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Neutrino mean free path in neutron stars in the presence of hyperons
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We investigate the neutrino elastic differential cross section (NDCS) and corresponding mean free path for
neutral current scattering in the dense matter of a neutron star. A wide range of observed neutron star (NS)
masses is considered, including the presence of �, �−, and �0 hyperons in the heaviest stars. Their presence
significantly decreases the total neutrino mean free path in the heavier stars.
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I. INTRODUCTION

During the evolution process of binary neutron star (NS)
mergers [1–3] and supernova collapse [4,5], neutrino emission
plays a crucial role. Neutrinos are one of the group of mul-
timessengers, which along with gravitational waves [1,2,6],
electromagnetic radiation [1] and x-ray bursts [1] offer vital
information on the physical processes at play. Neutrino emis-
sion is expected to provide new insights into NS properties,
with the information obtained able to be used to constrain
the equation of state (EoS) of nuclear matter at extreme den-
sities. The latter is still poorly determined and raises many
open questions. The neutrinos produced in the process of NS
mergers interact with the constituent matter of the NS through
the weak interaction. This may involve either neutral current
(NC) or charged current (CC) scattering. In this work, we will
concentrate on neutrino NC scattering, which is particularly
important for muon neutrinos [7].

Thus far a number of studies of neutrino NC scattering and
CC absorption in compact stars have been made using either
relativistic [8–10] or nonrelativistic models [9–11]. However,
most available calculations for the neutrino scattering or ab-
sorption have only considered matter consisting of protons
and neutrons, with very few calculations considering the exis-
tence of the � hyperon in the neutrino mean free path (NMFP)
calculation [11–14]. On the other hand, the vast differences
in the timescales for weak interactions compared with NS
formation time, along with considerations of β equilibrium,
lead one to expect that, even at zero temperature, hyperons
must appear as stable constituents of the dense matter as the
central baryon density increases and the NSs become more
massive. Of course, at the high temperatures experienced in
the few milliseconds after a merger, hyperons will be abundant
[15–19].
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Given the expected appearance of the �, �−, and even �0

hyperons at higher baryon number density, it is necessary to
consider the interactions of the neutrinos with these hyperons
in the NS. Here we compute the neutrino interactions with
nucleons and include the �, �−, and �0 hyperons, which nat-
urally appear in the high density EoS within the quark-meson
coupling (QMC) model. It is both interesting and important
to understand their contribution to the total NMFP. In this
context, it is worth noting that the NMFP is required as input
for supernova simulations [20,21].

In this paper, we compute the neutrino differential cross
section (NDCS) and NMFP for neutrinos scattering through
the NC from baryons within NSs of various masses.
This necessarily includes neutrino-neutron, neutrino-proton,
neutrino-�, neutrino-�−, and neutrino-�0 elastic scatterings.
We do not consider the neutrino-electron and neutrino-muon
scattering in the present work, as their contributions to the
NMFP are small compared to those for the baryons [22,23].

In order to calculate the NDCS and NMFP, we model the
NS nuclear matter using the QMC model [24–31]. This is a
relativistic model which takes into account the modification
of the internal quark structure of the baryons in-medium in
response to the strong scalar mean field present. The σ , δ, ω,
ρ, and π mesons carry the interactions between baryons by
coupling to the quarks confined in MIT bags. While pions are
involved only through Fock terms, the σ , δ, and the time com-
ponents of the ω and ρ fields constitute mean fields. Taking
account of the change in the internal structure of the baryons
as a result of the scalar mean-field is equivalent to the intro-
duction of repulsive many-body forces [32,33] between all the
baryons, nucleons, and hyperons. Because the meson interac-
tions are defined at the quark level, no additional parameters
are associated with either the hyperon-meson couplings or the
many-body forces; they are all calculated in the model.

At the high densities of the nuclear matter associated with
the heaviest NS, Pauli effects arising from the overlap of the
finite-size baryons may lead to additional repulsion, beyond
that experienced at normal nuclear matter density. We follow
Leong et al. [34] in treating this phenomenologically, in a
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manner that ensures that the properties of symmetric nuclear
matter are unchanged at saturation density. With this addi-
tional repulsion, the model generates NSs including hyperons
with masses as large as 2.2M�.

