk]|,

where the entropy functional is defined in Eq. (5). It is im-
portant to note that a smaller S corresponds to more accurate
reconstructed responses. The second one is the average re-
duced χ2

E ,

χ2
E = 1

|O|
∑
k∈O

χ2[R̂k (θ), Ek],

where the log-likelihood is the one of Eq. (4). We note that,
due to the smoothing nature of the Gaussian kernel, the en-
tropy is the best-suited metric to compare the performances of
different methods employed to invert the Laplace transform.
Indeed, even responses that are wildly different from the orig-
inal one might yield χ2 = 1. These responses would, in turn,
produce very large S.

Table I summarizes the testing metrics for the single-peak,
two-peak, and combined datasets, comparing Ent-NN and
UQ-NN against Phys-NN and MaxEnt. Note that, while the
MaxEnt metrics are identical to those found in Ref. [32],
Phys-NN exhibits lower entropy and a larger χ2. This change
in performance is a deliberate choice in the training process.
To better reconstruct the responses, we found it beneficial
to use a larger γE and a smaller γR in the loss function. In
this initial comparison, no noise has been added to the input
Euclidean responses, which only suffer from the numerical
integration error discussed in Sec. III. All approaches perform
best in reconstructing one-peak responses, while the accu-
racy of two-peak reconstructions appears to be lower. The
reconstructions for the combined dataset fall between those of
the other two datasets. This behavior is expected, considering
that response functions characterized by two peaks, especially
with the EL peak located in the low-ω region, are notoriously
more complicated to reconstruct than those with a single broad
QE peak.

Regarding the entropy metric, Ent-NN, UQ-NN, and Phys-
NN significantly outperform MaxEnt across the one-peak,
two-peak, and combined datasets. The improved performance

TABLE I. Ent-NN, UQ-NN, Phys-NN, and MaxEnt testing met-
rics S, and χ 2 for the one-peak, two-peak, and combined datasets.
The Ent-NN results are obtained by averaging the ten randomly
initialized networks.

χ 2 S × 10−4

Ent-NN

One-peak 2.886 0.474
Two-peak 8.440 1.361
Combined 3.445 0.832

UQ-NN

One-peak 2.595 0.439
Two-peak 9.251 1.375
Combined 5.923 0.907

Phys-NN

One-peak 2.002 6.222
Two-peak 7.766 14.42
Combined 5.153 1.031

MaxEnt

One-peak 1.015 60.4
Two-peak 1.016 107
Combined 1.015 83.7

of Ent-NN and UQ-NN in capturing the energy dependence of
the response functions compared to Phys-NN is a direct result
of utilizing the basis functions outlined in Eq. (13), which
are tailored for inverting the Laplace transform. Conversely,
historic MaxEnt yields the least accurate reconstructions. Ent-
NN and Phys-NN generate similar reconstruction values, but
Ent-NN has a slight edge in terms of entropy. Although UQ-
NN’s reconstructions are less precise than Ent-NN’s, they
outperform both Phys-NN and MaxEnt.

In comparing the χ2 values, MaxEnt appears to perform
the best. However, this is due to the historical MaxEnt method,
where the optimal response function is determined by setting
α in Eq. (6) to achieve χ2 = 1. As indicated by the entropy
metric, the inherently ill-posed nature of the problem implies
that a χ2 ≈ 1 does not guarantee an accurate reconstruction
of the original response functions. In fact, despite Ent-NN,
UQ-NN, and Phys-NN having higher χ2 values than MaxEnt,
they yield more accurate response functions, as evidenced
by the entropy values. It is important to note that Ent-NN
provides a smaller χ2 value than Phys-NN, while UQ-NN is
slightly less accurate. This behavior can be attributed mainly
to the training process of UQ-NN, which involves introducing
noise into the Euclidean responses, as discussed in Sec. III.
As expected, introducing noise into the model inherently
degrades its accuracy. On the other hand, it enhances the
model’s robustness, allowing it to propagate the uncertain-
ties of the Euclidean responses in the reconstructed response
functions.

