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Machine learning study to identify collective flow in small and large colliding systems
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Collective flow has been found to be similar between small colliding systems (p + p and p + A collisions)
and large colliding systems (peripheral A + A collisions) at the CERN Large Hadron Collider. In order to study
the differences of collective flow between small and large colliding systems, we employ a point-cloud network to
identify p + Pb collisions and peripheral Pb + Pb collisions at

√
sNN = 5.02 TeV generated from a multiphase

transport model. After removing the discrepancies in the pseudorapidity distribution and the pT spectra, we
capture the discrepancy in collective flow. Although the verification accuracy of our PCN is limited due to similar
event-by-event distributions of elliptic and triangular flow, we demonstrate that collective flow between p + Pb
collisions and peripheral Pb + Pb collisions becomes more distinct with increasing final hadron multiplicity and
parton scattering cross section. This study not only highlights the potential of PCN techniques in advancing the
understanding of collective flow in varying colliding systems, but more importantly lays the groundwork for the
future PCN-related research.

DOI: 10.1103/PhysRevC.110.024910

I. INTRODUCTION

With advancements in computational hardware and al-
gorithms, machine learning (ML) techniques have become
powerful tools for extracting information from big data.
Among many ML architectures, the point-cloud network
(PCN) stands out for its efficiency and effectiveness in solv-
ing problems involving point-cloud-structured data, such as
three-dimensional (3D) object segmentation and scene seman-
tic parsing [1]. The unique operations employed in the PCN
enhance its capability to process high-dimensional data effec-
tively compared to traditional convolutional neural networks.

The PCN has demonstrated great potential in handling
complex and irregular data in various physics domains. It
excels in situations where traditional methods struggle with
geometric complexity and high-dimensional data. For exam-
ple, in fluid dynamics, the PCN is used to predict fluid flow
fields on irregular geometries. By using point-cloud-based
neural networks, researchers are able to capture geometric
features and solve the partial differential equations govern-
ing fluid flow, resulting in accurate predictions in complex
domains [2,3]. In quantum computing, the integration of
quantum convolutional neural networks with point-cloud
data processing provides a scalable solution for classifying
high-dimensional data, thereby advancing quantum machine
learning [4]. Additionally, in materials science, especially in
additive manufacturing, the PCN can detect surface defects
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in real time during the manufacturing process, leading to
improved product quality and manufacturing efficiency [5].

Recently, machine learning (ML) techniques have been
widely used in various areas of high-energy nuclear physics
[6–17]. In high-energy nuclear physics, both experimental
detector outputs and most models for heavy-ion collisions
primarily produce particle tracks. Since a track can be repre-
sented as an N-dimensional point, an event naturally becomes
a point cloud of disordered points in space. Consequently,
PCNs have been well utilized in this field for tasks such as
precisely reconstructing collision impact parameters [18–20],
classifying equations of state (EOS) [21], and identifying
weak intermittency signals associated with critical phenom-
ena [22] by learning the data of tracks in heavy-ion collisions.
The potential applications of the PCN extend far beyond the
examples provided above. In this paper, we demonstrate how
the PCN can distinguish between p + Pb collisions and pe-
ripheral Pb + Pb collisions, highlighting its ability to diagnose
differences in the physical characteristics of these two colli-
sion systems.