Our computations reveal interesting predictions for the
NDCS and NMFP arising from neutrino-� and neutrino-�
scattering at higher baryon number densities. That 
 hyperons
do not occur in dense matter in β equilibrium in the QMC
model has been explained in earlier work [35]. The reason is
that the gluonic hyperfine interaction, which splits the masses
of the � and 
 hyperons in free space, is enhanced in-medium
as the mean scalar field increases [36], raising their chemical
potential so they cannot appear. The NDCS for neutrino-�−
hyperon scattering begins to dominate beyond nB � 4.0 n0.
This increase in NDCS leads to a decrease in the NMFP at
higher densities and therefore in heavier NSs.

This paper is organized as follows. Section II briefly de-
scribes the modeling of nuclear matter and the resultant EoS
in the QMC model, including the phenomenological overlap
correction. The effective nucleon and hyperon masses and
the particle fractions for different NS masses serve as in-
puts to the neutrino-nucleon and neutrino-hyperon scattering
calculations for the corresponding NS masses. In Sec. III,
we present the expressions for the NDCS and NMFP for
the neutrino-nucleon and neutrino-hyperon interactions using
a linear response theory approach at zero temperature. In
Sec. IV, we present and discuss our numerical results for
the NDCS and NMFP for different NS masses. Section V is
devoted to a summary and concluding remarks.

II. EQUATION OF STATE OF NUCLEAR MATTER

Here we use the QMC model to calculate the properties of
nuclear matter in β equilibrium. The model originated with
Guichon [24], who considered the effect of the strong Lorentz
scalar field in a dense medium on the internal quark structure
of the nucleons. Using the MIT bag model to describe nucleon
structure he showed that the self-consistent treatment of the
change in quark structure led to a novel saturation mechanism.
Later refinements of the model involved a number of technical
improvements as well as a generalization to include hyperons
[36,37].

In the QMC model, the coupling constants of the meson
fields to the valence quarks are chosen such that a self-
consistent calculation reproduces the properties of nuclear
matter at normal saturation density. The model has been
widely and successfully applied to many problems in nuclear
physics, such as finite nuclei [26] and hadron structure in a
nuclear medium [28] as well as neutron star properties and
possible hybrid stars [31]. Here, we briefly review the EoS
of nuclear matter within the QMC model, including the addi-
tional phenomenological repulsion which may arise at higher
densities because of baryon overlap [34]. Within this model,
the baryon energy density takes the form

εB = 〈HB〉 + 〈Vσ 〉 + 〈Vω〉 + 〈Vρ〉 + 〈Vδ〉 + 〈Vπ 〉 + 〈HO〉
V

,

(1)

where the baryon contribution in the first term of Eq. (1) is
expressed as

〈HB〉
V

= 2
∑

f

∫ k f

0

d3k

(2π )3

√
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δ (σ̄ )gf ′
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Here the isoscalar and isovector-scalar [38] mean fields are
denoted σ̄ and δ̄, respectively. The ω̄ and ρ̄ stand for the
time components of the isoscalar and isovector-vector mean
fields, and mσ , mω, mρ , and mδ are respectively σ , ω,
ρ, and δ meson masses. The σ -meson–nucleon, ω-meson–
nucleon, ρ-meson–nucleon, and δ-meson–nucleon coupling
constants in free space are respectively given by gσ , gω, gρ ,
and gδ . We follow Ref. [34] in choosing Gδ (≡ g2

δ/m2
δ ) =

3 fm2, with mδ = 983 MeV. For the mass of the mesons
mσ = 700 MeV, with mω and mρ taking their physical val-
ues. Finally λ3 = 0.02 fm−1, which sets the strength of the
σ self-interaction term. The couplings of the σ , ω, and
ρ were then fixed to reproduce the binding energy per
nucleon EB/A = − 15.8 MeV and symmetry energy S =
30 MeV at the saturation density n0 = 0.16 fm−3. The in-
compressibility was calculated as K∞ = 260 MeV [34]. The

025503-2



NEUTRINO MEAN FREE PATH IN NEUTRON STARS IN … PHYSICAL REVIEW C 110, 025503 (2024)

FIG. 1. (a) QMC EoS is displayed as a function of nB with the energy density (blue solid line) corresponding to the left vertical axis, and
pressure (red solid line) corresponding to the right vertical axis. In (b), the effective mass, normalized to the free mass of the neutron (Mn), of
each of the baryons falls in response to the increase in the mean scalar field strength [see Eq. (7)].

quantity Cm,m′ = δm,m′ I f 2
m + (δm,m′+1 + δm+1,m′ )I f

t , where the
subscripts m and t stand for the projection, and isospin,
respectively.

