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Examining the possibility that normal nuclear matter is quarkyonic
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The possibility that nuclear matter might be quarkyonic is considered. Quarkyonic matter is high baryon
density matter that is confined but can be approximately thought of as a filled Fermi sea of quarks surrounded
by a shell of nucleons. Here, nuclear matter is described by the IdylliQ sigma model for quarkyonic matter,
generalizing the noninteracting IdylliQ model [Y. Fujimoto et al., Phys. Rev. Lett. 132, 112701 (2024)] to include
interactions with a σ meson and a pion. When such interactions are included, we find that isospin-symmetric
nuclear matter binds with acceptable values of the compressibility and other parameters for nuclear matter at
saturation. The energy per nucleon and sound velocity of such matter is computed, and the isospin dependence
is determined. Nuclear matter is formed at a density close to but slightly above the density at which quarkyonic
matter forms. Quarkyonic matter predicts a strong depletion of nucleons in normal nuclear matter at low
momentum. Such a depletion for nucleon momenta k � 120 MeV is shown to be consistent with electron
scattering data.
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I. INTRODUCTION

In Ref. [1], the authors argued that in the limit of a large
number of colors, Nc, matter at high baryon density consists of
the Fermi sphere of quarks surrounded by a small momentum
shell of baryons. Such matter is called quarkyonic since both
nucleon and quark degrees of freedom are important. It has
been argued [2], that quarkyonic matter naturally explains the
maximum of the density dependence of the speed of sound ex-
tracted from neutron star phenomenology [3,4]. The existence
of quarkyonic matter is also supported by effective lattice the-
ory for quantum chromodynamics (QCD) with heavy quarks
[5]. Many dynamical models for quarkyonic matter have been
proposed [6–12], mostly involving a quark-baryon mixture
and repulsive excluded volume interactions for the baryons,
which, however, might not result in quarkyonic matter to be
the state of lowest energy [13]. This issue has been recently
addressed in a novel construction for quarkyonic matter—the
so-called IdylliQ model of quarkyonic matter [14].

The IdylliQ model is a theory of matter made from free
nucleons which are only subject to the Pauli exclusion prin-
ciple of the nucleons and the quarks inside the nucleon.
The nucleons are composed of quarks with a momentum
space probability distribution, ϕ(p), with the normalization
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∫ d3 p
(2π )3 ϕ(p) = 1. The momentum space distribution of the

quarks, fQ(p), is then related to that of the nucleons,
fN (q) via

fQ(p) =
∫

d3k

(2π )3
ϕ(|p − k/Nc|) fN (k), (1)

where Nc is the number of colors. Fermi statistics are im-
posed for both quarks and nucleons, 0 � fQ(p), fN (k) � 1.
The IdylliQ model is a dual description of baryonic matter.
Contrary to earlier implementations of quarkyonic matter,
where baryons were assumed to coexist on top of a filled
Fermi-sphere of quarks, in the IdylliQ model, the matter may
either be viewed in terms of baryon degrees of freedom or as
quarks

This theory has two phases. The low-density phase is an
ideal gas of nucleons and is best viewed in terms of baryons.
The high-density phase is quarkyonic. There the low mo-
mentum states of the quarks are fully occupied, fQ(p) = 1,
up to a certain momentum, p < pbu above which the phase
space density decreases exponentially. In the dual picture of
baryons, this implies that the nucleon density is composed of
a bulk contribution of nucleons where at momentum below
k < Nc pbu the phase space density is fN = 1/N3

c and fully
occupied, fN = 1, in a thin shell up to the Fermi-surface of
the baryons. The factor of 1/N3

c for the nucleon occupation
number at low momentum can be understood as follows:
With Nc quarks inside a nucleon, the typical momentum of
a nucleon is Nc times that of its quarks. This means that the
phase space for nucleons is k3/p3 ∼ N3

c and, by Eq. (1), the
nucleon occupation number should be suppressed by 1/N3

c .
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Thus the occupation of baryons dual to a quark occupation of
fQ = 1 is fN ∼ 1/N3

c .
The transition density between ordinary nucleonic matter

and quarkyonic matter is determined by the onset of the full
occupation of quark states. This begins at quark momentum
k = 0. Using Eq. (1) the condition corresponds to

1 = fQ(0) =
∫

k<kcrit
F

d3k

(2π )3
ϕ(k/Nc) fN (k) (2)

which determines the critical Fermi momentum kcrit
F for quark

saturation.
Before turning to the specific choice for the probability

distribution, φ, used in the IdylliQ model computation, it is
useful to understand some of the typical scales for nucleons
in nuclear matter. To this effect, we can consider a Gaussian
distribution which would arise in a harmonic oscillator model
for the quark wave function in a nucleon. Such a distribution
will underestimate the long distance tail of the wave function,
but it will give us some semiquantitative insight. A generic
feature of quarkyonic matter is the formation of a filled Fermi
sea of quarks at low momentum. We will ask whether or not it
is reasonable to expect that such a filled Fermi sea forms near
nuclear matter density? We parametrize the probability to find
a quark inside of a hadron by Gaussian density

ϕgauss(p) = 8π3/2R3e−p2R2
(3)

and then determine nucleon density for which quark den-
sity saturates through Eq. (2). Note that the parameter R
defines the root-mean-square (rms) nucleon radius rrms as

