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Empirical fits to inclusive electron-carbon scattering data obtained by deep-learning methods
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Employing the neural network framework, we obtain empirical fits to the electron-scattering cross sections for
carbon over a broad kinematic region, extending from the quasielastic peak through resonance excitation to
the onset of deep-inelastic scattering. We consider two different methods of obtaining such model-independent
parametrizations and the corresponding uncertainties: based on the bootstrap approach and the Monte Carlo
dropout approach. In our analysis, the χ 2 defines the loss function, including point-to-point and normalization
uncertainties for each independent set of measurements. Our statistical approaches lead to fits of comparable
quality and similar uncertainties of the order of 7%. To test these models, we compare their predictions to test
datasets excluded from the training process and theoretical predictions obtained within the spectral function
approach. The predictions of both models agree with experimental measurements and theoretical calculations.
We also perform a comparison to a dataset lying beyond the covered kinematic region, and find that the bootstrap
approach shows better interpolation and extrapolation abilities than the one based on the dropout algorithm.
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I. INTRODUCTION

The stringent precision requirements of the long-baseline
neutrino-oscillation program create an urgent need to signifi-
cantly improve the accuracy of available estimates of the cross
sections for neutrino interactions with atomic nuclei [1,2].
The complexity of this problem stems from multiple factors:
the process of scattering involves multicomponent vector and
axial currents, different interaction mechanisms can produce
the same final states, experimental data with the desired pre-
cision are only available for nuclear cross sections, and flux
averaging greatly diminishes differences between different
interaction channels.

A widely recognized way to address those difficulties is
to leverage the similarities of electron and neutrino interac-
tions [3]. In electron scattering, only electromagnetic currents
contribute, cross sections are higher by several orders of mag-
nitude, beams are monoenergetic and adjustable, and precise
data can be collected not only for complex nuclei, but also
for deuterium and hydrogen. These advantages allow nuclear
effects to be studied in detail using electron-scattering data.

Provided that the cross sections for neutrinos and electrons
are calculated consistently and are sufficiently constrained by
precise electron data, the only significant source of uncer-
tainties in the neutrino predictions would be related to the
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axial contributions, to be determined from the near-detector
measurements, possibly making use of the guidance provided
by the lattice quantum chromodynamics computations.

In parallel to the efforts of developing models of nuclear
response, it would be useful to explore novel techniques for
obtaining model-independent estimates of nuclear cross sec-
tions. Deep neural networks (DNNs) are ideally equipped to
provide such predictions. Indeed, DNNs are known for their
excellent adaptive abilities [4], which enabled obtaining un-
biased parametrizations of nuclear cross sections [5], parton
distribution functions [6,7], vector [8–11] and axial [12] nu-
cleon form factors, deeply virtual Compton form factors [13],
and nuclear charge radii [14].

In this article, we explore methods of obtaining such
parametrizations of electron-scattering cross sections, in-
dependent of nuclear model assumptions, and pay special
attention to estimating their uncertainties. For an analysis of
this type, the abundance of available experimental data is
critical.

We consider the carbon target, for which experimental
cross sections have been collected in various laboratories
worldwide over the last five decades and span the broadest
kinematic region [15]. These features are of paramount im-
portance to maximize the predictive abilities of the resulting
DNN models in the broad kinematic region of relevance for
neutrino-oscillation experiments.

Using DNNs to parametrize electron-scattering data, we
obtain both the best fits and an estimate of the associated
uncertainties. In this analysis, we consider two different
methods.

In the first one, we adopt an ensemble approach, bootstrap-
like model [16,17], similar to the one developed by the Neural
Network Parton Distribution (NNPDF) group [6]. The exper-
imental data are used to generate bootstrap datasets. For each
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of the datasets, a DNN fit is obtained. The model’s prediction
is obtained by averaging all the fits, and the square root of the
variance gives the uncertainty.

In the second approach, we employ the Monte Carlo (MC)
dropout technique [18], in which DNN units are temporarily
removed at random to prevent overfitting. This procedure is
repeatedly used during the training and inference stages, re-
sulting in random responses of the DNN. These responses are
then averaged over to obtain the DNN prediction, and their
distribution provides the uncertainty estimate.

