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Exact relations between the conductivities and their connection to the chemical
composition of QCD matter
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We present exact relations between the diffusion coefficients or conductivities, κqq′/T = σqq′ , of strongly
interacting matter. We show that once the diagonal entries are known in two different charge representations, the
off-diagonal coefficients are functions of the diagonal entries once isospin symmetry applies. As an important
example, we infer the conductivities on the basis of available calculations from lattice quantum chromodynamics
and argue that these computations suffer under the approximations made to achieve them. Further, we argue that
the representation of the conductivities with respect to the conserved quark flavors may deliver more insight into
the chemical composition of strongly interacting matter.
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I. INTRODUCTION

The primary goal of heavy ion physics is the compre-
hension of the properties of strongly interacting matter. The
collision experiments at particle and heavy-ion accelerators
however—which aim to further study these properties—only
allow for indirect inferences, which are gained by the employ-
ment of theoretical models such as fluid dynamics to describe
heavy-ion collision at the current understanding of nature.
The underlying fundamental theory in heavy ion physics is
quantum chromodynamics (QCD) which describes the strong
interaction between quarks and gluons being the fundamental
building blocks of nuclear matter. One of the main goals of
this field of physics is to eventually understand and to de-
scribe the many-body nature of nuclear matter, the chemical
composition of that mixture, and the interaction between its
components with the help of QCD. In this paper, we focus on
the diffusion coefficients, or equivalently, the conductivities
of nuclear matter. These describe the response of the strongly
interacting medium to chemical inhomogeneities, or in the
case of the electric (cross) conductivities, to external electro-
magnetic fields. The investigation of this charge-transporting
response may offer another window into the understanding
the chemical composition of strongly interacting matter at
extreme temperatures and densities.

As an important example, that class of phenomena serves
the electric conductivity which is directly connected to the
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lifetime of electromagnetic fields and the generation of the
photon and dilepton spectrum during a heavy-ion collision.
Therefore, it has been the object of extensive theoretical in-
vestigation, among others, in kinetic theory [1–7], various
hadronic and partonic transport approaches [8–10], pertur-
bative QCD [11,12], effective field theories [13], dynamical
quasiparticle models [14], anti–de Sitter/conformal field the-
ory [15–17], and lattice QCD (LQCD) [18–24].

When multiple conserved charges, such as baryon number,
electric charge, and strangeness, are present in the medium,
chemical gradients in one charge may generate currents in the
other charges. The magnitude of this coupled-charge transport
is not expressed by a single conductivity but a conductiv-
ity or diffusion matrix, and it has already been studied for
hadronic [5,6,10,25] and partonic matter [7]. Specifically, the
off-diagonal components of the conductivity matrix (or also
referred to as cross conductivities) are of interest as they might
deliver an insight into chemical composition of nuclear matter
as suggested in [10]. Such investigations are not yet available
from LQCD.

In this paper, we translate the conductivities of strongly
interacting matter from the traditional hadronic charge repre-
sentation into the representation with respect to the conserved
quark flavor. Since the quarks are the fundamental charge
carriers in QCD, we argue that this representation allows
for a better understanding of the chemical composition of
the medium, which is especially interesting close to the
(pseudo)critical phase transition where the quarks condense
to hadrons. Further, we find relations between the conductiv-
ities in both representations, which allows us to evaluate the
coefficients from available LQCD results.

This paper is organized as follows. In Sec. II we briefly
remind the reader of the fundamental definitions and conven-
tions of statistical physics in connection with the diffusion
matrix of a system containing conserved quantum numbers.
The laws for the transformation between different repre-
sentations of those conserved charges, obeying the same
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conservation laws, is derived in Sec. III. Section IV provides
the explicit transformation laws of the diffusion coefficients of
strongly interacting matter. With the help of these relations,
we extract the conductivities from LQCD computations of
the isospin conductivity, and we further briefly discuss the
approximations made in connection to these results and their
viability in Sec. V. Finally, in Sec. VI we sample available
results from SMASH, kinetic theory, and LQCD in compar-
ative figures and give them in both the hadronic charge and
quark-flavor representation. We further discuss the individual
influence of the light and strange quark on the conductivities
and draw our conclusion in Sec. VII. We make use of natural
units h̄ = c = kB = 1.