R =
√

2
3 rrms. We find the critical Fermi momentum for quark

saturation kcrit
F ≡ Nc pcrit

F is comparable to the nuclear Fermi
gas momentum kNM

F � 265 MeV for a reasonable choice of
rrms. Assuming a normal Fermi distribution, one finds that
the right-hand side of Eq. (2) is given approximately by
0.41(kNM

F rrms)3, so that the critical Fermi momentum, kcrit
F , for

fQ(0) to be unity is found to be kcrit
F ∼ 1.01 kNM

F for rrms ∼
1 fm, and kcrit

F = 1.3 kNM
F for rrms ∼ 0.8 fm. These numbers

show that normal nuclear matter is very close to the critical
density at which quarkyonic matter might form in a nucleus,
and whether this ultimately takes place lies in the details of
the specific implementation of the IdylliQ concept. Perhaps it
is not an accident that the density of nuclear matter is close
to that of quark saturation and that quarkyonic matter plays a
role in nuclei?

The simplest form of the IdylliQ model uses a specific
choice of probability distribution,

ϕ(p) = 2π2

�2

e−|p|/�

| p | , (4)

for which the theory is analytically solvable. Here, � is the
typical momentum scale of a nucleon inside a hadron and
should be of the order of the QCD scale, �QCD.

The singular factor of 1/p allows for an analytically solv-
able model, as we will see below. However, its origin might
be more general. If one includes a pion cloud around nucle-
ons, this pion cloud will generate a logarithmically divergent
charge radius in the limit of zero pion mass [15]. A factor of

1/p in the distribution of quarks reproduces this divergence.
If this divergence appears in the computation of a physical
process, we should remember to cut it off at the pion mass
scale. A proper treatment of the pion cloud awaits further
analysis. In our computations of nuclear matter below, no
infrared divergence arises, and the theory without a pion cloud
will be sufficient for our crude semiquantitative analysis, and
provides us with analytic insights which will be useful in a
more developed theory.

In the integral for the onset condition, Eq. (2), it is a good
approximation at large Nc to take ϕ(k/Nc) � 2π2

�2
Nc
k , so that

Eq. (2) reads

1 = Nc

�2

∫
kdk fN (k), (5)

and the critical Fermi momenta for nucleons for the onset of
quarkyonic matter is

kcrit
F =

√
2

Nc
�. (6)

The Nc dependence of this equation requires that the density
of the transition to quarkyonic matter is

nonset ∼ �3

N3/2
c

. (7)

The Nc dependence of the onset density is quite remark-
able. Its value is parametrically lower than the natural QCD
scale, �3

QCD ∼ �3. At such a parametrically lower density,
interactions might be expected to be weaker than their natural
QCD scale, which in the naive large Nc limit would give
binding energies of order the nucleon mass, mN ∼ Nc�. Since
the binding energy of nuclear matter is much less than the
nucleon mass scale, obtaining in a simple and natural way
such weak binding has been a persistent problem of the large
Nc limit applied to nuclear matter. Such a parametrically low
density for the formation of quarkyonic matter suggests that
such matter might be important for nuclear matter, or that
nuclear matter itself might be quarkyonic. We note that such a
possibility has also been suggested in Ref. [5] based on QCD
with heavy quarks.

To determine whether it might be possible that the onset
of quarkyonic matter is related to that of nuclear matter, we
need a theory that includes the interactions between nucleons.
If the matter is at low density, as suggested above, then an
approximation to the theory is the sigma model where inter-
actions are included by pions, σ mesons, and nucleons. We
will take this theory to be in motivated by the linear sigma
model in that we use the same coupling for the pions and the σ

mesons.
First, we recall that in the Walecka mean field model [16],

nuclear binding in isospin symmetric matter results from the
trade-off between a scalar interaction which is attractive, and
a repulsive vector interaction. The scalar interaction energy is
proportional to the square of the scalar density, ns, with

ns = 4
∫

d3k

(2π )3

m

E
�(kF − k). (8)
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The vector density, nv , on the other hand, is given as

nv = 4
∫

d3k

(2π )3
�(kF − k). (9)

We see that the scalar density weakens relative to the vector
density as the Fermi momentum increases, and this can gen-
erate a binding potential.

In contrast to the Walecka model, there is no vector
interaction in the IdylliQ σ model. Instead, the repulsion
corresponding to the vector interactions in the Walecka model
arises from the Fermi exclusion principle in the quark sector
and the associated energy cost to fill higher momentum states
in order to have the same baryon density. This Fermi repul-
sion must be what generates the repulsive core responsible
for binding. The attraction is generated by the scalar meson
interaction term. Notice that a scalar density goes like ns ∼ k2

F
at large kF so that a scalar interaction n2

s /M2
s ∼ k4

F at large
kF . This is the behavior of a scale-invariant system. Such an
interaction term will not necessarily overpower the kinetic
energy of the nucleons at high momentum, which is also scale
invariant. On the other hand, a vector interaction would go like
k6

F at high momentum and thus violate the approximate scale
invariance of QCD at high density.