Our analysis pays special attention to systematic uncer-
tainties related to data normalization, as previously done in
Refs. [9–11]. We introduce them as a penalty term in the
loss function. We use a DNN architecture with ten hidden
layers and address the vanishing gradient problem (VGP) by
implementing batch normalization layers [19]. Our models
are validated by comparisons to the test dataset and with
predictions of the spectral function approach [20]. Eventually,
we compare the model’s prediction with higher energetic data
from Ref. [21].

A similar analysis of electron-scattering data was recently
performed by Al Hammal et al. [5], who considered nuclear
targets ranging from 4He to 59Ni. Their loss function did not
account for experimental uncertainties and was given as a
relative absolute error. However, an effort was made to esti-
mate the uncertainties due to the model parameter variations.
The authors of Ref. [5] adopted a network with 35 hidden
layers and relied on the residual mechanism for the VGP.
To test their model, Al Hammal et al. compared their results
with the predictions of the code GIBUU [22] and the SuSAv2
approach [23].

The DNN approaches do not make any assumptions on
whether the interaction takes place at the nucleus or nucleon
level and do not separate the longitudinal and transverse re-
sponse functions. As a consequence, the DNN approaches are
conceptually different from the phenomenological approaches
that were successfully developed in the literature, e.g, for elec-
tron scattering on the proton [24], deuteron [25], and carbon
and oxygen [26,27] targets.

Our paper is organized as follows. In Sec. II, we discuss
the experimental data underlying our analysis and provide
the rationale for the imposed kinematic cuts. In Sec. III, we
introduce our statistical model, providing details of the loss
function, the methods for estimating uncertainties, and the
network architectures. In Sec. IV, we report and analyze our
numerical results. Finally, we state our conclusions in Sec. V.

II. ELECTRON-SCATTERING DATA

For a DNN to successfully learn electron-scattering cross
sections, it is essential to provide it with a sufficient amount of
experimental data. In this analysis, we consider the carbon tar-
get, which has been studied extensively in past experiments;
see Ref. [15] for a recent review.

The available data [28–39] are in the form of double-
differential cross sections d2σ/dω d� for inclusive electron
scattering—in which only the final kinematics of the elec-
tron is measured—at various beam energies E and scattering

TABLE I. Summary of the data used in this analysis. The num-
bers of points refer to the data surviving the cut (1).

Norm. Number
Reference Abbrev. uncert. of points

Arrington et al. [28] Arri1995 4.0% 56
Arrington et al. [29] Arri1998 4.0% 398
Bagdasaryan et al. [30] Bagd1988 10.0% 125
Baran et al. [31] Bara1988 3.7% 259
Barreau et al. [32] Barr1983 2.0% 1243
Dai et al. [33] Dai2018 2.2% 177
Day et al. [34] Day1993 3.4% 316
Fomin et al. [35] Fomi2010 4.0% 359
O’Connell et al. [36] O’Con1987 5.0% 51
Sealock et al. [37] Seal1989 2.5% 250
Whitney et al. [38] Whit1974 3.0% 31
Total 3265

angles θ , given as a function of the energy ω that the interac-
tion transferred to the nucleus.

We consider a broad kinematic region, in which different
interaction mechanisms are known to play an important role,
starting from quasielastic scattering at low energy transfers, to
pion production through resonance excitation in the interme-
diate regime, and to the onset of deep-inelastic scattering at
the highest ω values.

At very low values of energy transfer, elastic scattering off
the whole nucleus may occur, and inelastic interactions with
the nucleus may lead to an excitation of the giant dipole res-
onance or a discrete nuclear state. Due to the scarcity of data
in this region, accounting for these processes is not currently
feasible in our approach. We remove their contributions by
applying a cut,

ω > ωmin = MAEx + 0.5E2
x + E2(1 − cos θ )

MA + E (1 − cos θ )
, (1)

where ωmin is the energy transfer required to excite the nucleus
of the mass MA with the energy Ex, and θ is the scattering an-
gle. Typically, ωmin ≈ Ex + tA, with tA being the nuclear recoil
energy. In our analysis, the Ex value is set to 26 MeV [20].

We do not include the measurements reported by Gomez
et al. [21], who studied how the EMC effect depends on
the nuclear mass number. Those seven points, each collected
for a different (E , cos θ ) pair, provide useful constraints on
theoretical models, but they cannot be readily accommodated
within our machine-learning approach. We make use of those
data to investigate the extrapolation properties of our models.