The effective mass M∗
f for each flavor baryon, f , which is

particularly important in the present context, is given by

M∗
f

(
σ̄ , δ̄

) = M f − gf
σ (σ̄ )σ̄ − gf

δ (σ̄ )I f
m δ̄,

= M f − ω f
σ gσ σ̄ + ω̃ f

σ

d

2
(gσ σ̄ )2 − t f

δ gδI f
m δ̄

+ d̃gσ gδσ̄ I f
m δ̄. (7)

Here the scalar polarizabilities, d and d̃ (with numerical
values given in Ref. [38]), are the origin of the repulsive
many-body forces, which appear naturally and are deter-
mined, within the quark model used, with no new parameters.
The sixth term on the right-hand side of Eq. (1) is the Fock
term for pion exchange [39,40].

As explained earlier, following Ref. [34], we also include a
purely phenomenological repulsive contribution to the energy
density which increases as the density, and hence the degree of
potential overlap of the baryons, increases. This short-distance
repulsive contribution was shown as the last term in Eq. (1)
and has the form

〈HO〉
V

= E0 nB exp

[
−

⎛
⎝n

− 1
3

B

b

⎞
⎠

2]
. (8)

Here n−1/3
B is a measure of the average distance between

baryons in the nuclear matter. The quantities E0 and b are free
parameters, chosen such that they do not change the properties
of symmetric NM at nuclear saturation density. These were
found to be E0 = 5500 MeV and b = 0.5 fm [34]. The same
values are used with E0 describing the strength of the interac-
tion and b interpreted as the range parameter, corresponding
to the size of the quark cores within the baryons.

In the NS, we impose the conditions of β equilibrium and
charge neutrality. Then, the total energy density can be written
as

εtotal = εB + εe + εμ, (9)

where εB is defined in Eq. (1), while for each
species of lepton, the energy density is defined as

εl = 2
∫ kl

F
0 d3k/(2π )3

√�k2
l + m2

l , with ml the lepton mass
in free space. The pressure and energy density used here are
shown as a function of the baryon number density in Fig. 1(a),
while the nucleon and hyperon effective masses are shown
in Fig. 1(b). It is worth noting that the EoS in Fig. 1(a) was
used to describe the NS properties starting from the most
common masses (of order 1.5M�) up to the most massive
stars [41–49]. In Fig. 1(b) we see that the effective masses,
normalized to the free mass of the neutron, for different flavor
baryons decrease as the baryon number density increases. In
QMC, hyperons do not couple to the scalar field as strongly
as the nucleons and as a result their effective mass does not
decrease as much. �−,0 carries a strangeness number of 2 and
thus its effective mass even at higher density does not greatly
differ from its true mass. The decrease is not as great as in
many other models because of the self-consistent nature of
the QMC model, with the internal structure of the baryons
adjusting to oppose the applied scalar field. It is worth noting
that in Fig. 1, we only show the EoS and nucleon and hyperon
effective masses over the range of baryon densities relevant
to stable NSs.