The essential feature of quarkyonic matter that needs ex-
perimental testing is the formation of a filled Fermi sea of
quarks. If the momentum characteristic of the filled quark
Fermi sea is pQ, then the typical momentum for nucleons is
kN ∼ Nc pQ. Recalling that the quark baryon number is 1/Nc,
as well as the color degeneracy of Nc, one obtains that the
total baryon number density in the filled Fermi sea of quarks
is nB ∼ 1

Nc
Nck3

Q ∼ p3
Q ∼ k3

N/N3
c , i.e., 1/N3

c ∼ 3–4 % of the
expected value. Therefore, there is, for all practical purposes,
a “hole” at the bottom of the baryon Fermi Sea.

Surely if there is a hole at the bottom of the nucleon
Fermi sea, one might have expected to see its effect in elec-
tron scattering. Such scattering provided some of the best
measurements of Fermi momenta and properties of nucleon
momentum distributions in nuclei [17–19], through a compar-
ison with the corresponding theoretical computations [20,21].
In Ref. [19], in particular, electron scattering was analyzed
in an energy range that is sensitive to the distributions of nu-
cleons inside of nuclei with electron energy of 500 MeV and
60◦ scattering angle. The data were Coulomb corrected and
extrapolated to infinite nuclear size so as to represent infinite
nuclear matter. Later in this paper, we compare the results
of our computations within quarkyonic matter and argue that
the data are suggestive of a strong depletion of the Fermi sea
of nucleon at momenta k � 120 MeV. The computation we
present for nuclear matter suggests a larger value of the char-
acteristic momentum of the hole k ∼ 120–180 MeV, which is
currently still subject to large model uncertainties.

Of course, the IdylliQ model is not yet sufficiently well
developed to expect a precise agreement between the parame-
ters of the IdylliQ model and that of the hole in the Fermi sea
that is perhaps seen in the electron scattering data. However,
we will see that the quarkyonic model predicts the correct
semiquantitative features of nuclear matter, and the hole in the
Fermi distribution that describes the electron scattering data.

There is much that can be done to refine the theory, but it
is remarkable that the region where quarkyonic matter first
appears might be close to and slightly below the density of
nuclear matter. Nevertheless, the hypothesis that quarkyonic
matter may play a role in conventional nuclei is a radical
one, and may very well be possible to rule out by further
theoretical computation and comparison with experimental
results, and we view the results we present as very speculative
and tentative

The outline of this paper is as follows. In Sec. II, we
introduce IdylliQ σ model for nuclear matter. We review the
computations of the mean field and exchange energy for σ

mesons and pions, and the effective nucleon mass. In Sec. III
we present computations of the energy per baryon and argue
that nuclear matter exists at a density slightly above that of
the transition to quarkyonic matter. We compute the isospin
dependence of the energy per baryon and the sound velocity.
In Sec. IV we compute electron scattering from a quarkyonic
momentum distribution of nucleons, and show that the re-
sulting distribution has properties that describe the observed
scattering if we have a depletion in the nucleon momentum
distribution below k � 120 MeV. In the final section, Sec. VI,
we discuss the many limitations and possible paths for im-
provement of our work.

II. IDYLLIQ SIGMA MODEL

We begin computations by first using the IdylliQ model to
compute the dependence of the differential nucleon number
density as a function of momentum for a fixed total nucleon
density. The computation method is as in Ref. [14]. We will
consider various possibilities for the isospin to baryon num-
ber density ratio but will be most interested in the isosinglet
matter. This computation will determine the momentum space
shell structure of the nucleon number distribution. When this
is done, we will compute the effect of σ meson and pion
exchange. The sigma mesons will contribute a mean-field
term, and there will additionally be exchange energy terms for
both the sigma meson and pion. We will present computations
for a fixed nucleon or constituent quark mass, not accounting
for modifications associated with the σ meson condensate. We
also consider a density-dependent mass but it does not change
the picture appreciably except for the case of a larger mass
σ field, where the compressibility is increased, and the lower
momentum of the shell is decreased. This demonstrates that
the value of the lower momentum of the shell will be sensitive
to the stiffness of the equation of state. It turns out that the
equation of state for neutron matter with a fixed nucleon mass
in our computations is softer than what is favored for neutron
stars with the sound velocity squared never exceeding 1/3
in the range of densities appropriate for neutron stars. The
case with a density-dependent mass gives somewhat better
agreement with observations with the sound velocity square
slightly exceeding 1/3 at the highest densities. Probably the
equation of state needs to be a little stiffer, and no doubt our
approximation of only including the lowest-order contribution
of the σ meson and pions is not quite correct. This might
explain the somewhat small value of the lower momentum
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of the nucleon shell found by comparison with the electron
scattering data.

A. Shell structure

In the following we discuss the properties of the IdylliQ
model in terms of its baryon picture, as this is more suitable
to introduce interactions and also analyze predictions for elec-
tron scattering. The baryon density is expressed as

nB = γs

2π2

∫
dk k2 [ fp(k) + fn(k)], (10)

where γs = 2 is the spin degeneracy factor, and fp,n(k) are the
occupation numbers for protons and neutrons, respectively.

We implement the Pauli exclusion principle among quarks
following the exactly solvable IdylliQ quarkyonic matter
model of [14]. The shell structure evolves with baryon density,
which we take to be unaffected by the interactions we consider
here. We reiterate below the key features of the resulting shell
structure, both for symmetric and pure neutron matter.