The kinematic region spanned by the data used in our
analysis is presented in Fig. 1, projected in the (ω, Q2)
and (ω, cos θ ) planes, Q2 being the four-momentum transfer.
While at low Q2 and at low θ there is an abundance of the
experimental data, this is not the case in general. Even for
carbon, the best-studied nuclear target, there are still large
swaths with very scarce information on the cross sections.
This issue is challenging to machine-learning models based
on data alone.
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FIG. 1. Kinematic domain covered by the experimental
data [28–38] considered in our analysis, shown in the planes of (top)
energy transfer and four-momentum transfer, and (bottom) energy
transfer and cosine of the scattering angle.

In Table I, we summarize the experimental data and
provide the normalization uncertainties (“Norm. uncert.”)
assumed in our analysis.

III. NEURAL NETWORK FRAMEWORK

A. Likelihood analysis

As discussed in the previous section, in this analysis, we
consider 11 independent datasets. We denote the kth dataset
containing Nk points as

Dk = {(
Ei

k, θ
i
k, ω

i
k, dσ i

k,�dσ i
k

)
: i = 1, . . . , Nk

}
, (2)

where dσ i
k and �dσ i

k are the ith measurement in kth dataset
and its corresponding uncertainty, and Nk is number of data
points in the kth dataset. The full dataset reads D = D1 ∪
· · · ∪ D11. The total uncertainty �dσ i

k combines the statis-
tical and systematic uncertainties, characteristic to a given
experiment.

The global analyses of data for electron-proton scatter-
ing [40,41], charged current single pion production [42],
and quasielastic neutrino-deuteron scattering [12] found that
including normalization uncertainties is essential to obtain
consistent fits.

In the present paper, we follow the same philosophy. To fit
the data, we introduce the following loss function [9]:

χtot =
11∑

k=1

[
χ2

k (λk ) + 1

2

(
1 − λk

�λk

)2
]
, (3)

where

χ2
k (λk ) = 1

2

Nk∑
i=1

(
dσ i

k − λkdσ fit
i

(
Ei

k, θ
i
k

)
�dσ i

k

)2

, (4)

with �λk denoting the overall systematic uncertainty for
kth dataset, and λk being a subject of optimization. In or-
der to optimize the λk’s, we follow the algorithm proposed
in Refs. [9–11]. The obtained normalization parameters are
given in Table II.

B. Neural network models

Our analysis aims to obtain a function that returns the value
of differential cross section for electron-carbon scattering,
given an input value of energy, scattering angle, and energy
transfer. We use a DNN parametrization for this purpose.

While DNNs are known for their adaptive ability, they are
also known for their limitations [43,44]. For example, when
the input or output data values are too large (in absolute
value), the network is unable to relate the input to the output,
or the optimization algorithms work ineffectively.

In our problem, the output is the cross section, which
ranges from 10−5 to 106 nb/(sr GeV). Therefore, to perform
the optimization, we rescale the output as

dσ →
(

109

1372E cos(θ/2)

cos2(θ/2)

4E2 sin4(θ/2)

)−1

dσ, (5)

where the beam energy, E , is given in GeV and the double
differential cross section, dσ , in nb/(sr GeV).

To accelerate the optimization process and help the DNN
capture the proper normalization, we extend the number of
input variables from three to five: (E , ω, θ, cos θ, Q2). The
last two are the functions of the first three, but keeping such
input accelerates the optimization. The same procedure was
employed by NNPDF group [6] to fit parton distribution func-
tions, and by Al Hammal et al. [5] to fit electron-nucleus
scattering data.

We consider two types of DNN architecture. The first
one, statistical model A, consists of the input layer, fol-
lowed by ten blocks and an output layer. The network
structure is shown in Fig. 2. The input is five-dimensional,
and the output is one-dimensional. Each block has a hid-
den layer with 300 units fully connected with the previous
module and batch-normalization layer. We keep rectified lin-
ear unit (ReLU) activation functions in each module. The
output activation function is given by a sigmoid function.
The batch-normalization layer [19] is essential to obtain suc-
cessful fits. This type of layer helps to maintain a proper
normalization of the outputs that, as a result, prevents the
gradients from vanishing and the optimization process from
stopping, which is a problem typical for DNNs. Additionally,
the batch-normalization layer naturally regularizes the model
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FIG. 2. The neural network architecture for model A. The light
gray box corresponds to the hidden layer of fully connected neurons
with ReLU activation function. The dark gray box denotes the batch
normalization layer. In the output, there is the sigmoid function. In
the architecture for model B, not depicted, each fully connected layer
is followed by the dropout layer. In both models A and B, the network
has ten layers of hidden units, consisting of 300 units each.

parameters. Hence, such a model should not tend to overfit
the data.