Quark-gluon plasma (QGP) at extreme conditions of high
temperature and density is thought to be a form of the early
universe, which has been produced in the laboratory by rel-
ativistic heavy-ion collisions at the BNL Relativistic Heavy
Ion Collider (RHIC) and the CERN Large Hadron Collider
(LHC) [23–27]. The experimental results have shown that this
new type of nearly perfect fluid can translate initial spatial ge-
ometry or initial energy density fluctuations into momentum
anisotropy of final particles through the pressure gradient in
hydrodynamics [28–37], thus resulting in the emergence of
strong collective flow in A + A collisions [38,39].
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Over the last decade, measurements of collective flow in
various colliding systems, such as p + p, p + Pb collisions
at the LHC [40–45], p + Au, d + Au, and 3He +Au colli-
sions at RHIC [46–50], have been performed. Surprisingly,
similar collective flow is found in peripheral A + A and high-
multiplicity p + A collisions at the same multiplicity, raising
doubts about whether QGP droplets can also be generated in
small colliding systems. Many theoretical efforts have been
made to understand the origin of collective flow in small
colliding systems [51–53]. Similar to large colliding systems,
hydrodynamics in the final state can transform initial geomet-
ric asymmetry into final momentum anisotropic flow through
the pressure gradient of the QGP in small colliding systems
[54–60]. Conversely, it is generally believed that the transport
model will behave more like hydrodynamics as the multiplic-
ity or scattering cross section increases, i.e., the change of
dynamics from nonequilibrium to equilibrium. A multiphase
transport (AMPT) model [61] is capable of describing the
experimental data on both radial and anisotropic flow in both
large [62–64] and small colliding systems [65–67]. Since most
of partons are not scattered especially for the small colliding
systems at RHIC and the LHC, a parton escape mechanism
has been proposed to explain the formation of azimuthal
anisotropies in the transport model [68,69]. However, it has
been shown that parton scatterings are crucial for generating
anisotropic flows [67,70]. Using a new test-particle method,
we recently proved that collectivity established by final-state
parton scatterings is much stronger in large colliding systems
than that in small colliding systems [71]. The event-averaged
flow vn primarily reflects the averaged hydrodynamic re-
sponse to the initial collision geometry of the produced QGP.
More helpful information, such as the event-by-event (EbyE)
fluctuations of the overlap region [34], can be obtained by
measuring event-by-event vn distribution P(vn) for charged
hadrons, as measured by the ATLAS Collaboration using an
unfolding method in Pb + Pb collisions at

√
sNN = 2.76 TeV

[72]. This provides a good constraint on the initial condition
in A + A collisions. However, the corresponding experimen-
tal measurements in small colliding systems have yet to be
available, which would provide more information on the dif-
ferences in the origin of collectivity between small and large
colliding systems.

In addition to anisotropic flow vn, investigating other
observables’ differences between large and small colliding
systems, such as pseudorapidity distribution and pT spectra, is
worthwhile. For example, previous experimental studies have
shown power-law-shaped pT spectra in small colliding sys-
tems [73–78], unlike exponential-shaped pT spectra in large
colliding systems [77–79].

These motivate us to adopt the PCN in supervised train-
ing, to find the different EbyE features between the final
state of p + Pb collisions and peripheral Pb + Pb collisions
from the multiphase transport (AMPT) model. Our goal
is to identify the discrepancies in collective flow between
large and small systems, which will enhance our under-
standing of the mechanisms underlying the generation of
collective flow in small systems. Ultimately, we aim to com-
bine experimental data to determine whether small colliding
systems also produce the QGP or exhibit very different

characteristics of collective flow compared to large colliding
systems.

Additionally, our PCN study holds potential as a valuable
tool for various other research interests, such as how to po-
tentially classify the origin of atmospheric particle showers in
cosmic ray physics [80,81]. When a particle of cosmic radia-
tion, such as a proton or a nucleus, interacts with a molecule’s
nucleus in the atmosphere, it generates numerous secondary
particles, resulting in an air shower. These interactions are
likely to be either p + Pb collision type or Pb + Pb collision
type [82]. This is the current focus of the experiments in
the Telescope Array Project [83] and the Pierre Auger Ob-
servatory [84]. Our PCN study could be used in cosmic ray
physics to enable a better understanding of the origin of these
showers.

The paper is organized as follows. First, we introduce the
AMPT model, which generates the data for p + Pb collisions
and peripheral Pb + Pb collisions, and the relevant observ-
ables in Sec. II. In Sec. III, we describe the details of the PCN.
In Sec. IV, the test accuracy of the PCN is presented, and the
relevant physics is discussed. Finally, we summarize and give
the implications of our results in Sec. V.