Besides the EoS and nucleon and hyperon effective masses,
we also compute the particle fractions for different NS masses.
Results for these particle fractions for MNS = 1.4M�, which
is the canonical NS mass [41], are shown in Fig. 2. Of course,
protons, neutrons, electrons, and muons are well known as
the standard matter occurring in NSs. None of the hyperons
appear in low mass NSs. This can be understood in terms
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FIG. 2. Particle fractions for matter in β equilibrium within the
NS are calculated using the QMC model over the range 0 < nB <

1.2 fm−3. Vertical dashed lines from left to right indicate a NS with
a mass of 1.4M�, 1.6M�, 1.8M�, 2.0M�, and 2.14M� respectively,
with the latter the maximum predicted by the QMC EoS. All particle
species falling to the left of the respective mass star are present within
that star.

of the maximum baryon number density for MNS = 1.4M�,
which is only nB ≈ 0.43 fm−3. A similar indication is found
for MNS = 1.6M�, with the same particles appearing. For
MNS = 1.8M� the � hyperon starts to appear at threshold
baryon number density of around nB = 0.55 fm−3, as shown
in Fig. 2. As the baryon number density increases further
the �− hyperons begin to appear, beyond the relevant baryon
number density threshold, which lies around nB = 0.58 fm−3.
The threshold density for the �0 is greater still at nB =
0.87 fm−3. The QMC model predicts a maximum mass neu-
tron star (Mmax = 2.14M�) to have a central core density
in excess of 6n0, which, at its center, is the highest density
achievable. In consequence, the composition of heavy neutron
stars, such as PSR J0740+6620 with MNS = 2.072+0.067

−0.066 M�,
is predicted by the QMC model to have the �, �−, and �0

hyperons present within the inner core. Finally, once each of
the hyperons appears, they continue to increase in abundance
as the baryon number density grows (or the mass of the NS
increases), which is likely to affect the NDCS and NMFP.
For heavy NSs the model predicts that, in abundances, the
dominant hyperonic species is the �− followed by the � and
finally the �0. Note there are a wide variety of relativistic
mean field models which also vary in their hyperonic content.
Schaffner-Bielich [50] shows a similar ordering of hyperons
as QMC, although the � remains the most abundant of all the
hyperons. In contrast Reddy et al. [9] showed that along with
the � the 
0,± also appear whilst the �0,− are absent.

As a further illustration of the physics of NSs, in Fig. 3,
we show the baryon number density at various radii within
different chosen fixed mass NSs. In Fig. 3(a), the baryon
number density, nB, is given at the mass contained within a
given radius, m(r) in units of M�. Figure 3(b) shows how
the baryon number density changes from the center as we
move radially outwards towards the surface. In comparison
to a canonical NS mass, MNS = 1.4M�, the central density of
our maximum mass NS is around 2.3 times larger. This cor-
responds to the change of the energy density and pressure of
2.9 and 8.3 times larger, respectively. Even when going from
MNS = 2.0M� to the maximum MNS = 2.14M�, the central

FIG. 3. (a) Baryon number density as a function of the m(r)/M�,
where m(r) is the total energy within a certain radius in a star,
(b) Baryon number density as a function of radius.

density and consequently the energy density and pressure [see
Fig. 1(a)], need to increase by a large amount for relatively
small gains in mass. This indicates that the highest mass NSs
have extremely high pressure to counteract the gravitational
force.

At this point, one can summarize that the underlying cold
NS EoS used here is derived from the QMC model which
produces NS masses up to and beyond 2.0M�. The central
densities of NS can be in excess of 6 times the saturation
density of symmetric nuclear matter. This is a density re-
gion where additional interactions may be present [51,52]
but difficult to probe in laboratory experiments [53]. At zero
temperature the EoS used here predicts that only the �, �0,
and �− hyperons will appear in even the heaviest stars, while

 hyperon will not appear as previously explained. Next,
we use the nucleon and hyperon effective masses and particle
fractions computed for different NS masses to calculate the
NDCS and NMPF.

III. NEUTRINO INTERACTION

In this section, we briefly introduce the general formal-
ism for the neutrino interaction with NS matter through NC
scattering using linear response theory. Earlier work involved
the calculation of NDCS and NMFP, including weak [54] and
electromagnetic interactions. That work took into account the
neutrino form factors such as the neutrino magnetic moment
and charge radius [23,55–59]. However, to avoid complica-
tions, in the present work we limit our investigation to the
Standard Model weak interaction. The following theoreti-
cal framework follows the work presented in Ref. [54] (see
also [9] and [60]). The relevant interaction Lagrangian for
the neutrino-baryon and neutrino-hyperon NC scatterings in
terms of the current-current interaction is written as

LNC
INT = GF√

2
[ν̄eγ

μ(1 − γ5)νe]
[
ψ̄B,Y �[B,Y ],NC

μ ψB,Y
]
, (10)

where GF = 1.023/M × 10−5 is the weak coupling constant
and the standard nucleon vertex (including free space form
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TABLE I. Axial and vector couplings for proton, neutron, and
�, �−, and �0 hyperons at q2 = 0 for neutral-current reactions. In
the numerical calculation, we use sin2 θw = 0.231, gA = 1.27, κp =
1.793, and κn = −1.913. The values of D = 0.774 and F = 0.496
are considered in this work.