The second network, statistical model B, has a similar
structure, but each module consists of a fully connected layer
followed by a batch-normalization layer and the dropout layer.
The dropout layer was introduced by Srivastava et al. [18]
to regularize the network parameters, prevent the model from
overfitting and, as a consequence, increase the predictive abil-
ities of the networks.

C. Uncertainty estimation

1. Uncertainties in deep learning

One of the challenges in modeling data using DNNs is
obtaining systems with good generalization abilities. Many
adaptive units define the DNNs and can easily overfit the
data, resulting in poor generalization. Another challenge is
estimating how uncertain the networks are in their predictions.

Evaluation of uncertainties in deep neural network pre-
dictions is difficult. DNNs are defined by many parameters,
and standard statistical techniques either do not work or
are inefficient. There are two primary sources of (predic-
tive) uncertainty: epistemic (model’s uncertainties due to
its parameter dependence and structure) and aleatoric (data
uncertainty) [45].

In recent years, an effort has been made to develop methods
for estimating the predictive uncertainties [46]. However, an
optimal method has not been established yet, as each of the
developed techniques is known to have some limitations and
problems.

There are two classes of the most popular methodolo-
gies for estimating uncertainties [46–48]: the ensemble and
Bayesian methods. In the first one, some number (from dozens
to thousands) of the networks are trained. The model’s pre-
diction is given by the mean of the model’s responses, and
the uncertainty is determined from their standard deviation.
The second class of methods has roots in Bayesian statistics,
which offers tools that capture both epistemic and aleatoric
uncertainties.

An example of an ensemble method is the bootstrap ap-
proach, which originates from frequentist statistics [49] and

can be considered in nonparametric and parametric forms.
In the first case, the idea is to create B bootstrap sets by
sampling with repetition. In the other, the data are drawn
from the generating probability distribution. It is crucial to
notice that the bootstrapping leads to the poor man’s Bayes
posterior [50]. Hence, one should expect that bootstrap and
Bayesian approaches lead to similar density distributions.

The bootstrap technique for neural networks was adapted
independently by Tibshirani [16] and Breiman [17]. This
method is known in the literature as bootstrap aggregation or
bagging (see Refs. [17,43]), and it is commonly used in the
neural network community. One reason for its popularity is its
low computational requirements compared to Bayesian tech-
niques. In fact, the recommended number of neural models
trained on the bootstrap datasets varies from 25 to 200.

The bootstrap approach estimates both types of predictive
uncertainties due to the uncertainties in measurements and the
variation of network parameters. Moreover, as we remarked
above, bootstrapping leads to a similar “posterior” distribution
as sampling in parameter space in Bayesian Monte Carlo
approaches. In the first, the prior probabilities are modeled
by the generated bootstrap datasets; in the other, they are
postulated based on objective Bayesian assumptions.

The Bayesian methods are considered state-of-the-art for
estimating uncertainties. The main goal is to evaluate the set of
posterior density probabilities. The Bayesian approach allows
us to predict both aleatoric and epistemic uncertainties. More-
over, within the Bayesian approach, it is possible to compare
the various neural network models. The main difficulty is
evaluating the posterior densities.

One popular method with roots in Bayesian statistics but
is simple in implementation is the Monte Carlo dropout tech-
nique [51]. It is based on the observation that data analysis
using a one-hidden neural network with an infinite number
of neurons corresponds to the Gaussian process [52], one of
the well-formulated methods of Bayesian statistics [53]. A
single-fit network model is obtained as the result of the MC
dropout.

2. Models A and B

We consider two models to estimate the uncertainties of
the network predictions. In model A, we adapt the bootstrap
method as Refs. [6,7]. Its idea is to use experimental mea-
surements to produce the so-called bootstrap datasets and fit
every set by the corresponding network model. The number
of data points in the bootstrap dataset is the same as in the
original one. A bootstrap point is obtained by sampling from
a normal distribution. If the original data point is characterized
by central value dσ i

k and uncertainty �dσ i
k , the bootstrap

datum reads

dσ
clone, i
k = dσ i

k + r�dσ i
k, (6)

where r is drawn from the standard normal distribution. We
treat the normalization uncertainties as described in the previ-
ous sections and introduce χ2 as a loss function to optimize
the network’s parameters.