II. MODEL AND METHOD

A. A multiphase transport model

The string melting version of the AMPT model consists of
four main stages of heavy-ion collisions, i.e., initial state, par-
ton cascade, hadronization, and hadronic rescatterings. The
initial state with fluctuating initial conditions is generated
by the heavy-ion jet interaction generator (HIJING) model
[85]. In HIJING model, minijet partons and excited strings
are produced by hard and soft processes, respectively. In
the string melting mechanism, all excited hadronic strings in
the overlap volume are converted to partons according to the
flavor and spin structures of their valence quarks [86]. The
initial positions of partons originating from melted strings are
determined by tracing their parent hadrons along straight-line
trajectories. The interactions among partons are described by
the Zhang’s parton cascade (ZPC) model [87], which includes
only two-body elastic scatterings with a g + g → g + g cross
section, i.e.,

dσ

dt̂
= 9πα2

s

2

(
1 + μ2

ŝ

)
1

(t̂ − μ2)2
, (1)

where αs is the strong coupling constant (taken as 0.33), while
ŝ and t̂ are the usual Mandelstam variables. The effective
screening mass μ is taken as a parameter in ZPC for adjusting
the parton scattering cross section. Note that previous AMPT
model studies have shown that a parton scattering cross sec-
tion of 3 mb can well describe both large and small colliding
systems at RHIC and the LHC energies [63,64,66,67,88,89].
However, we will employ different parton scattering cross
sections of 0 mb, 3 mb, and 10 mb in order to establish
collective flow of different strengths in this study. A quark
coalescence model is used for hadronization at the freezeout
of the parton system. The hadronic scatterings in the hadronic
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FIG. 1. The architecture of the devised point-cloud network (PCN). In this network, it takes final state N points as input, applies input and
feature transformations, and then aggregates point features by max pooling. The output is classification scores for two classes, i.e., Pb + Pb or
p + Pb collision.

phase are simulated by a relativistic transport (ART) model
[90].

In this study, we simulated 2 × 106 events each for periph-
eral Pb + Pb collisions and p + Pb minimum bias collisions
at

√
sNN = 5.02 TeV, using the string-melting version of the

AMPT model.

B. Anisotropic flow

The anisotropic collective flow can be defined according to
a Fourier decomposition of the azimuthal angle φ distribution
of measured particles,

dN

dφ
= 1

2π

[
1 +

∞∑
n=1

2vn cos [n(φ − ψn)]

]
. (2)

The nth order of harmonic flow coefficient vn =
〈cos [n(φ − ψn)]〉 characterizes the magnitude of azimuthal
anisotropies of the particle spectrum in the transverse
directions [91], while the phase ψn is the nth harmonic
event plane angle. The second (v2) and third (v3) Fourier
coefficients represent the amplitudes of elliptic and triangular
flow, respectively. The linearized hydrodynamic response
shows that anisotropy flow vn is likely correlated to the
geometry asymmetry of energy density profile in spatial
space of the initial state, namely the initial eccentricity εn,

εn =
√

〈rn cos(nφr )〉2 + 〈rn sin(nφr )〉2

〈rn〉 , (3)

where r and φr are the polar coordinates of participating
nucleons [34]. In hydrodynamics, harmonic flows are re-
sponding to eccentricities,

vn = vn(εn, k), (4)

where the constant k is sensitive to the properties of the QGP,
such as the transport coefficient η/s [33].

Note that the above definition of vn according to ψn is
based on the assumptions that the QGP is created and gov-
erned by hydrodynamics in relativistic heavy-ion collisions.
This has been well demonstrated in large colliding systems,
but needs to be clarified in small systems since whether small
colliding systems can create the QGP is still debatable. To find
differences in the sources and characteristics of collective flow
between large and small colliding systems, we will consider
the PCN as a new approach to study different EbyE features of
collective behavior between small and large colliding systems.

III. TRAINING THE PCN FOR CLASSIFYING TWO
SYSTEMS

In this section, we introduce the detailed analysis proce-
dures, including the PCN architecture, input, output, training,
and evaluation of the PCN.