Target CA CV

n −(D + F )/2 = − gA
2 = −0.635 −0.5

p (D + F )/2 = gA
2 = 0.635 0.5 − 2 sin2 θw = 0.038

� −F/2 − D/6 = −0.377 −0.5
�− (D − 3F )/2 = −0.357 − 3

2 + 2 sin2 θw = −1.038
�0 −(D + F ) = −gA

2 = −0.635 −0.5

factor of a nucleon) is defined as �[B,Y ],NC
μ = γμ[C[B,Y ]

V −
C[B,Y ]

A γ5], where B = p, n and Y = �, �−, and �0 hyperons.
The values of CV and CA for neutrons, protons, and �, �−,
and �0 hyperons can be found in Refs. [54,61,62]. They are
summarized in Table I.

An expression for the double differential cross section per
volume for the neutrino scattering can be computed from the

interaction Lagrangian given in Eq. (10) and it gives

1

V

d3σ

d2�′dE ′
ν

= − G2
F

32π2

E ′
ν

Eν

Im
[
Lμν�

μν
[B,Y ]

]
, (11)

where Eν and E ′
ν = Eν − q0 are the initial and final neutrino

energies. The leptonic and hadronic tensors are respectively
defined by

Lμν = 8[2kμkν + (k · q)gμν − (kμqν + qμkν ) ∓ iεμναβkαqβ ],

(12)

where the sign in the last term of the leptonic tensor is minus
(−) for neutrinos and plus (+) for antineutrinos. In addition,
we need

�[B,Y ]
μν (q2) = − i

∫
d4 p

(2π )4

× Tr
[
G[B,Y ](p)�[B,Y ]

μ G[B,Y ](p + q)�[B,Y ]
ν

]
,

(13)

where the nucleon and hyperon propagators in the nuclear
medium are defined by

G[B,Y ](p) =
[

p/∗ + M∗
f

p∗2 − M∗2
f + iε

+ iπ
p/∗ + M∗

f

E∗ δ(p∗
0 − E∗)�

(
p[B,Y ]

F − |p|)
]
, (14)

wwhere M∗
f is the nucleon or hyperon effective mass as defined in Eq. (7) and pF is the appropriate Fermi momentum.

After contracting the leptonic tensor and the polarization insertions (hadronic and hyperonic tensors) for the neutrons, protons,
and hyperons, the final expression for the NDCS is given by

1

V

d3σ

dE ′
νd2�′ = G2

F

4π3

E ′
ν

Eν

q2[AR1 + R2 + BR3]. (15)

Here A = [2Eν (Eν − q0) + 0.5q2]/|�q|2, B = 2Eν − q0, and R1, R2, and R3 are, respectively, given by

R1 = (
C2

V + C2
A

)[
Im �

[B,Y ]
L + Im �

[B,Y ]
T

]
,

R2 = C2
V �

[B,Y ]
T + C2

A

[
Im �

[B,Y ]
T − Im �

[B,Y ]
A

]
,

R3 = ±2CV CA Im �
[B,Y ]
VA . (16)

The plus (+) sign in R3 is for the neutrinos and the minus (–) sign is for the antineutrinos. In a nuclear medium, the polarization
insertion can be decomposed into the polarization for the longitudinal, transversal, axial, and mixed vector-axial channels for the
neutrons, protons, and hyperons. These are, respectively, given by

Im �
[B,Y ]
L = q2

2π |�q|3
[

q2

4
(EF − E∗) + q0

2

(
E2

F − E∗2
) + 1

3

(
E3

F − E∗3
)]

, (17)