1. Symmetric nuclear matter

The solution found in Ref. [14] has an occupation number
densities for protons and neutrons (see Eq. (12) of [14])

fp(k) = fn(k) = 1

N3
c

�(kbu − k) + �(ksh − k)�(k − kbu).

(11)

This shell-like structure of the baryon density, in turn, can be
used to compute the quark density. To see how this solution
arises, we first use Eqs. (1) and (4), to derive{

−∇2
k + 1

�2

}
fQ(pQ) = N3

c

�2
fN (Nc pQ) (12)

to determine the quark density from the nucleon density. The
solution to minimizing the energy density is found by having
either fQ = 1 or fN = 1. This is plausible since if a low energy
state is available to be occupied it will fill up before filling up
a higher energy state. However, both the nucleon and quark
distributions cannot simultaneously saturate at unity in over-
lapping regions of momentum (kQ = kN/Nc) without violating
Eq. (12). Indeed, if both are constant, this equation requires
fN = 1

N3
c

fQ for kN = Nc pQ.
Instead, one considers a piece-wise solution where these

conditions are satisfied. At low densities, this is simply the
ideal Fermi gas where fN = θ (kF − k), i.e., kbu = 0 and
ksh = kF . This solution no longer works for kF > kcrit

F because
one will find that at low momentum fQ � 1. Instead, above
kcrit

F , we construct a solution such as given by Eq. (11). If
we fix the upper momentum of the shell, ksh, then the lower
momentum, kbu is determined by solving Eq. (12) and requir-
ing that fQ(p) = 1 for p � kbu/Nc. The solution Eq. (12) for
the quarks is a filled Fermi sea for momentum pQ < kbu/Nc

with an exponentially falling profile above this momentum.
See Ref. [14] for the details of this construction. The value of
the upper shell momentum ksh is determined to reproduce a
given baryon density.

2. Pure neutron matter

When we have neutrons (udd ) only, we have the saturation
of d quark sea, while u quark levels are half-filled. We have

fp(k) = 0, (13)

fn(k) = 3

2

1

N3
c

�(kbu − k) + �(ksh − k)�(k − kbu). (14)

For each baryon momentum state in neutron matter, we
have two neutrons and thus four down quarks, whereas in nu-
clear matter we have two additional protons and thus six down
quarks. Therefore, in order to saturate the down-quark Fermi
distribution at fd (q = 0) = 1 the additional factor of 3/2 is
needed. As in symmetric matter, kbu and ksh are functions of
nB only.

B. σ model interactions

In order to describe nuclear matter we need to include
interactions. Specifically, we consider mean field, σ , and
π exchange energy contributions to the energy density. We
explore various scenarios, most of which lead to the same
qualitative behavior for the equation of state and speed of
sound.

Here, we will first omit the effect of density dependence of
the nucleon mass and set it to vacuum value. We consider the
effects of the density dependence below.

The energy density contains kinetic, mean-field, and ex-
change energy contributions:

ε(nB) = εK + εMF + εσ
exch + επ

exch. (15)

Here,

εK = γs

2π2

∫
dk k2

√
k2 + m2

N [ fp(k) + fn(k)], (16)

εMF = − g2
s

2m2
σ

n2
s , (17)

where ns is the scalar density

ns = γs

2π2

∫
dk k2 mN√

k2 + m2
N

[ fp(k) + fn(k)]. (18)

The exchange energy terms read [22]

εσ
exch = γsg2

s

4m2
N

∫
d3q

(2π )3

mN

εq

∫
d3 p

(2π )3

mN

εp

× [ fp(q) fp(p) + fn(q) fn(p)]

× εqεp − q · p + m2
N

2
(
εqεp − q · p − m2

N

) + m2
σ

= γsg2
s

32π4m2
N

∫
dq q2 mN

εq

∫
d p p2 mN

εp

× [ fp(q) fp(p) + fn(q) fn(p)]

×
∫ 1

−1
dx

εqεp − qpx + m2
N

2
(
εqεp − qpx − m2

N

) + m2
σ

(19)
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FIG. 1. Baryon density dependence of the binding energy in the IdylliQ σ model in different configurations. The upper and left panels
correspond to light (mσ = 500 MeV/c2) and heavy (mσ = 900 MeV/c2) scalar meson masses. Red and blue lines correspond to symmetric
and pure neutron matter calculations, respectively. Different line styles correspond to different scenarios concerning the inclusion of scalar
and/or pion exchange terms.

and

επ
exch = γsg2

s

4m2
N

∫
d3q

(2π )3

mN

εq

∫
d3 p

(2π )3

mN

εp

× [ fp(q) fp(p) + fn(q) fn(p) + 4 fp(q) fn(p)]

× εqεp − q · p − m2
N

2
(
εqεp − q · p − m2

N

) + m2
π

= γsg2
s

32π4m2
N

∫
dq q2 mN

εq

∫
d p p2 mN

εp

× [ fp(q) fp(p) + fn(q) fn(p) + 4 fp(q) fn(p)]

×
∫ 1

−1
dx

εqεp − qpx − m2
N

2
(
εqεp − qpx − m2

N

) + m2
π

. (20)

Here, εq =
√

m2
N + q2.