Figure 3 displays the box plot of the S and χ2 distributions
for the one-peak (left column) and two-peak (right column)
datasets obtained within the Ent-NN, UQ-NN, Phys-NN, and
MaxEnt methods. Consistent with the results listed in Ta-
ble I, the one-peak χ2 and S distributions are narrower and
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FIG. 3. Box plots of (top row) χ 2 and (bottom row) S for the one peak dataset (left) and two peak dataset (right) as obtained with Ent-NN,
UQ-NN, Phys-NN, and MaxEnt. The line in the middle of the box denotes the median, and the box represents the range between the 25%
and 75% quantiles. Whiskers cover the area between the 1% and 99% quantiles; data beyond these whiskers are outliers and are indicated by
circles. The green squares represent the mean values of the scores.

centered on smaller values than the two-peak ones. Since
Ent-NN, UQ-NN, and Phys-NN are trained to keep the re-
constructed response function close to the original ones, we
observe a much smaller spread of S values compared with
MaxEnt.

As previously discussed, historic MaxEnt naturally pro-
duces χ2 values tightly clustered around 1. In contrast, the
spread associated with Ent-NN and UQ-NN is more extensive,
as evident in the scatter plots of Fig. 4. Correlations between
the χ2 values and S are noticeable in both neural network
architectures, particularly for the two-peak dataset. This corre-
lation provides a crucial advantage over MaxEnt, serving as a
tool to assess the accuracy of the Laplace transform inversion.
For instance, the outliers in χ2 visible in the top right corners
of all panels in Fig. 4 serve as clear indicators of imperfect
reconstructions of the response functions.

Figure 5 provides a comparative illustration of the var-
ious inversion approaches. From the combined dataset, we
select the best (left panels), average (central panels), and
worst (right panels) reconstructed response functions based
on their S values obtained within Ent-NN. Remarkably, not
only the “best” and the “average” response functions but also
the “worst” response functions reconstructed with Ent-NN
exhibit closer agreement with the original ones compared
to those obtained with historic MaxEnt. We also note that
Ent-NN performs similarly to Phys-NN even in the worst
case of Ent-NN, which does not necessarily correspond
to the worst-case for Phys-NN. Notably, the uncertainty
band of Ent-NN includes the original response even in this
scenario.

Additionally, the Laplace transforms of the Ent-NN and
UQ-NN response functions show excellent alignment with the
original Euclidean responses: the χ2 values are 0.37, 8.15,

FIG. 4. Scatter plots of χ 2
E versus S for Ent-NN (left column)

and UQ-NN (right column). The top row corresponds to the one-
peak dataset, while the bottom row shows results for the two-peaks
dataset. Dashed lines indicate the median values χ2

E and S.
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FIG. 5. Comparison between Ent-NN, Phys-NN, and MaxEnt for the combined dataset, from which we select the best (left panels), average
(central panels), and worst (right panels) responses based on their S values obtained within Ent-NN. The top row displays the response functions
and the bottom row the corresponding Euclidean responses. The shaded area around the Ent-NN results displays their epistemic uncertainty,
estimated by training ten independently initialized neural networks.

and 342.27 for the best, average, and worst reconstructions,
respectively.

B. Uncertainty quantification

As discussed in Sec. III, to perform uncertainty quantifi-
cation, we generated 1000 Euclidean responses according to
Eq. (18) for both the one- and two-peaks datasets. The cor-
responding reconstructed responses, distributed according to
P(R) of Eq. (16), are obtained applying UQ-NN to each of
these Euclidean responses. Both the input noisy Euclidean

and reconstructed responses are displayed in Figs. 6 and 7
for the one- and two-peaks datasets, respectively, with varying
degrees of noise in the input. The latter ranges from σ = 10−4,
corresponding to GFMC calculations of 12C, to σ = 10−2,
which is appropriate for ongoing AFDMC calculations of 16O
Euclidean responses. Note that in the inference phase, as op-
posed to the training, we do not input the original Euclidean to
UQ-NN, but just the noisy one, which is the only one available
in real-world scenarios.

The key feature of our UQ-NN model is that it is
able to capture the uncertainties present in the input data.

FIG. 6. Top row: one-peak responses obtained via the UQ-NN architecture (green band), compared to Ent-NN (dashed orange line) and
the original response (blue solid line). Bottom row: input Euclidean responses with varying noise level.
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FIG. 7. Same as Fig. 6 for the two-peaks dataset.

In fact, the uncertainty in the reconstructed responses is
generally proportional to the amount of statistical noise
in the input Euclidean. This is already apparent in the
one-peak dataset results; the green band around the recon-
structed responses becomes larger as the noise level in the
input increases. Notably, the original response function re-
mains always enveloped within these bands, corroborating
the accuracy of UQ-NN in both reconstructing the response
function and in propagating the uncertainties of the input
Euclidean.