A. Network architecture

The architecture of the PCN is shown in Fig. 1. It begins
with an input alignment network, which initiates the process
of aligning the particle clouds in input space, and also enables
the model to capture correlations irrespective of orientation
in input space. The following is a shared pointwise multi-
layer perceptron (MLP)1 implemented by a 1D-convolution
neural network (CNN)2 to extract 32 feature maps,3 a feature
alignment network, a shared MLP to extract 32, 64, and 512
feature maps, respectively. A global max pooling4 then gets
the maximum values of each feature among all particles as
one global feature of the particle cloud. Finally, a shared
MLP implemented by three layers fully connected deep neu-
ral network (DNN)5 with 256, 128, and two neurons tags
each event as p + Pb or Pb + Pb collision. Batch normal-
ization6 layers are present between every convolution layer.

1An MLP is a type of feed-forward neural network composed of
multiple layers of nodes in a directed graph. Here in our model the
pointwise MLP refers to an MLP that processes each point from the
input independently.

21D CNNs are a type of neural network that use 1D convolution
operations to process and transform their input data.

3A feature map, in the context of convolutional neural network
in particular, is the output of one convolutional kernel (i.e., filter)
applied to the previous layer, which can capture specific patterns
or features from the input data, highlighting areas that match the
convolutional kernel’s pattern.

4A global max-pooling operation is retrieving the maximum values
of each feature across all particles, summarizing them as a singular
global feature representative of the entire particle cloud.

5A fully connected DNN is a neural network architecture where
each node (i.e., neuron) in a layer is connected to every node in the
subsequent layer, facilitating complex pattern recognition through
multiple layers of computation.

6Batch normalization is a technique in deep learning that nor-
malizes the inputs of each layer, to improve training stability and
performance by reducing internal covariate shift, for more detail see
Ref. [92].
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The LeakyReLU(α = 0.01) activation function7 is used for all
layers except the final layer. The sigmoid activation [σ (x) =
1/(1 + e−x )] is used on the final layer for binary classification.
The models use the ADAM optimizer [93] with a learning rate
of 10−4 with total decay 10−4 and categorical cross entropy as
the loss function. In addition, a dropout [94] layers (with drop
out probability 0.3) and L2 regularization [95] are present to
tackle the overfitting issue. We use a maximum of 50 epochs
with 32 batch size to train the data set. The architecture of
the PCN we use is similar to the original architecture as
described in Ref. [1] but less complex. The choice of specific
hyperparameters, including the number of nodes and layers,
was driven by a combination of empirical experimentation and
previous successful implementations in analyzing heavy-ion
collision data. Our primary goal is to investigate the identifia-
bility with machine learning perspective of the collective flow
characteristics in p + Pb and Pb + Pb collisions. Point clouds
of particles are processed with transformations order invariant
operations to extract global features. While a fully connected
deep neural network (DNN) tags each event as p + Pb or
Pb + Pb collision.

B. Input and output of the machine learning

Following the CMS method as described in Ref. [96],
the AMPT events for both p + Pb and Pb + Pb collisions
are grouped into the data sets according to the number of
final charged particles Nch measured in the kinetic window
of |η| < 2.4 and pT > 0.4 GeV/c. These data are divided
into various centrality classes for the colliding systems, which
are the Nch bins of 90–120, 120–150, 150–185, 185–230, to
compare different systems at similar volumes. Each data set
has about 0.3 × 106 events, which are divided into training
events, validation events, and test events by the ratio of 5:2:3.
The value and error bar of test accuracy are the mean value
and the standard deviation of the test data set divided into 100
pieces, respectively. All the information about the final state
particles within |η| < 2.4 in each event is the input to the PCN
as a sample, which consists of a list of particles with their
information on (px, py, pz, E ) or (px, py). Simultaneously, the
two true labels, p + Pb and Pb + Pb, are marked on each event
to perform the supervised training.

IV. TRAINING RESULTS AND DISCUSSION

In our study, two cases of input data have been investigated.
In the case 1, the input for training is an EbyE list of four-
momentum (px, py, pz, E ) of the selected final-state hadrons
from the AMPT model. The input data have a dimension of
N × 4, where N is the maximum number of selected particles
in an event. Events with fewer particles are filled with zeros to
maintain the same input dimension. The case 2 is the same as
the case 1, but the input is a list of two-momentum (px, py) of
selected final-state hadrons.