III. EQUATION OF STATE OF NUCLEAR MATTER

A. Results with fixed nucleon mass

We consider calculations for two scenarios regarding the
scalar meson mass, light (mσ = 0.5 GeV) and heavy (mσ =
0.9 GeV). We also explore different scenarios where we only
include the mean-field energy term (εMF), mean-field and
scalar exchange terms (εMF and εσ

exch), mean-field, scalar, and
pion exchange terms (εMF, εσ

exch, and επ
exch). The remaining

model parameters, gs and �, are then fixed in each setup to
reproduce the symmetric nuclear matter ground state, Ebind =
ε/nB − mN = −16 MeV at nB = n0, where n0 = 0.16 fm−3 is
the ground state density of nuclear matter.

The results are depicted in Fig. 1 where we show the bind-
ing energy, Ebind = ε(nB)/nB − mN as a function of the baryon
density measured in units of the nuclear saturation density,
n0. The results for symmetric nuclear matter are shown as
red lines and that for neutron matter as blue lines. Calcu-
lations are performed on the mean-field level (dotted lines),
including scalar exchange term only (dash-dotted lines), and
scalar + pion exchange terms (solid lines). We find that the
model predicts a reasonable value for the incompressibility,
K0, with 180 MeV � K0 � 270 MeV. Also, the predicted val-
ues of the symmetry energy S0 at n0, are in a reasonable range
(29 MeV � S0 � 32 MeV) once isoscalar and isovector ex-
change terms are included. If the exchange terms are neglected
(scalar mean-field contribution only), the symmetry energy is
too low (S0 � 18 MeV), and the model predicts bound neutron
matter as seen by the dashed line in Fig. 2. Including the
isoscalar and isovector exchange terms is thus essential for
a reasonable description of neutron matter in this framework.

The scenario with σ and pion exchange and a sigma
mass of mσ = 0.9 GeV and gs = 10.1737 is closest to
the predictions of the sigma model where gs fπ � mN =
0.938 GeV/c2. This is our preferred scenario, for which we
have K0 = 219 MeV and S0 = 29 MeV. In Fig. 2, we show the
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FIG. 2. Binding energy (left panel) and the squared sound velocity (right panel) of symmetric nuclear (solid red) and pure neutron
(dash-dotted blue) matter within the IdylliQ σ Model in our preferred scenario (mσ = 0.9 GeV, scalar and pion exchange included, density-
independent mass).

corresponding results for the speed of sound

v2
s = nB

μB

dμB

dnB
with μB = dε

dnB
, (21)

for our preferred scenario. There we see, as in Ref. [14], a
singular behavior at the density, nonset, where quark distribu-
tion at zero momentum becomes unity, fQ(q = 0) = 1. We
consider this singularity as an artifact of the specific choice of
implementing the quark distribution inside a nucleon, given
by Eq. (4). Interestingly, the onset density, nonset � 0.53n0, is
very similar (but not identical) in symmetric and neutron mat-
ter. For the same scenario, in Fig. 3 we show the momentum
distribution of the baryons (nucleon) at ground state nuclear
matter density, n0. The shell structure in the momentum dis-
tribution is clearly visible. For momenta k < kbu � 180 MeV
the momentum distribution is suppressed, fB(k) = 1/N3

c �
0.037 � 1. As a consequence, the maximum (or Fermi)
momentum of the nucleons is pushed to kF = 288 MeV, con-
siderably larger than that of an ordinary Fermi gas for the
same density, kF,regular � 260 MeV.

One key difference to the noninteracting IdylliQ model
of Ref. [14] is the presence of negative values of v2

s . This

FIG. 3. Occupation numbers of nucleons (solid red line) and
quarks (dash-dotted blue line) as a function of the momentum k in
the nuclear ground state, nB = n0, in the same IdylliQ σ model as in
Fig. 2. Note that here, the quark momenta are scaled by the factor Nc.

is driven by the inclusion of attractive interactions through
the σ meson. At very low density, the energy per nucleon,
and thus v2

s , is driven by the positive kinetic energy term.
However, at some density in the low-density phase, the at-
tractive σ meson exchange becomes dominant, leading to the
negative speed of sound squared and the associated spinodal
instability. At higher densities the repulsion due to quark Pauli
blocking leads to the stiffening of the equation of state. Of
course, in equilibrium, one does not have a negative v2

s , but
a mixed phase where quarkyonic nuclear matter coexists with
the vacuum and where the speed of sound is vanishing. This is
analogous to what we have in ordinary descriptions of nuclear
matter, such as in relativistic mean-field theory. In neutron
matter, v2

s is slightly negative in a narrow density interval,
reflecting the presence of a weak first-order phase transition
in our model.

At very high densities, v2
s is expected to approach the

conformal limit of 1/3, as the thickness of the nucleon shell
becomes negligibly small relative to Fermi momentum, and
the equation of state reduces to that of free quarks at asymp-
totically high densities.

As we will later see, the formation of a hole at low momen-
tum in the Fermi momentum distribution should be seen in
quasielastic electron scattering data from nuclei. We will later
see that there is evidence for such a hole, but at a lower value
of momentum khole ∼ 100 MeV. Reconciling this difference
might be perhaps due to modifying the probability distribu-
tion φ if the IdylliQ model, perhaps properly including the
effects of a density dependent nucleon mass, or perhaps some
residual effect due to vector meson exchange.