Im �
[B,Y ]
T = 1

4π |�q|
[(

M∗2
f + q4

4|�q|2 + q2

2

)
(EF − E∗) + q0q2

2|�q|2
(
E2

F − E∗2) + q2

3|�q|2
(
E3

F − E∗3)], (18)

Im �
[B,Y ]
A = i

2π |�q|M∗2
f (EF − E∗), (19)

Im �
[B,Y ]
VA = iq2

8π |�q|3
[(

E2
F − E∗2) + q0(EF − E∗)

]
. (20)

025503-5



LEONG, HUTAURUK, AND THOMAS PHYSICAL REVIEW C 110, 025503 (2024)

The final inverse NMFP expression for the neutrino-nucleon and neutrino-hyperon NC scatterings as a function of the initial
energy of neutrino at zero temperature is given by

λ−1(Eν ) = 2π

∫ (2Eν−q0 )

q0

d|�q|
∫ 2Eν

0
dq0

|�q|
EνE ′

ν

[
1

V

d3σ

dE ′
νd2�′

]
. (21)

It is worth noting that in the calculation of the total
neutrino mean free path, we first calculate the neutrino cross-
section for each particle of the system using the linear
response approximation. With the cross sections, we then
calculate the mean free path using Eq. (21) for particles of the
system. The explicit expression for the total mean free path
can be written

λ−1
total = λ−1

p + λ−1
n + λ−1

� + λ−1
�0 + λ−1

�− , (22)

where the subscripts of p, n, �, �0, and �− are respectively
proton, neutron, �, �0, and �−.

IV. NUMERICAL RESULTS AND DISCUSSIONS

The numerical results for the NDCS and NMFP of
neutrino-nucleon and neutrino-hyperon scattering for various
NS masses, computed in the QMC model including the re-
pulsive baryon overlap term, are presented in Figs. 4 and 5
and in Figs. 6 and 7, respectively. The NDCS and NMFP are
first computed at three-component momentum transfer |�q| =
2.5 MeV and initial neutrino energy Eν = 5 MeV (Figs. 4
and 6), which is typical of the neutrino energies in NS during
the cooling phase [60]. In Figs. 5 and 7 we also show results
of relevance to supernovae and NS mergers for the commonly
used neutrino energy around Eν = 30 MeV [63–66].

As depicted in Fig. 2, the central densities of stars with
mass in the range (1.4–1.6)M� are around (2.5–3.0)n0. Thus
we compute the NDCS starting at very low baryon number
density nB � 1.0n0 (the crust-core boundary of the NS), then
at nB � 2.5n0, which is the central core density of a MNS =
1.4M�, and finally at nB � 3.0n0, which represents the central
density of a 1.6M� NS.

The NDCS results for MNS = 1.4M� are shown in
Figs. 4(a) and 4(b). For the canonical mass NS case, we find
that only the proton and neutron appear (see Fig. 2) and, as
a consequence, only the nucleons contribute to the NDCS.
As shown in Fig. 2, the electrons and muons also appear
together with protons and neutrons but their NDCS are rel-
atively small compared to those for protons and neutrons and
we ignore them in the present calculation. As expected, the
NDCS for the neutrons is greater than that of the protons for
all baryon number densities. This can be understood because
of the differences in the abundances of the particles present
within the star, where the neutron particle fractions are larger
in comparison to those for the protons.

The sharp peak structure in NDCS, shown in Figs. 4
and 5 depends on the maximum value of q0, qmax

0 ≈
|�q|/

√
(M∗

f /pF )2 + 1 [54], which increases as the effective
mass decreases. Here we note that the appearance of protons
and neutrons for a 1.4M� NS is consistent with the result
found in Ref. [67], except for the appearance of the � hy-

peron in that work. That depends, of course, on the depth
of the hyperon potential and coupling constant in the model.
The QMC model provides a relatively good description
of the binding energies of known hypernuclei, which are con-
sistent with the available experimental results [36].