7The LeakyReLU activation function is defined as f (x) = x if
x > 0 and f (x) = αx otherwise, where α is a small, positive param-
eter.

FIG. 2. Test accuracy as a function of the number of charged
particles Nch by training with four-momentum (px, py, pz, E ) of fi-
nal particles in pseudorapidity ranges −2.4 < η < 2.4 (solid curve),
0 < η < 2.4 (dashed curve), and −2.4 < η < 0 (long-dashed curve).

A. Case 1: Training with four-momentum of final hadrons

Figure 2 shows test accuracy as a function of the number of
charged particles Nch by learning four-momentum (px, py, pz,
E ) of final particles in three different pseudorapidity ranges.
All the test accuracies are higher than 99%, which indicates
that the two colliding systems are sufficiently distinguished by
training the input of four-momentum (px, py, pz, E ) of final
particles.

Final particles in three pseudorapidity ranges (−2.4 < η <

2.4, −2.4 < η < 0, and 0 < η < 2.4) were used to train, due
to the different pseudorapidity distributions between Pb + Pb
collisions and p + Pb collisions, which is shown in Fig. 3.

FIG. 3. The pseudorapidity distributions of final hadrons for dif-
ferent Nch classes in Pb + Pb collisions (solid curve) and p + Pb
collisions (dashed curve).

024910-4



MACHINE LEARNING STUDY TO IDENTIFY COLLECTIVE … PHYSICAL REVIEW C 110, 024910 (2024)

The lower hadron yield in the p-going (forward) direction
for p + Pb collisions was expected to induce the sensitivity
to the test accuracy of the pseudorapidity range. However, in
any given circumstance, the accuracy is high enough with the
margin of error, which demonstrates the PCN is capable of
identifying two colliding systems on an event-by-event basis,
despite almost the same distribution between the two colliding
systems in backward pseudorapidity range.

B. Case 2: Training with two-momentum of final hadrons

To investigate whether the PCN can learn the difference
of collective flow between p + Pb collisions and periph-
eral Pb + Pb collisions, three scenarios of lists are used as
training inputs, i.e., two-momentum (px, py), normalized
two-momentum (pnorm

x , pnorm
y ), and normalized meanwhile

randomly rotated two-momentum (pnorm,rand
x , pnorm,rand

y ), re-
spectively. The normalized two-momentum pnorm

x and pnorm
y

are defined as,

pnorm
x = px

pT
,

pnorm
y = py

pT
, (5)

where pT is the transverse momentum of each particle. The
randomly rotated two-momentum prand

x and prand
y are,

prand
x = px × cos φrand − py × sin φrand,

prand
y = px × sin φrand − py × cos φrand, (6)

where φrand is a random angle between 0 and 2π . While, the
normalized and randomly rotated two-momentum pnorm,rand

x
and pnorm,rand

y are,

pnorm,rand
x = px × cos φrand − py × sin φrand

pT
,

pnorm,rand
y = px × sin φrand − py × cos φrand

pT
. (7)

Figure 4(a) shows test accuracy as a function of the number
of final charged particles Nch with input to be two-momentum
(px, py) and its random rotation (prand

x and prand
y ) of final

particles. Test accuracy of two-momentum input is over 60%,
and it will drop less than 2%, if two-momentum are ran-
domly rotated. It indicates that besides anisotropic flow there
is other discrepancy between the two colliding systems, like
in pT distributions. To eliminate the effect from different
pT distribution of hadron, we train the PCN with normal-
ized two-momentum (pnorm

x , pnorm
y ) and its random rotation

(pnorm,rand
x and pnorm,rand

y ) of final particles. The test accuracy as
a function of the number of final charged particles is shown in
Fig. 4(b). Compared to the normal two-momentum training,
there is a more than 10% decrease in test accuracy after
normalization. This indicates that pT distribution of hadrons is
the main feature that distinguishes the two colliding systems,
if we train the PCN by two-momentum. Furthermore, the
PCN can not distinguish the two colliding systems by learning
normalized two-momentum with random rotations of final
hadrons, because these operations eliminate the information