We split the full dataset into the training and test datasets
in proportions 9 to 1. For the training data, 50 bootstrap
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FIG. 3. Illustration of the algorithm used in model A to estimate
the fit’s uncertainty. Bootstrap datasets are generated from the origi-
nal data according to the normal distribution (not depicted), and fits
are performed 50 times (green lines). The cross section’s estimate
corresponds to the mean of the fits (black line), and the uncertainty
corresponds to their standard deviation (not shown). The data are
taken from Ref. [32].

datasets are created. Then, we obtain the network fit for every
bootstrap dataset. The mean gives the model’s response over
predictions of all 50 fits, while the corresponding square root
of variance defines uncertainty. In Fig. 3 we illustrate how
the algorithm works. The figure shows the experimental data
together with 50 fits to the bootstrap datasets.

In model B, we use the Monte Carlo dropout tech-
nique [18]. Its idea is to keep the dropout layer after every
layer of units. This layer switches off each unit in the net-
work with user-defined probability p. Initially, this method
was introduced to regularize the training process to prevent
overfitting and improve the model’s generalization ability.
However, when one keeps the dropout layer active in the
inference mode, the network’s prediction becomes random.
To obtain the network prediction, one computes the network’s
response dozens of times (in our case, 50 times) and takes the
average [51]. The uncertainty is given by the corresponding
variance. In this method, the predictive uncertainty and the
model’s performance depend on the hyperparameter p, the
dropout rate, which must be fine tuned.

We will employ two criteria to fine-tune the value of p. The
first criterion is to yield the model with the lowest generaliza-
tion error on the test dataset. The second criterion is for the
model to reproduce the results of model A. As discussed in
Sec. IV, we determine the dropout rate p = 0.01 to give the
best MC dropout model.

3. Overfitting

Neural network models can have problems with general-
ization. If a model has a low capacity for describing analyzed
data, it underfits it. On the other hand, when a model is too
complex (that is, it has too many adaptive units), it may overfit
the data. In both cases, the predictive abilities of the model are
low. This problem is known as a bias-variance dilemma [54].

TABLE II. Values of the normalization parameters λ obtained in
models A and B.

Norm.
Abbrev. uncert. Model A Model B

Arri1995 4.0% 1.01 1.02
Arri1998 4.0% 1.00 0.96
Bagd1988 10.0% 1.03 1.06
Bara1988 3.7% 1.01 0.98
Barr1983 2.0% 0.99 1.02
Dai2018 2.2% 1.00 0.97
Day1993 3.4% 0.99 0.98
Fomi2010 4.0% 1.01 0.96
O’Con1987 5.0% 1.02 1.01
Seal1989 2.5% 1.02 1.04
Whit1974 3.0% 0.93 0.93

The idea is to find the optimal neural network that describes
the analyzed data well and has good predictive abilities.

There are various methods developed to prevent models
from data overfitting. The simplest solution is to add a penalty
term (regularization) to the loss, so that the algorithm does
not reach the local minimum of the loss but converges to the
configuration of weights in the neighborhood of the minimum.

In our analyses, we adopt that method. We optimize the
model parameters using the AdamW algorithm with the
weight decay of 0.004, determined during the pre-analyses.
Having non-zero weight decay corresponds to considering the
loss of the form

χ2
tot(mini batch) + weight decay

2

∑
i

w2
i , (7)

where wi’s are the weights (parameters) of the network.
Analyzing model A, we average over an ensemble of mod-

els. Consequently, even if a single model overfits the bootstrap
data, this is not the case for the average prediction. In model
B, the dropout layers regularize the model. Both analyses
consider DNNs with batch normalization layers, which also
naturally regularize the model.

Finally, we would like to mention that there is a significant
difference between the generalization abilities of the small
models (low number of adaptive units), such as one-hidden
layer neural networks, and DNNs employed in this article.
When the number of data constraints (in our case, data points)
is much smaller than the number of model parameters, the
DNNs naturally tend to generalize well, even without regular-
ization procedures [55]. Here, the neural network is defined
by more than 800 000 parameters, while the number of data
points is only about 3000.