Results for the NDCS at densities relevant to a star with
MNS = 1.8M� are shown in Figs. 4(a)–4(c), where the baryon
number density varies from nB � 1.0n0 and 2.0n0 to 3.0n0.
In Fig. 4 we do not show explicitly the NDCS result for
nB � 3.4n0, where the � hyperons start to appear. At this
density, which is just reached in a 1.8M� star, the NDCS for
neutrino-� hyperon scattering does begin to contribute to the
total NDCS. However, as the number density is still very low,
the NDCS for the � hyperon for MNS = 1.8M� is very small.
The range of q0 is also small compared to that for the neutrons
at nB � 3.4n0.

FIG. 4. Neutrino differential cross section was calculated using
Eν = 5 MeV and |�q| = 2.5 MeV, with the corresponding baryon
number density given from (a) through to (f).
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FIG. 5. Same as in Fig. 4, but for Eν = 30 MeV.

For MNS = 2.0M�, not only does the neutrino-� hyperon
NDCS contribute but the neutrino-�− hyperon also starts to
contribute to the total. The contributions at nB � 4.0n0 can
be seen in Fig. 4(d). This is consistent with the threshold
baryon number density for the appearance of the �− hyperon
as shown in Fig. 2. Figures 4(e) and 4(f) show the NDCS
relevant to a star with mass MNS = Mmax, where the maximum
baryon number density rises just beyond nB � 6.0n0. Here
all three hyperons, �, �−, and �0, contribute to the NDCS,
although unevenly. The �− hyperon has the greatest influence
on the total NDCS, which can be explained in terms of the
relative abundances and respective effective masses. From
Fig. 2, �− makes up a higher proportion of a heavy NS core
when compared to the � and, subsequently, the �0 hyperon.
Its abundance is roughly equal to the nucleons; however,
its contribution to the NDCS is several times greater than
the neutron (see Fig. 2). This is a consequence of the axial
polarization insertion in Eq. (19), which is governed by the
size of M∗ [54]. Figure 2 shows that the effective mass of
the �−,0 is the largest of all the baryons and thus the axial
channel is increased leading to a larger NDCS. This explains
the differences shown in the NDCS between the baryons even
if their abundances are closely matched.

FIG. 6. (a) Neutrino mean free path for Eν = 5 MeV as a func-
tion of the baryon number density. The color scheme reflects the
appearance of new baryon species as the number density increases.
In (b) Neutrino mean free path as a function of NS radius r for stars
of various masses, from 1.4M� to 2.14M�.

As explained earlier, we also compute the NDCS for higher
neutrino energy, Eν = 30 MeV, which is relevant to supernova
and NS mergers, as given in Fig. 5. We find that the NDCS
for Eν = 30 MeV has the same tendency and interpretation as
Eν = 5 MeV for appropriate baryon number densities, except
for the order of magnitude. The NDCS increases remarkably,
by a factor of 50, at higher nuclear matter density, leading to
a much lower NMFP, as shown in Fig. 7(a).

Next we turn to the neutrino mean free path. Results for
the total NMFP for Eν = 5 MeV as a function of nB for
MNS = Mmax are shown in Fig. 6(a), covering a large range
of baryon number density. Here we consider only the total
NMFP at MNS = Mmax, treating it as representative of other
NS, since the same EoS is used to describe them. At low
density the only contribution to the NMFP comes from the nu-
cleons (as indicated by the blue line). This occurs up to around
nB � 0.54 fm−3 where a small plateau precedes a slight but
rapid decrease in the NMFP caused by the appearance of
the � hyperon (green). There is a second more significant

FIG. 7. Same as in Fig. 6, but for Eν = 30 MeV.
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decrease to the NMFP which closely follows the � and is
associated with the �− appearance at around nB � 0.67 fm−3

(mustard). Finally for the heaviest NS the central core density
is in excess of 0.83 fm−3 and the �0 hyperon contributions
further decreases the NMFP.

In Fig. 6(b), we show the NMFP for Eν = 5 MeV as a
function of radius for different NS masses. We see that the
NMFP results for MNS = 1.4M� and 1.6M� are almost the
same because the contributions to the total NMFP in both
cases come from the protons and neutrons. For MNS = 1.8M�,
the � hyperon begins to contribute to the total NMFP, in
addition to the protons and neutrons, leading to a decrease
in the total NMFP around the core of the NS, r � 2 km
(nB � 0.54 fm−3; see Fig. 2). This indicates that the neutrino
emission could be delayed around the NS core.