FIG. 4. Test accuracy as a function of the number of charged
particles Nch by learning with input to be (a) two-momentum (px,
py) and (b) the normalized two-momentum (pnorm

x , pnorm
y ), without

(solid curve) or with (dashed curve) random rotations.

about the magnitude of pT and anisotropic flow. Compared to
the training by the normalized two-momentum with random
rotations, the test accuracy is improved by a few percent-
ages by learning two-momentum with the normalization only.
This discrepancy comes from the difference in anisotropic
flow between two colliding systems. However, because the
anisotropic flows between two colliding systems are very sim-
ilar, the PCN can not distinguish the two different colliding
systems very well, even though it is better than the case with
random rotations.

Figure 5 shows the test accuracy as a function of the num-
ber of final charged particles Nch by learning two-momentum

FIG. 5. Test accuracy as a function of the number of charged
particles Nch by learning two-momentum (px, py) of final hadrons
in the AMPT model with different parton cross sections.
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FIG. 6. Average transverse momenta 〈pT〉 in Pb + Pb collisions
(solid curve) and p + Pb collisions (dashed curve) as a function of
the number of charged particles Nch with parton cross section of (a) 0
mb, (b) 3 mb, and (c) 10 mb.

(px, py) of final particles with different parton cross sections.
It can be seen that all test accuracies increase with the increase
of Nch and parton cross section. In addition, the PCN can not
distinguish the two colliding systems with 0 mb parton cross
section at low Nch. These results can basically be explained
by Fig. 6, since the average transverse momentum 〈pT〉 can
quantify the feature of pT spectra shape.

Figure 6 shows average transverse momenta 〈pT〉 as a
function of the number of final charged particles Nch with
different parton cross sections. We can see that the 〈pT〉 in
p+ Pb collisions is larger than that in Pb + Pb collisions,
and the difference is more significant with a larger parton
cross section and higher multiplicity. Although we observe
that the difference of 〈pT〉 is almost zero for 0 mb parton
cross section, some test accuracies are larger than 0.5 for 0 mb
in Fig. 5. It indicates that there is a difference in nonflow
effect between small and large colliding systems. It could
be attributed to jets, because the impact of the jet transverse
momentum broadening and multiple scatterings [97] has been
found to be stronger in p + Pb collisions than in peripheral
Pb + Pb collisions [77].

Figure 7 shows test accuracy as a function of the num-
ber of final charged particles Nch by learning normalized
two-momentum (pnorm

x , pnorm
y ) of final particles with different

parton cross sections. It can be seen that the test accuracy with
0 mb is close to the corresponding result in Fig. 5, and both of
them increase with Nch, which indicates that the discrepancy
of nonflow effect between the two systems is larger for higher
multiplicity. However, the discrepancy between 0 mb and
nonzero parton cross sections must come from anisotropic
flow. The discrepancy increases with parton cross section,
indicating a more significant discrepancy of anisotropic flow
between two colliding systems due to more parton scatterings.
If an event is identified as p + Pb or Pb + Pb, it is marked
by the output of ŷ = 0 or 1, respectively, in our analysis.
Thus, the averaged output 〈̂y〉 of our model can represent the
probability of Pb + Pb of an event. In other words, The closer
the 〈̂y〉 is to 0, the more likely the events are p + Pb collisions,
and vice versa for Pb + Pb collisions. Figure 8 shows the
averaged output 〈̂y〉 of the ensembles of each system identified

FIG. 7. Test accuracy as a function of the number of charged
particles Nch by learning normalized two-momentum (pnorm

x , pnorm
y )

of final hadrons in the AMPT model with different parton cross
sections.

FIG. 8. Averaged output 〈̂y〉 of the ensembles of two systems
identified by the model trained by normalized two-momentum (pnorm

x ,
pnorm

y ) of final hadrons in the AMPT model with different parton cross
sections.