II. FOUNDATIONS

We consider a system consisting of Nspec different particle
species and Nq-many conserved intrinsic quantum numbers,
which shall be described by the Hamiltonian operator Ĥs and
the particle number operators N̂s. In equilibrium, the statistical
operator in the grand canonical prescription then reads

ρ̂G(β, {αq}) = 1

ZG
exp

⎡
⎣−

Nspec∑
s=1

(βĤs − αsN̂s)

⎤
⎦, (1)

where β = 1/T is the inverse temperature, αs = βμs are
the specific thermal potentials, and μs is the corresponding
specific chemical potential of particle species s. In chemical
equilibrium, the specific chemical potentials are related to the
charge chemical potentials μqi via

μs =
Nq∑
i=1

qi,s μqi , (2)

where qi,s is a conserved intrinsic quantum number (charge) of
type qi of the respective particle species s. Here, i enumerates
the Nq different conserved charges present in the system, i.e.,
i ∈ {1, . . . , Nq}. Above, we further defined the grand canoni-
cal partition function as

ZG ≡ tr

⎛
⎝exp

⎡
⎣−

Nspec∑
s=1

(βĤs + αsN̂s)

⎤
⎦

⎞
⎠. (3)

The ensemble average of an arbitrary operator Â is then de-
fined as the trace of the left product of the statistical operator
with Â via

〈Â〉 = tr(ρ̂GÂ). (4)

If Nμ
s is the ensemble-averaged four-current of the given par-

ticle species, the information about the transported charge of
given type qi is contained in the corresponding charge four-
current defined by

Nμ
qi

≡
Nspec∑
s=1

qi,sN
μ
s = nqi u

μ + V μ
qi

. (5)

If the system just consisted of fermions, the specific four-
current of each species is Nμ

s ≡ 〈ψ̄sγ
μψs〉. Here, ψs is the

respective spinor field, γ μ are the Dirac operators, and

ψ̄s = ψ†
s γ 0 is the Dirac adjoint to ψs. Above, we have further

given the decomposition of the charge current with respect
to the local fluid or collective velocity uμ, and by defin-
ing the projector 	μν = gμν − uμuν we can then express the
(space-like) diffusion current by the projection of the charge
four-current, i.e., V μ

qi
= 	μ

νNν
qi

.
Once the medium experiences a small, external gradient

in the thermal potentials αqi = μqi/T according to Navier-
Stokes theory [26], and thus the resulting linear response of
the system then obeys

V μ
qi

=
Nq∑
j=1

κqiq j ∇μαq j . (6)

Here, ∇μ = 	μν∂ν is the orthogonal, spatial gradient in flat
Minkowski space-time, and κqiq j are the so-called diffusion
coefficients which characterize the magnitude of the system
response. The diffusion coefficients are directly related to
the associated conductivities via σqiq j = κqiq j /T , and thus we
use both terms and symbols interchangeably in this paper for
convenience.

So far we have not yet specified the exact nature of the
conserved intrinsic quantum numbers and their representation.
In the following we investigate how the transport coefficients
of any system behave under transformations from one chosen
charge representation to the other.

III. TRANSFORMATIONS IN CHARGE
REPRESENTATION SPACE

Let qs = (q1,s, . . . , qNq,s) be the vector of conserved intrin-
sic quantum numbers carried by a particle of species s. We can
choose a different representation of the conserved charges,
q′

s = (q′
1,s, . . . , q′

Nq,s), described by the transformation qs �→
q′

s = q′
s(qs). Under a valid transformation, the number of con-

servation laws remains the same and the charge vectors in both
representations are thus of equal dimensionality. The transfor-
mation in charge representation space then is prescribed by a
(Nq × Nq) matrix M̂ of full rank with components Mi j via

q′
s = M̂ qs or q′

i,s =
Nq∑
j=1

Mi j q j,s. (7)