TABLE III. Generalization error on the test dataset for model B,
with the total number of data points N .

p 0.005 0.01 0.02 0.03 0.04 0.10 0.16 0.20

χ 2/N(test) 1.60 1.15 2.05 2.32 2.79 2.91 3.77 5.23
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FIG. 4. Histograms of the normalized residuals,
(dσi − dσ fit

i )/dσi, for (top) model A and (bottom) model B.
Test data are included.

IV. NUMERICAL RESULTS

We performed both analyses employing the JAX pack-
age [56] and cross-checked the obtained results by using
the KERAS package [57]. We ran optimization for no more
than about 60 000 epochs. To optimize the models, we used
the AdamW algorithm [58]. The models were regularized by
keeping the value of weight decay as 0.004. The training was
done in the minibatch configuration with five batches.

As discussed in the previous section, model B must be
calibrated. We considered the network with several values of
dropout rate p. The model with p = 0.01 was characterized
by the lowest value of χ2 computed on the test dataset; see
Table III.

We also found that when p = 0.01 in model B, the obtained
distributions of normalized residuals and normalized standard
deviations were similar to those for model A. As an example,
in Figs. 4 and 5, we show the histograms computed for the

FIG. 5. Histograms of the standard deviation normalized by the
experimental central value of (top) model A and (bottom) model B.
Test data are included.

test dataset. Additionally, in Table IV, we present the mean
of normalized standard deviations obtained for model B with
various p rates. In the considered range, the lower the value
of p, the lower the mean uncertainty. As the mean in model
A is about 7%, the consistency requirement favors the value
p = 0.01 in model B. As both the χ2 and model-consistency
arguments support the dropout rate p = 0.01, we employ this
value in our calculations with model B.

In Figs. 6 and 7, we present comparisons of the predictions
of models A and B to six datasets [29,32,34,37]. The data span
a broad kinematic region, corresponding to energy transfers
between ≈ 30 MeV and ≈1.9 GeV, and momentum transfers
|q| between ≈0.14 and ≈2.7 GeV.

The first six panels of Figs. 6 and 7 sample the |q|
values below 1 GeV, where the cross section is dominated
by quasielastic scattering and the �-resonance excitation,
and nuclear effects are the most pronounced. Model A

TABLE IV. The mean of normalized standard deviations (Norm. uncert.) obtained for model B with various p rates.

p 0.005 0.01 0.02 0.03 0.04 0.10 0.16 0.20

Mean (Norm. uncert.) 0.05 0.07 0.08 0.10 0.12 0.14 0.21 0.27
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FIG. 6. Double-differential cross section d2σ/dωd� for inclusive electron scattering on carbon. We compare the predictions of model
A to the experimental data from Refs. [29,32,34,37]. The shaded areas denote the 1σ uncertainties. The panels are labeled with the beam
energy and scattering angle values. The red (blue) points represent the training (test) dataset. The predictions are not rescaled according to the
determined normalization parameters.

reproduces the data with excellent accuracy, both at low
and high scattering angles, although contributions of the
mechanism of interactions involving two-body currents are
expected to be very different in these regimes. It outper-
forms model B, for which the agreement is very good
nevertheless.

The last three panels of Figs. 6 and 7 probe the transi-
tion of the cross section from the region where excitation of
higher resonances plays an important role to where it can be
described in terms of deep-inelastic scattering. Despite of the
complexity of the interaction mechanisms at these kinematics,
both models are able to reproduce the data with remarkable
accuracy. It is important to keep in mind that the normalization
parameters are not included in the results presented in Figs. 6
and 7.

As discussed in Sec. III, the normalization parameters are
incorporated in our fits to the data, giving additional freedom
to the parameter space. Table II shows that their values typi-
cally agree with the unity to about 2% for model A and 4%
for model B.

Interestingly, the normalization parameters for the data re-
ported by Whitney et al. [38] obtained in both models are low
but consistent. It suggests that there might be tension at the
level of ≈ %7 between the normalization of this dataset and
those of the other measurements, with the results of Ref. [38]
being overestimated.

We refer the reader to the Supplemental Material [59]
for comparisons of the predictions of both the models to all
the measurements considered in this analysis, including the
dataset of Whitney et al.
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FIG. 7. Same as Fig. 6 but for model B.

So far, we have discussed the performance of the obtained
fits in describing the available data. It is interesting to check
how well they interpolate the cross section within the domain
covered by the training data, and extrapolate beyond it.