B. The effect of a density-dependent nucleon mass

With the effect of the density dependence of the nucleon
mass m∗

N included, the energy density reads

ε(nB) = ε∗
K + g2

s

2m2
σ

(n∗
s )2 + εσ∗

exch + επ∗
exch, (22)

where terms ε∗
K , n∗

s , εσ∗
exch, επ∗

exch are given by Eqs. (16), (18),
(19), (20), respectively, where we substitute vacuum nucleon
mass mN by the effective mass m∗

N . The effective mass m∗
N is
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FIG. 4. Binding energy (left panel), the squared sound velocity (middle panel) of symmetric nuclear (solid red) and pure neutron (dash-
dotted blue) matter, and the occupation numbers (right panel) of nucleons (solid red) and quarks (dash-dotted blue) as a function of the
momentum k in the nuclear ground state. The figure depicts calculations within the IdylliQ σ model with a density-dependent mass m∗

N and
mσ = 0.9 GeV, scalar and pion exchange energy terms included.

determined on a mean-field level from the equation

m∗
N = mN − g2

s

m2
σ

ns, (23)

which minimizes the mean-field level energy density ε(ρB) =
ε∗

K + m2
σ

2g2
s
(mN − m∗

N )2 with respect to m∗
N .1

The results with a density-dependent mass are shown in
Fig. 4 for the binding energy, sound velocity, and the oc-
cupation numbers of quarks and nucleons at nB = n0. The
calculation was performed for heavy scalar meson mass mσ =
900 MeV/c2, and includes both the scalar and pion exchange
energy terms, i.e., it corresponds to our preferred scenario
from the previous subsection but with the additional effect
of density-dependent nucleon mass included. The results are
qualitatively similar to the fixed-mass calculation but with
notable quantitative differences. The quarkyonic onset den-
sity is nonset � 0.71n0, for both symmetric and pure neutron
matter, which is considerably closer to n0 than nonset � 0.53n0

for fixed-mass calculation. Consequently, the stiffening of
the equation of state near nB ∼ n0 is more rapid, leading
to a large value of the compressibility K0 � 395 MeV. The
lower momentum of the shell at nB = n0 is kbu � 124 MeV,
considerably lower than kbu � 180 MeV in the fixed mass
calculation. Also, the sound velocity is observed to exceed
1/3 at the highest densities considered (nB ∼ 5n0) for neutron
matter. We have performed density-dependent mass calcula-
tion also for other values of mσ and for different scenarios
regarding the inclusion of exchange energy terms. Our de-
scription of nuclear matter can certainly be improved. For
example the large value of the compressibility, which is typi-
cal for the Walecka model, can be be reduced by introducing
non-linear terms in for the σ field [23], which is beyond the
scope of the present work. However, qualitatively we observe
an anti-correlation between the values of the lower momentum
of the shell kbu and compressibility K0.

1Alternatively, we have also considered including εσ∗
exch and επ∗

exch

terms when determining the effective mass through energy mini-
mization, generally obtaining a stiffer equation of state but with same
qualitative features.

To conclude this section, we have shown that the IdylliQ
model can reproduce the main features of nuclear matter. If
correct, this would imply that it should be realized in ordinary
nuclei. In particular, the IdylliQ model predicts a hole in the
nucleon momentum distribution, which should be accessible
to electron scattering experiments on nuclei. To which extent
this is the case we will discuss next.

IV. ELECTRON SCATTERING

The previous sections present a startling new view of the
nucleon momentum distribution of nuclear matter, indicating
a strong depletion of the Fermi sea of nucleons at low mo-
menta, k � 120–180 MeV. Clearly, it is necessary to check
if such a distribution is consistent with known experimental
data.

Quasielastic (e, e′) electron scattering from nuclei has
provided some of the best information about nucleon mo-
mentum distributions [17–21,24,25]. We can understand this
qualitatively. In the one-photon-exchange approximation, an
electron emits a photon of four-momentum, q = (ω, q) that
hits a nucleon and knocks it out of the nucleus. If the nu-
cleon is at rest and on its mass shell, it will emerge with
an energy −q2/(2mN ) = Q2/(2mN ). So at fixed spatial mo-
mentum transfer, there will be a sharp peak at a fixed energy
corresponding to this process. Taking the initial nonzero mo-
mentum of the nucleon into account, this peak is spread out
by the Fermi motion and also shifted by an average nucleon
interaction energy [20]. On the other hand, if the nucleon
momentum distribution is as given by quarkyonic matter,
then there will be a depletion of nucleons at low momentum
relative to that of the elastic peak. This will affect both the
shape and the height of the momentum distribution at small
momenta in the kinematic region of the quasielastic peak of
electron-nucleus scattering.