And since M̂ shall represent a valid transformation, the ma-
trix is regular and the back-transformation reads

qs = M̂−1 q′
s. (8)

From now on, the bold-printed quantities represent a vector
in charge representation space. For clarity we write down the
vector of charge chemical potentials and the vector of charge
currents as important examples:

αq ≡ (
αq1 , . . . , αqNq

)
, (9)

Nμ
q ≡ (

Nμ
q1

, . . . , Nμ
qNq

)
. (10)

The grand canonical partition functions, especially the spe-
cific thermal potentials αs, do not depend on the explicit
representation in charge space and thus are invariant under
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such transformations. We therefore have the following condi-
tion in matrix representation:

αs = qs · αq = q′
s · αq′ , (11)

from which we retrieve the well-known transformation law for
the charge chemical potentials after applying Eq. (7)

μq′ = (M̂−1)T μq. (12)

All quantities which are directly proportional to charge
transform equally as does the charge itself. Therefore, the
transformation laws of the charge and diffusion currents read

Nμ

q′ = M̂Nμ
q , (13)

V μ

q′ = M̂V μ
q . (14)

Applying the above relations to the Navier-Stokes law (6) for
the diffusion currents in the form

V μ
q = κ̂ ∇μαq (15)

directly leads to a transformation law of the conductivities

κ̂ ′ = M̂ κ̂ M̂T . (16)

With the transformation laws above, one can directly de-
rive such rules for all transport coefficients derived in
Refs. [27–30]. For this we refer to Ref. [29]. There are two
families of transport coefficients: one, like shear viscosity or
bulk viscosity, which does not depend on charge, and the
others, like the conductivities, which do. In the family of
charge-dependent transport coefficients there is the set of co-
efficients which are direct proportional to qi,s (see Eqs. (C3),
(C4), (C8)–(C11), (C17), and (C18) in Ref. [29]) and therefore
transform identically. The remaining coefficients are directly
proportional to products of the form qi,sq j,s (see Eqs. (116),
(117), (C5)–(C7), (C12), (C13), and (C19) in Ref. [29]). The
main object of the latter is the diffusion coefficient matrix
which, according to Eq. (116) in Ref. [29], can be written as

κ̂ =
Nspec∑

s,s′=1

qsq
T
s′ κ̃ss′ . (17)

Here, we defined

κ̃ss′ ≡
Nspec∑
s̃=1

N1∑
r=0

τ
(1)
ss̃,0r

(
δs̃s′Js̃,r+1,1 − ns′

e + P0
Js̃,r+2,1

)
, (18)

which does not depend on the chosen charge representation.
In that definition, τ

(1)
ss̃,r′r contains the relaxation times of the

system response, and Js̃,r,q are the auxiliary thermodynamic
functions to species s̃. See Ref. [29] for details. Provided that
time reversal symmetry of the underlying interactions is a
given, we first note the symmetry of κ̂ , which is well known
from the Onsager relations [31,32]

κ̂T =
⎛
⎝ Nspec∑

s,s′=1

qsq
T
s′ κ̃ss′

⎞
⎠

T

=
Nspec∑

s,s′=1

qs′qT
s κ̃ss′ = κ̂, (19)

where in the last step we relabeled s ↔ s′ and used that under
time reversal symmetry it is κ̃ss′ = κ̃s′s. We further directly

recover the transformation law from Eq. (16) since we have

κ̂ ′ =
Nspec∑

s,s′=1

q′
sq

′T
s′ κ̃ss′ =

Nspec∑
s,s′=1

M̂qsq
T
s′M̂T κ̃ss′ (20)

= M̂ κ̂ M̂T .