To explore the models’ abilities to interpolate, in Fig. 8, we
compare their predictions with the spectral function calcula-
tions of Ref. [20], which include only quasielastic scattering.
For these tests, we select the beam energy of 600 MeV—
relevant for neutrino-oscillation experiments such as T2K and
the Short Baseline Neutrino program—and the scattering an-
gles of 30◦, 45◦, and 60◦.

The amount of data collected at similar kinematic set-
tings is the largest for θ = 60◦, and the smallest for θ = 30◦.
Consequently, the predictions of the two models and their
uncertainties are the most similar for θ = 60◦. For lower scat-
tering angles, the uncertainties apparently increase in model A
but not in model B. At 45◦; one can clearly see a sudden jump

in the uncertainties of model A at ω � 0.55 GeV, reflecting
the behavior of the underlying data [32].

The predicted positions of the quasielastic peak turn out
to agree very well between the predictions of model A and
the spectral function approach. This is also the case for model
B when θ = 60◦ and θ = 45◦. However, when we lower the
scattering angle, an increasing difference can be observed.

The magnitude of the cross section predicted by the fits at
θ = 60◦ seems consistent with the theoretical model, having
in mind a large contribution of interaction mechanisms other
than quasielastic scattering induced by one-body currents.
At θ = 45◦, the theoretical calculation agrees with model A
(model B) at the 1σ (2–3σ ) level. The differences increase
at 30◦, showing both the limitations of the obtained fits,
and the urgent need for more experimental data to model
electroweak interactions with the precision required by the
neutrino-oscillation program.
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FIG. 8. Interpolation tests of the obtained fits for beam energy 0.6 GeV and scattering angles 30◦, 45◦, and 60◦. We compare the spectral
function calculations [20] of the quasielastic cross section, depicted by the solid red lines, with the predictions of model A (model B),
represented by the solid (dashed) blue lines. The green (orange) areas correspond to the 1σ uncertainties.

FIG. 9. Extrapolation tests of model A against the measurements by Gomez et al. [21] in the deep-inelastic regime, not included in the
training. The highlighted areas represent the 1σ uncertainties.
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To test the extrapolation properties of both models, we
compare their predictions for the cross section in the deep-
inelastic regime, at the kinematic settings of the measurements
by Gomez et al. [21]. As shown in Fig. 9, the predictions
of model A manage to reproduce these data at the 1σ–2σ

level. For model B (not shown in the picture), we find that
it underestimates them.

In Fig. 9, the beam energy is fixed to 12.1 GeV, and
scattering angles vary between 12.82◦ and 15.85◦, with
the corresponding momentum transfers 4.4 � |q| � 7.0 GeV.
Only two datasets used in the training probe similar kine-
matics: the measurements performed by Fomin et al. [35] for
beam energy 5.8 GeV, and scattering angles 40◦ and 50◦, with
3.9 � |q| � 5.3 GeV.

We expect that the accuracy of extrapolation would im-
prove, should more data be available for training.

In view of the obtained results, we conclude that model
A is better at propagating the uncertainties of the underlying
experimental data than model B.

V. SUMMARY

In this paper, we develop a deep neural network frame-
work to parametrize the electron-scattering cross sections for
carbon over a broad kinematic region, extending from the
quasielastic peak, through resonance excitation, to the onset
of deep-inelastic scattering. Our results do not depend on
theoretical assumptions but rely exclusively on experimental

measurements. We pay special attention to estimating the
uncertainties of the network’s predictions, which reflect ex-
perimental uncertainties and are a measure of consistency
between different datasets. The analysis of the impact of
various types (epistemic and aleatoric) of uncertainties on
predictive uncertainty is complex [46] and will be a focus of
our future studies.

We discuss two statistical models. Model A is based on an
ensemble of 50 neural networks, which fit bootstrap datasets.
Model B uses a single neural network with dropout layers.
Both approaches reproduce the training data accurately. Ad-
ditionally, model A turns out to be able to estimate the cross
sections outside the kinematic domain of the training data.

In addition to their importance for the studies of inclusive
electron scattering on nuclei, our empirical fits can be readily
included in the NUWRO Monte Carlo generator and pave the
way toward the development of a more accurate description
of electroweak cross sections. In future analyses, we plan to
adapt and extend the methods developed in this article to the
modeling of neutrino interactions.

To facilitate their usage, the resulting fits are released to the
public through the GitHub repository [60].
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