Similar observations can be made for the two-peaks
dataset. Here, however, we can observe some additional fea-
tures of the UQ-NN responses. First, at the largest noise level
σ = 10−2, a three-peaks structure seems to emerge in the
low-ω region, despite no response functions in the training
dataset have more than two peaks. We ascribe the origin of
this rich structure to the noise added to the Euclidean, which
may yield a three-peak structure in some of the reconstructed
R̂(θ). Secondly, for the lowest noise level, σ = 10−4, UQ-NN
fails to precisely capture the ω dependence of the original
response function, even in the QE peak region. We checked
that Ent-NN (and even Phys-NN) suffers from similar limi-
tations. One possible reason for this behavior are numerical
errors associated with numerically computing the Laplace
transform—see Eq. (3)—when generating the training data
set. The latter could be larger than the estimated 10−5 value,
especially for responses with two peaks. Another possibility is
the uncertainty inherent to the neural-network model, which
includes the set of optimal parameters found in the training
procedure and the training itself. To better estimate the latter,
we plan on using a deep Bayesian neural network [45,46],
which in the context of nuclear physics has proved reliable
in predicting masses and radii of several nuclei across the
nuclear chart, with quantified uncertainties.

V. CONCLUSIONS

Microscopic calculations of nuclear electromagnetic re-
sponse functions are essential for connecting aspects of
short- and long-range nuclear dynamics observed in electron-
scattering experiments [13,47–51] to the underlying nuclear
interactions and currents. Additionally, the availability of
accurate electroweak (neutral and charge-current) response
functions with quantified theoretical uncertainties is cru-
cial for the success of the accelerator neutrino program
[16–18,42], as nuclear cross section uncertainties are among
the primary sources of systematic errors.

Over the past decade, the GFMC method has been exten-
sively employed to compute electroweak response functions
of nuclei with up to A = 12 nucleons, including one and
two-body current operators consistent with the Hamiltonian
generating correlations in the initial and final state of the
reactions [19,20,52]. More recently, coupled cluster theory
has achieved remarkable success in modeling longitudinal
and transverse electromagnetic responses of nuclei as large
as 40Ca [21,53,54], retaining one-body current contributions
only. In contrast to methods relying on harmonic-oscillator
expansions [21], GFMC faces no challenges in handling
high-resolution (or high-momentum) nuclear forces. These
capabilities are indispensable for modeling the final state
of reactions with momentum transfers above q � 400 MeV.
However, reconstructing electroweak response functions
from GFMC imaginary-time propagators involves solving
the notoriously ill-posed problem of inverting the Laplace
transform.

In this study, we introduced two artificial neural net-
work architectures suitable for approximating the inversion
of the Laplace transform: Ent-NN and UQ-NN. A signifi-
cant advantage over existing architectures, such as Phys-NN
[32], is that both Ent-NN and UQ-NN utilize basis functions
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tailored to the Laplace kernel, determined through its singular
value decomposition [24]. We demonstrated their effective-
ness by benchmarking Ent-NN and UQ-NN against Phys-NN
and MaxEnt, using a substantial dataset comprising synthetic
yet realistic data characterized by a broad quasielastic peak
and a sharper elastic peak at lower energies. Ent-NN outper-
forms both Phys-NN and MaxEnt in terms of both metrics we
considered. As a significant advance with respect to existing
approaches, UQ-NN is designed to propagate the statistical er-
rors of the Euclidean response through the response functions,
which is critical for carrying out quantitative comparisons
with experimental data.

The results presented in this work are particularly relevant
for extending quantum Monte Carlo calculations to nuclei
larger than 12C, specifically to ongoing AFDMC calculations
of electroweak response functions of 16O. Standard MaxEnt
suffers from severe limitations in this case for two main
reasons. First, AFDMC suffers from significantly larger sta-
tistical noise than GFMC, primarily due to a stronger fermion
sign problem [44]. Second, the electromagnetic responses of
16O exhibit a rich low-energy structure, especially in the lon-
gitudinal channel, including elastic transitions and collective
modes [55].

Notably, while our architectures were explicitly developed
to approximate the inverse of the Laplace transform, they can
be readily extended to different kernels, including the Lorentz

one. Consequently, they serve as valuable benchmarks for
other inversion techniques, such as those based on expanding
response functions on regularized ansatz [56], which require
imposing the breakup threshold or employing appropriate ex-
pansions in Chebyshev polynomials [22].
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