One can diagonalize the conductivity matrix by defining P̂ =
(v1, . . . , vNq ), the matrix which contains the eigenvectors of
κ̂ , and writing

κ̂diag = P̂−1κ̂P̂ . (21)

Since κ̂ is real and symmetric, its eigenvectors can thus be
chosen to be orthonormal, vi · v j = δi j , and P is thus unitary,
P−1 = PT . Therefore, PT also defines a transformation in
charge representation space. However, there are cases where
the conductivity matrix is already diagonal without imposing
the above transformations. In good approximation, this is the
case in the quark-flavor representation (see next section) of an
ultrarelativistic, deconfined quark-gluon plasma (QGP) where
it is usually assumed that only quasifree, chemically unbound
quarks, gluons, and their antiparticles are the degrees of free-
dom. Here, the off-diagonal terms of the linear combinations
of qsq

T
s′ cancel due to the presence of the antipartner of each

species, provided that the masses and the cross sections are
the same for all particles. From this point on, we mean the
model assumption of an deconfined plasma when we refer to
the term “QGP”.

Most second-order coefficients, which are quadratically
proportional to charge, fulfill similar relations as discussed
above. In the following however, we will restrict ourselves
to the discussion of the conductivities in the case of strongly
interaction matter.

IV. RELATIONS BETWEEN THE CONDUCTIVITIES
OF QCD MATTER

The above given transformation law of the conductivity
matrix generally allow for expression of all off-diagonal co-
efficients in terms of the diagonal entries. In this section we
discuss such relations for strongly interacting matter, yet this
approach can also be applied to any given physical system
with conserved charge.

According to quantum chromodynamics (QCD), the fun-
damental charge carriers of strongly interacting matter are
the quarks. In the case of Nf = 2 + 1 flavors, the conserved
charges are the quark flavors up (u), down (d), and strange
flavor (s). In the hadronic-charge representation, the conser-
vation of the quark flavor translates into the conservation
of baryon number (B), electric charge (Q), and strangeness
(S). If we enumerate the quarks with s′ = {1, 2, 3} (in the
order up, down, and strange quark), the charge vectors in the
two representations read as follows. In the quark-flavor (uds)
representation, f s′ = (us′ , ds′ , ss′ ), we have

f 1 =
⎛
⎝1

0
0

⎞
⎠, f 2 =

⎛
⎝0

1
0

⎞
⎠, f 3 =

⎛
⎝0

0
1

⎞
⎠. (22)
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In the hadronic charge (BQS) representation, cs′ =
(Bs′ , Qs′ , Ss′ ), we have

c1 =
⎛
⎝ 1/3

2e/3
0

⎞
⎠, c2 =

⎛
⎝ 1/3

−e/3
0

⎞
⎠, c3 =

⎛
⎝ 1/3

−e/3
−1

⎞
⎠. (23)

Here, e ≈ √
4π/137 is the unit electric charge in natural

units. The transformation from uds to BQS representation,
cs = M̂ f s, then is given by the following matrix:

M̂ =
⎛
⎝ 1/3 1/3 1/3

2e/3 −e/3 −e/3
0 0 −1

⎞
⎠. (24)

The back transformation reads

M̂−1 =
⎛
⎝1 1/e 0

2 −1/e 1
0 0 −1

⎞
⎠. (25)

The chemical potentials then transform according to Eq. (12)
and explicitly read

μB = μu + 2μd ,

e μQ = μu − μd ,

μS = μd − μs, (26)

and

μu = 1

3
μB + 2

3
e μQ,

μd = 1

3
μB − e

3
μQ,

μs = 1

3
μB − e

3
μQ − μS, (27)

which are also well known. The coefficients transform via
Eq. (16), and explicitly read

κBB = 1

9
(κuu + κdd + κss + 2κud + 2κus + 2κds),

κQQ = e2

9
(4κuu + κdd + κss + 2κds − 4κud − 4κus),

κSS = κss,

κBQ = e

9
(2κuu − κdd − κss + κud + κus − 2κds),

κBS = −1

3
(κss + κus + κds),

κQS = e

3
(κss + κds − 2κus), (28)

and the back transformation is

κuu = κBB + 1

e2
κQQ + 2

e
κBQ,

κdd = 4κBB + 1

e2
κQQ + κSS − 4

e
κBQ + 4κBS − 2

e
κQS,

κss = κSS,

κud = 2κBB − 1

e2
κQQ + 1

e
κBQ + κBS + 1

e
κQS,

κus = −
(

κBS + 1

e
κQS

)
,

κds = −κSS − 2κBS + 1

e
κQS. (29)

Further, we reiterate that the diffusion coefficient matrix is
symmetric, i.e., κqq′ = κq′q [31,32].