The decreases in NMFP begin to move to larger radii in the
heavier stars. For example, for MNS = 2.0M� the NMFP starts
to decrease rapidly inside about 6 km, where the � hyperons
appear. A little further inside, at around r � 5.5 km, the �−
begin to contribute. With the contribution of the �0 to the
total NMFP for MNS = 2.14M�, one sees a greater decrease
in NMFP at around r � 7.8 km. From these results, one can
conclude that mostly λ > RNS(= r), indicating the neutrinos
can escape from the NS relatively easily, leading to fast
NS cooling. This also indicates that our results suggest very
little chance of neutrino trapping for any cool NS.

Next we compute the NMFP for Eν = 30 MeV, showing
the results in Figs. 7(a) and 7(b). The qualitative trend of the
NMFP in Figs. 7(a) and 7(b) was found to be the same as that
found in Figs. 6(a) and 6(b), respectively. However, they are
very different in magnitude, as small as some tens of meters.
Indeed, we found that the λ � RNS for all NS masses, which
is in contrast with the results in Fig. 6(b). This indicates that
neutrinos have a large probability of trapping in a hot NS
environment.

V. SUMMARY AND FUTURE PERSPECTIVES

To summarize, we have investigated the neutrino differen-
tial cross section (NDCS) and mean free path (NMFP) for
neutrino-nucleon and neutrino-hyperon neutral current scat-
tering at densities relevant to a wide range of neutron star
masses. The QMC model was used to generate the equation of
state for matter in β equilibrium. This was then used in the
Tolman-Oppenheimer-Volkoff (TOV) equations to calculate
the structure of the NS. The relativistic effective masses of
the nucleons and hyperons were then used in the NDCS and
NMFP calculations, leading to predictions for the NMFP as a
function of density and equivalently radius in the NS.

For NDCS results for different NS masses, we found inter-
esting results for the NDCS of the neutrino-�, neutrino-�−,
and neutrino-�0 scattering in the matter with higher baryon
density (nB � 3.4n0), corresponding to NS masses beyond
MNS = 1.8M�. Within the QMC model with additional repul-

sion depending on the degree of overlap of the baryons, we
found that the threshold baryon number densities for �, �−,
and �0 hyperons are around 0.53, 0.58, and 0.87 fm−3, re-
spectively. The NDCS for the �− begins to dominate beyond
nB � 4.0n0.

An increase in the NDCS of neutrino-�− hyperons at
higher baryon number density implies that the NMFP de-
creases. As the �0 hyperon appears at a very high threshold
baryon number density, around nB � 6.0n0, the NDCS of the
neutrino-�0 hyperon scattering starts to contribute to the total
NDCS at that density.

Next, we found that the NMFP for a star at the canonical
NS mass, MNS = 1.4M�, decreases as density increases up to
nB/n0 � 2.5. A similar behavior is shown by the total NMFP
for MNS = 1.6M�. Note that, in this range of NS masses,
only the NMFP of protons and neutrons contribute to the total
NMFP. This is because the hyperons do not yet appear at the
baryon number densities corresponding to either NS mass.
As the threshold baryon number density of the � hyperon
is reached, the NMFP of the neutrino-hyperon scattering for
MNS = 1.8M� starts to contribute to the total NMFP, in ad-
dition to the NMFP of the neutrino-nucleon scattering. The
NMFP contribution of the neutrino scattering by a particular
hyperon is signaled by a further drop in the total NMFP
just beyond the relevant threshold baryon number density.
There are several such thresholds shown in Figs. 6 and 7 for
MNS = 2.0M� and MNS = Mmax.

An important feature of the results presented here (in Fig. 6
versus Fig. 7) is that the NMFP shows a dramatic decrease
as the neutrino energy goes up. In particular, a neutrino of
energy 30 MeV has a mean free path of just 20 m in the core
of the most heavy NS. As hyperons exhibit no threshold at
finite temperatures and are more abundant at even 10 MeV
than at zero temperature [15,68], the pressure associated with
neutrino trapping by hyperons will be especially important in
proto-NSs.
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