We compare the effects of using the standard Fermi dis-
tribution with that of the quarkyonic distribution using the
following formalism, consistent with the notation of Ref. [25].
The (e, e′) cross section is given by

dσ

d�dEe
= dσM

d�
[W2 + 2W1 tan2(θ/2)], (24)
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where the Mott cross section, dσM
d�

, is given by [26]

dσM

d�
= α2 cos2(θ/2)

4E2
e sin4(θ/2) (1 + 2Ee/mN sin2 θ/2)

. (25)

The cross section is proportional to LμνW μν with Lμν the
lepton tensor and W μν the target tensor

W μν = W1

(
gμν − qμqν

q2

)
+ W2

M2
A

(
Pμ − q · P

q2
qμ

)

×
(

Pν − q · P

q2
qν

)
(26)

with the laboratory-frame nuclear four-vector, Pμ = (MA, 0).
In the Fermi gas model, the nucleons are on their mass shell in
both the initial and final state. Then W μν from a nuclear target
is given by

W1

(
gμν − qμqν

q2

)
+ W2

M2
A

(
Pμ − q · P

q2
qμ

)(
Pν − q · P

q2
qν

)

=
∫

k
ρ(k)wμν

N , (27)

where we introduced a short-hand∫
k

≡ 2
∑

N=n,p

∫
d3k

(2π )3
δ
(
ω + Ek −

√
k2 + 2k · q + q2 + m2

N

)
.

(28)
The nucleon tensor, w

μν
N , is given by

w
μν
N (k, q) = wN

1

(
gμν − qμqν

q2

)
+ wN

2

m2
N

(
kμ − q · k

q2
qμ

)

×
(

kν − q · k

q2
qν

)
(29)

w1 = Q2

4m2
N

G2
M (Q2), (30)

w2 = 1

1 + Q2

4m2
N

[
G2

E (Q2) + Q2

4m2
N

G2
M (Q2)

]
(31)

with GE ,M (Q2) being the elastic electric and magnetic Sachs
form factors and k = (Ek, k), Ek =

√
k2 + m2

N , and q · k =
−q2/2 = Q2/2.

The normalization of ρ(k) is

A = 2
∫

d3k

(2π )3
ρ(k) = 2V

∫
d3k

(2π )3
[ fp(k) + fn(k)] (32)

with ρ(k) = V [ fp(k) + fn(k)] being proportional to the nu-
cleon momentum space density.2 For quarkyonic matter the
occupation numbers fp,n(k) are given by Eq. (11) while for
regular nuclear matter they are given by the usual Fermi
distributions.

We will compare our calculations with the experimental
data on nuclear matter cross sections obtained by Day et al.
[19], � ≡ 1

A
dσ

d�dEe
, in the limit A → ∞.

2Note that the volume V drops out in the final, normalized expres-
sion.

FIG. 5. Quasielastic electron scattering cross section in nuclear
matter calculated using the standard Fermi distribution with kF =
271.5 MeV (solid blue line), and the IdylliQ distribution where the
nucleon states at momenta at k < ksh = 123.6 MeV are suppressed
by factor N−3

c (solid red line). The dashed blue line shows the differ-
ence between the two, which corresponds to the contribution of the
hole in the Fermi sea.

Next we need to identify W1,2 in terms of w1,2. This is done
by multiplying Eq. (27) by gμν and then multiplying Eq. (27)
by PμPν to get two equations and two unknowns:

W1 =
∫

k

[
wN

1 + wN
2

2

(
1 + Q2

4m2
N

− f (ω, k)
Q2

q2

)]
(33)

and

W2 =
∫

k

{
wN

2

[
3

2
f (ω, k)

Q4

q4
− 1

2

Q2

q2

(
1 + Q2

4m2
N

)]}
, (34)

where f (ω, k) = (Ek + ω/2)2/m2
N .

In the following, we compare with the 500 MeV electron
scattering data of [19]. The form factors are well described by
the simple dipole forms used in [20]. Our calculations ignore
the effects of final state interactions. These are about 5% for
the data under discussion [27], which is about the size of the
normalization uncertainty, but are larger at higher energies
[24]. Therefore we focus our discussion on the 500 MeV data.

First, we discuss how the presence of the hole in the Fermi
sea affects electron scattering cross section qualitatively. This
effect is shown in Fig. 5. The solid blue line depicts the cross
section, here in arbitrary units, for ordinary Fermi distribution
with kF = 271.5 MeV. The solid red line shows the results
for IdylliQ type distribution, there all momentum states at
k < ksh = 123.6 MeV are suppressed by a factor N−3

c as per
Eq. (11). The dashed blue line shows the difference between
the two scenarios, i.e., it is the contribution of the hole. The
hole modifies the shape of the cross section around the peak,
by generally making it flatter and visibly asymmetric. The
larger the hole is, the stronger the effect.

In Fig. 6 we compare our calculations to the experimen-
tal data [19]. Calculations are done for the standard Fermi
distribution (blue line), and for three cases of the IdylliQ
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FIG. 6. Quasielastic electron scattering cross section in nuclear
matter calculated using the standard Fermi distribution (blue line),
and for three cases of the IdylliQ distribution with the varying size
of the quark Fermi sea: kbu = 100.0 MeV (dashed red), kbu = 123.6
MeV (solid red), and kbu = 180.7 MeV (dash-dotted red). The values
of upper Fermi momentum kF /ksh are fixed in each case to reproduce
normal nuclear density. The black points depict the experimental data
from Day et al. [19].

distribution where we vary the size of the quark Fermi sea:
kbu = 180.7 MeV (preferred scenario without density-
dependent mass), kbu = 123.6 MeV (preferred scenario with
density-dependent mass), and kbu = 100.0 MeV. In all cases,
the value of ksh is chosen so that one reproduces the normal
nuclear density of n0 = 0.16 fm−3. For comparisons with the
experiment, we used an average nucleon interaction energy of
30 MeV.