Since the quark-flavor charge coincides with the corre-
sponding quark count in QCD, the plausibility of the above
relations is directly verifiable. For each of the BQS conduc-
tivities we directly recognize the explicit form of Eq. (17),
where the prefactors simply are the assigned hadronic charge
of each contributing quark-quark combination, i.e., κBS =∑

f , f ′=u,d,s B f S f ′κ f f ′ = −(κss + κus + κds)/3. The relations
of the quark-flavor chemical potentials also reflect the charge
of each quark, e.g., μu = 1

3μB + 2
3 e μQ. As an illustration of

the connection between the quark-flavor and hadronic chemi-
cal potentials, we could think of the proton which consists of
two up-quarks and one down-quark. Then the proton chemical
potential is μp = 2μu + μd = μB + e μQ [see also Eq. (11)],
since the proton carries one unit each of the electric and
baryon charge.

From above it is clear that, due to κss = κSS , in this choice
of representations it is not possible to express all off-diagonal
coefficients by diagonal ones. Thus, once the diagonal coeffi-
cients in both representations (κBB, κQQ, κss, κuu, κdd ) and one
other off-diagonal entry (here κQS) are known, we can express
the remaining (off-diagonal) coefficients explicitly with the
help of Eq. (28). For this we define

�1 ≡ 9κBB − (κuu + κdd + κss),

�2 ≡ − 9

e2
κQQ + 4κuu + κdd + κss,

�3 ≡ 2κuu − κdd − κss, (30)

where �i are functions exclusively of the diagonal entries, and
find

κud = 1

4
�2 − 1

2
κss + 3

2e
κQS,

κus = 1

12
(2�1 − �2 + 6κss) − 3

2e
κQS,

κds = 1

6
(2�1 − �2),

κBQ = e

9

[
�3 + 1

2
(�2 − �1)

]
,

−κBS = 1

12
(2�1 − �2 + 6κss) − 1

2e
κQS. (31)

We remind the reader that we further have

κQS = e

3
(κss + κds − 2κus). (32)

Thus, under the assumption of isospin symmetry, where the
conductivities of the light-sector (�) obey the equalities κuu =
κdd ≡ κ�� and κus = κds ≡ κ�s, it is κQS = e

3 (κss − κ�s) and the
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above expressions reduce to

κud = 1

6
(2�2 − �1),

κ�s = 1

6
(2�1 − �2) = −κud ,

κBQ = e

9

[
�3 + 1

2
(�2 − �1)

]
,

−κBS = 1

3
κss + 1

9
(2�1 − �2). (33)

Note that in the case of Nf = 2 flavors (light quarks only), the
coefficients connected to the strange quark vanish, i.e., κss = 0
and κ�s = 0, and above relations change accordingly.

V. EXTRACTION OF ALL CONDUCTIVITIES
FROM LATTICE QCD RESULTS

In the recent history of publications of results from lattice
QCD, a set of crucial approximations was assumed in order
to calculate the conductivities. In simplified terms, the coeffi-
cients κqq′ are directly related to the zero-momentum limit of
the quark-spectral functions, which in turn are extracted from
the Euclidean vector current correlator. The latter is defined
as the ensemble averaged charge four-current correlation be-
tween currents of charge type q and those of charge type q′ as
[18–24]

Gμν

qq′ (τ ) =
∫

d3x
〈
Nμ

q (τ, x)Nν
q′ (0, 0)†

〉

=
Nspec∑

s,s′=1

qsq
′
s′

∫
d3x

〈
Nμ

s (τ, x)Nμ

s′ (0, 0)†
〉
. (34)

The calculation then is carried out at zero chemical potential
(μq = 0), and it is assumed that if the quarks are degenerate,
the off-diagonal quark-quark current correlation (s 
= s′) can
be neglected [18–24], and thus

Gμν

qq′ (τ ) ≈
Nspec∑
s=1

qsq
′
s

∫
d3x

〈
Nμ

s (τ, x)Nμ
s (0, 0)†

〉
. (35)

This would be a legitimate approximation at high temper-
atures when the asymptotic limit is approached, where the
quarks and gluons are believed to be quasifree and uncorre-
lated. Further, it may be assumed that the quarks contribute
equally, e.g., in the case of Nf = 2 isospin symmetry is taken
into account. Then, the above formula finally becomes

Gμν

qq′ (τ ) ≈ Gμν

quark

Nspec∑
s=1

qsq
′
s, (36)

where

Gμν

quark ≡
∫

d3x
〈
Nμ

quark(τ, x)Nν
quark(0, 0)†

〉
(37)

is the current-current correlator of any type of quark irrespec-
tive of its flavor. For Nf = 2 this is sometimes referred to as
the isospin current correlator. Under these assumptions, even
the diagonal conductivities are now related to each other. We

have κBB = CBκ��, κQQ = Celκ��, and if we assume that the
strange quark contributes equally like a light quark, it also is
κSS = κss = CSκ��. Using Eq. (33), the problem of evaluating
the complete conductivity matrix is reduced to the extraction
of the light-light quark conductivity κ�� from the lattice.

Above, we defined the coefficients

CB ≡
∑

i

(Bi )
2, Cel ≡

∑
i

(Qi )
2, CS ≡

∑
i

(Si )
2, (38)

among which Cel is prominent [18–24]. In the case of Nf = 2
these become CB = 2

9 , Cel = 5
9 e2, and CS = 0. From Eq. (33)

it then follows that

κ�s = 0, κud = 0,

κBQ = e

9
κ��, κBS = 0, κQS = 0. (39)

For Nf = 3 the coefficients then evaluate to CB = 1
3 , Cel =

2
3 e2, and CS = 1. The off-diagonal conductivities now read

κ�s = 0, κud = 0,

κBQ = 0, κBS = −1

3
κ��, κQS = e

3
κ��. (40)

With these relations, one can extract all conductivities from
available results from lattice QCD.

It is important to note that the off-diagonal quark-flavor
conductivities, κud and κ�s, always vanish due to the neg-
ligence of the off-diagonal quark-quark current correlation.
However, from hadronic calculations it is expected that these
are nonzero in the vicinity of the pseudocritical tempera-
ture. Thus the extracted results from lattice QCD calculations
deviate from this expectation. The conductivities may pro-
vide some insight regarding the chemical composition of the
strongly interacting matter. With this in mind it would be
interesting to see these approximations relaxed in future cal-
culations on the lattice.

VI. INSIGHTS INTO THE CHEMICAL COMPOSITION
OF STRONGLY INTERACTING MATTER

The conductivities “regulate” the magnitude of the charge
flow in response to an external chemical gradient. Therefore, it
was already motivated in Ref. [10] that they may deliver some
indications regarding the chemical composition of the flowing
medium. For example, the cross conductivity σQB relates to
the electric flow resulting from a baryochemical gradient.
This coefficient is only nonzero if either there are (temporary)
bound states in the medium which carry both charge types
and are thus sensitive to these gradients, or if there is suffi-
cient interaction between flowing baryons and electric charge
such that the baryonic particles drag the electric particles
with them. Further, the magnitude of the conductivities grows
proportionally with the corresponding charge content while
it is suppressed by the scattering rate of the participating
constituents [6,7]. It should be mentioned that light particles
dominate the contribution to these coefficients since heavy
particles are thermally suppressed. In other words, The coeffi-
cients are directly related to the correlation of flowing charges
and their distribution on the constituents of the medium.
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FIG. 1. All six independent conductivities κqq′/T 2 (= σqq′/T ) shown as function of T/Tc in hadronic-charge (BQS) representation and at
zero chemical potential, μc = 0. Results are shown from hadronic and partonic approaches. For temperatures below Tc = 158 MeV we show
results from SMASH [35] taken from Ref. [25] (orange rhomboids), and results from the Chapman-Enskog (CE) method for a πKN�� gas
[5,6] (HRG—red dash-dotted lines). For temperatures above Tc = 158 MeV we show results from the CE method for a quark-gluon gas [7]
described by the DQPM [14] (DQPM—dark-red dashed lines). Further, the dark grey squares [21], circles [22], and triangles [24] represent
results evaluated according to Eq. (33) from available calculations from lattice QCD under the assumption of equal influences of up, down, and
strange quarks. For the LQCD results we do not show error bars for the off-diagonal coefficients which, according to Eqs. (40), are identical
to zero.