Calculations describe the experimental data overall well for
energies ω � 0.19 GeV that are appropriate for quasielastic
scattering. Looking more into quantitative details, one can
see indications in the experimental data for an asymmetric
shape of the peak, with maximum corresponding to ω ∼
160–170 MeV, while the standard Fermi distribution predicts
a largely symmetric peak centered around ω = 140 MeV. The
IdylliQ calculations with kbu = 120 MeV and, more so, kbu =
100 MeV, appear to give the best description of the features
seen in experimental data. On the other hand, for kbu = 180.7
MeV, the peak becomes too broad and is not supported by the
data.

Overall, we can conclude that experimental data do not
rule out, and to some extent even indicate, the presence of
a strong depletion of nucleons in nuclear matter at momenta
k � 120 MeV.

V. SUMMARY

(i) Using reasonable parameters for the σ and pion in-
teractions, and a density-independent nucleon mass,
we find that the properties of ground-state nuclear
matter can reasonably be described. The compress-
ibility of nuclear matter ranges from 180 MeV
to 250 MeV, which is comparable with values

extracted from experiments [28]. Also, the predicted
symmetry energy at n0 is in an acceptable range
with 29 MeV � S0 � 32 MeV [29]. This is achieved
without the need for any repulsive vector interaction.
Instead, the needed repulsion originates from the
Pauli exclusion in the quark sector.

(ii) In order to achieve saturation of nuclear matter at
the correct ground state density, nB = n0, the density
where the shell structure in the baryon momentum
distribution emerges needs to be below saturation
density, nonset < n0. Specifically, we find nonset �
0.53n0 for the scenario considered here. Thus, our
model/theory predicts a shell structure in the mo-
mentum distribution or equivalently saturated quark
distribution at low momenta which should be present
in ordinary nuclei. As shown, this prediction is
not inconsistent with data from quasielastic electron
scattering on nuclei.

(iii) We find that the speed of sound exhibits non-analytic
behavior at the onset density, nonset. We consider this
an artifact of the present (analytic) implementation
of the IdylliQ model. This singular behavior occurs
in a very narrow range of density, which shrinks
to zero as Nc → ∞. An explicit solution for this
problem has not yet been presented.

(iv) We find that neutron matter is unbound, at least if
sigma and/or pion exchange interactions are taken
into account. In the range of interest, we find that
the speed of sound is below 1/3 for nuclear mat-
ter, which is a bit too soft for describing neutron
stars.

(v) If we allow the nucleon mass to be density-
dependent, the equation of state becomes stiffer,
and the lower momentum for the nucleonic shell
decreases. However, the compressibility becomes
larger than the measured values.

(vi) The IdylliQ σ model description of nuclear matter
presented here substantially differs from most other
frameworks used to describe nuclear matter at nor-
mal densities. There, the relation between the Fermi
momentum and number density is the same, or very
close to that of the free gas, where the momentum
distribution is a � function, fB(k) = �(kF − k). In
contrast, in the IdylliQ σ model, the baryon occupa-
tion number is strongly suppressed at low momenta
already at normal nuclear densities, nB � n0 (Fig. 3).
Our framework does show some similarity to the
quantum van der Waals (QvdW) theory of nuclear
matter [30]. In the QvdW model, the attractive in-
teractions are described by a mean field, which is
equivalent to the scalar σ field in the nonrelativistic
limit. On the other hand, the repulsion is modeled by
the excluded volume correction, which modifies the
relation between the nucleon density and the Fermi
momentum and thus schematically models the Pauli
exclusion principle among constituent quarks [12].

(vii) Of course, this very simple computation leaves
out much physics associated with interactions.
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Nevertheless, it has the correct qualitative and semi-
quantitative features to describe nuclear matter.

(viii) The most direct test of the idea that nuclear mat-
ter is quarkyonic occurs via quasielastic electron
(e, e′) scattering. Our calculations for scattering at
500 MeV are, somewhat surprisingly, in reasonable
agreement with the data. This energy is chosen be-
cause the effects of final state interactions are small.
Copious data exist at other energies, and could be
addressed when such interactions are included.

VI. CONCLUSION

The current state of the model is primitive. The model
may be refined in several ways ranging from different choices
of the quark distribution in the nucleon to possible higher
order interaction effects. Also, of interest may be the prop-
erties of this model at finite temperature and for systems
with strange degrees of freedom. Computations of (e, e′) cross
sections could be made at other kinematics.

Despite these caveats, it is fair to say that we have demon-
strated that the IdylliQ model for quarkyonic matter is able
to describe ground state nuclear matter as well as low den-
sity neutron matter. The essential new element is that in this
approach the necessary repulsion is provided by the Pauli

exclusion principle in the quark sector. The present basic
implementation of the IdylliQ model captures what we believe
the essential feature of quarkyonic matter, namely, that the low
momentum nucleon states are depleted. Or in other words,
the nucleon Fermi distribution has a “hole” for momenta k �
120 MeV. Remarkably, such a hole in the Fermi distribution is
not only consistent with quasielastic scattering data but there
may actually be even an indication for it in the shape of the
data.
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