In QCD the quark-flavor representation (uds) of the trans-
port coefficients may paint a clearer picture on that chemical
composition in terms of quarks than the hadronic charge rep-
resentation (BQS). This is because in the asymptotic limit,
where the quarks and gluons are quasifree and thus are
(weakly or) uncorrelated, the conductivity matrix in the uds
representation is diagonal while in the BQS representation—
which is a linear combination of the quark flavors—it is not.
Therefore, deviations from this expectation may lead to infer-
ences on the abundance of quark-composite states, e.g., due
to their condensation to hadrons or due to the presence of
hadronic excitations at higher temperatures [33]. In Fig. 1 we
show a collection of available results to the full conductivity
matrix in the BQS representation from both hadronic and
partonic approaches. While in Fig. 2 we provide the same
collection in the uds representation. More details and the data
presented in these figures can be found in the Supplemental
Material [34]. On the hadronic side, results from the hadronic
transport model SMASH [35] were recently published [25].
There are also results available from the first-order Chapman-
Enskog (CE) method for a hadron gas (denoted as HRG)
consisting of the lightest hadronic species—namely a gas
consisting of pions, kaons, nucleons, �, and � baryons [5,6].
Moreover, there exist results for a partonic system consisting
of quarks and gluons with the help of the dynamical quasi-
particle model (DQPM) [14], which were achieved from the

CE method [7]. Furthermore, results based on lattice QCD
calculations are presented, which were attained on the grounds
of Eq. (33) together with the given LQCD result for σ�� =
C−1

el σQQ [21,22,24]. Here, we made the assumption that we
have up, down, and strange quarks, which contribute equally
to the coefficients (Nf = 3), i.e., CB = 1/3, Cel = 2e2/3, and
Cs = 1. The comparison is depicted as a function of T/Tc

for vanishing chemical potentials, μq = 0, where Tc is the
pseudocritical temperature of the individual approaches. In
the case of CE HRG, CE DQPM, and SMASH we set it to
Tc = 158 MeV since these approaches do not incorporate a
crossover.

We first note that the results are in good agreement in
each individual hadronic and partonic sector. The comparison
between both figures demonstrates the advantage of the uds in
contrast to the BQS representation in the case of strongly inter-
acting matter because the discrepancies between the hadronic
and partonic regime become apparent in the uds basis. We
observe that the diagonal light-quark coefficients grow in
magnitude for decreasing temperatures on the hadronic side.
Meanwhile, those from the partonic side approach zero. This
growth in magnitude is also visible in the cross conductiv-
ity κud . Further, the cross conductivities κus and κds show
nontrivial behavior consistent across the hadronic approaches,
while on the partonic side they are all zero. This discrepancy
is also evident in the comparison of the electric conductivity
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FIG. 2. Same as in Fig. 1 but the conductivities are in quark-flavor (uds) representation.

κQQ, which is also clear from Eq. (28) because the dominating
contributors to κQQ are the diagonal quark-flavor coefficients
and −κud . This also explains why the partonic κBQ does not
compare well to the hadronic result.

One of the reasons why the predictions from lattice QCD
may not catch these differences in behavior at low tempera-
tures seems to lie in the set of assumptions made in connection
with Eq. (36), where it was assumed that the off-diagonal
quark-flavor current-current correlations are not taken into
account. This is suggested by the very good comparison to the
CE (DQPM) calculations, where a QGP was assumed. As a
consequence, contributions like, for example, the up-antidown
correlations are discarded which, due to the formation of
charged pions, would normally dominate below the critical
temperature. It further seems that the content of light quarks
depletes in the LQCD computations at low temperatures.
Here, the structure in κus and κds is mainly contributed to
by kaons and the lightest hyperons. This is supported by the
good comparison between the results from the CE method,
which only accounts for the � and � hyperons, while the full
SMASH computation includes all known hadronic particles
and resonances up to a mass of 2 GeV [35].

It may also be interesting to analyze the individual influ-
ence of each quark flavor on the conductivities. To do so, we
present the ratios κuu/κdd , which is indicative of the isospin
symmetry, and κss/κ��, which expresses the impact of the
strange quark in contrast to the light quarks. In the case of
perfect isospin symmetry it is κuu = κdd , and thus their ratio
would be unity. In the matter of the strange-quark influence,
we defined κ�� = (κuu + κdd )/2, and thus κss/κ�� would be
unity if the strange quark contributes equally as the light
quarks do. Figure 3 shows such a comparison for results from

SMASH, CE HRG, CE DQPM, and LQCD. In the latter case,
we only show the results published in Ref. [21] because in that
paper the authors provided individual conductivities κ�� and
κss in a Nf = 2 + 1 simulation. That work therefore provides
direct information on the strange-quark influence. We observe
that κuu/κdd is close to unity across the shown approaches
with the exception of CE HRG. This difference is explained by
the cross sections used in Refs. [5,6] which did not necessarily
obey isospin symmetry. For κss/κ�� we see that, as expected,
the light quarks dominate over the strange quarks up to Tc.
For higher temperatures ratio approaches unity and thus all
quarks equally contribute. From the behavior of the CE (HRG)
calculation at high temperatures we can further tell that the
consideration of strange degrees of freedom is not sufficient
in that model.

VII. CONCLUSION

In this paper, we reviewed the diffusion or conductivity
matrix of strongly interacting matter, and its transformation
with respect to a change of basis in charge representation
space. From this we achieved exact relations between the
cross conductivities and the diagonal conductivities with the
help of which we could discuss these coefficients from avail-
able lattice QCD results.

We conjectured that the assumption of neglecting the off-
diagonal contributions to the quark-quark current correlator
in the LQCD analysis may lead to unexpected deviations to
hadronic models at lower temperatures, and we would like to
see these assumptions relaxed if possible. Apart from that, we
found that the available calculations of the full conductivity
matrix are in good agreement with each other.
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FIG. 3. Ratios of various quark-flavor conductivities as function of T/Tc at vanishing chemical potential. Left: Ratio of up-quark
conductivity over down-quark conductivity. Right: Ratio of strange-quark conductivity over light-quark conductivity. We show results from
SMASH [25] (orange rhomboids), the CE method for a hadron gas [5,6] (CE HRG—red dash-dotted line), and a partonic system [7] (CE
DQPM—dark red dashed line). Further, results from LQCD are shown [21] (dark grey squares). The grey dash-dotted line marks unity.

We gave the first demonstration that the analysis of the
conductivities in the quark-flavor representation provides a
novel tool to analyze the influences of the quarks on the
transport properties of the medium and how they may be
distributed onto hadronic bound states. We have indications
of nontrivial structures in the off-diagonal coefficients close to
Tc from the hadronic approaches, which are so far not covered
by the available LQCD analysis. We argue that especially the
off-diagonal coefficients in quark-flavor representation may
deliver some insight into the chemical composition of the
strongly interacting medium. It would be very interesting to
have results from partonic models, which also incorporate a
crossover or a phase transition, in order to investigate how
these nontrivial structures—visible in the hadronic analysis—
arise on the partonic side. From the observations above, we
conjecture that the (off-diagonal) coefficients may be sensitive
to the presence of a critical endpoint. Thus an analysis of
lattice calculations at finite chemical potential could provide
valuable insights. Finally, recent work by German LQCD

groups [33] indicate that hadronic-like excitations may be
present at very high temperatures, far beyond the crossover
region, where traditionally one would suspect an almost per-
fectly deconfined plasma according to the asymptotic freedom
of the strong interaction. Such ideas were also discussed in
earlier works [36–39]. Contrary to a deconfined QGP, the
presence of such excitations in the medium would lead to
nonzero off-diagonal conductivities.
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