FIG. 9. Integrated elliptic v2 and triangular v3 flow coefficient in
Pb + Pb collisions (solid curve) and p+ Pb collisions (dashed curve)
as a function of the number of charged particles Nch with parton cross
section of (a) 0 mb, (b) 3 mb, and (c) 10 mb.
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FIG. 10. The EbyE 2D distributions of v2 vs v3 [P(v2, v3)] of Pb + Pb (red) and p + Pb (blue) collisions in the AMPT model with the
parton cross section of 3 mb (first row) and 10 mb (second row) for the Nch bin of 90 < Nch < 120 (first column), 120 < Nch < 150 (second
column), 150 < Nch < 185 (third column), and 185 < Nch < 230 (fourth column).

by the model trained by normalized two-momentum (pnorm
x ,

pnorm
y ) of final hadrons in the AMPT model with different

parton cross sections. It can be seen that 〈̂y〉 of the ensembles
of Pb + Pb events is larger than that for p + Pb events in every
situation, which indicates that the PCN is able to distinguish
two different ensembles of systems, according to the differ-
ence of averaged anisotropic flow between two systems.

To investigate the relationship between anisotropic flow
and parton cross section, we further calculate the harmonic
flow coefficients, e.g., elliptic flow v2, by fitting the long-
range part of the two-particle azimuthal correlation function
C(	φ), which defined as

C(	φ) = Ysame(	φ)

Ymixed(	φ)
×

∫
Ymixed(	φ)d	φ∫
Ysame(	φ)d	φ

, (8)

where Ysame(	φ = φ2 − φ1) and Ymixed(	φ) are the number
of particle pairs at a given 	φ and within a given pT range for
the same and mixed events. This definition of C(	φ) removes
a trivial dependence on the number of produced particles
[46,65,98].

Figure 9 shows v2 and v3 as a function of the number of
final charged particles Nch with different parton cross sections.
It can be observed that v2 and v3 increases with parton cross
section for Pb + Pb collisions. But the dependence on parton
cross section is nonmonotonous for p + Pb collisions, which
has already been found in Ref. [99]. The most significant
difference of v2 between the two systems appears when parton
cross section is taken as 10 mb for high-multiplicity events,
because there are the largest v2 in Pb + Pb collisions and rel-
atively small v2 in p + Pb collisions. On the other hand, v3 of
the two systems are similar for the two parton cross sections of
0 mb and 10 mb. However, there is a more obvious difference

of v3 between the two systems with parton cross section of
3 mb, because there are the largest v3 in p + Pb collisions
and relatively small v3 in Pb + Pb collisions. Surprisingly,
the discrepancy of v2 and v3 between two ensembles of each
system can be captured by the PCN, even the similar Nch and
parton cross-section dependences are obtained in Figs. 7 and
8, although the test accuracies are not high enough for the
PCN to distinguish two systems due to similar EbyE flow
distributions which will be shown next. Figure 10 shows
the EbyE 2D distributions of v2 vs v3 [P(v2, v3)] in Pb + Pb
collisions and p + Pb collisions with parton cross sections of
3 and 10 mb for different Nch classes.8 Based on P(v2, v3), the
percentage of the overlapping volume of P(v2, v3) between
Pb + Pb collisions and p + Pb collisions as a function of the
number of final charged particles Nch can be calculated, which
is shown in Fig. 11. Note that the result for 0 mb parton cross
section is not shown, since vn come from nonflow for this
case. We can see that the overlapping percentage decreases
with parton cross section, which indicates that v2 and v3

between two systems are more different with a larger parton
cross section. This is also consistent with the result of test
accuracy in Fig. 7. It suggests that a more pronounced dif-
ference in collective flow between the two colliding systems
is produced by more parton collisions. On the other hand,
the large overlapping volume percentage (over 80%) indicates

8In principle, the EbyE distribution of vn, P(vn), should be obtained
by an unfolding method to suppress the nonflow contribution. To our
knowledge, the response matrix in the unfolding method cannot be
reliably obtained for small colliding systems. Therefore, for consis-
tency, we did not use the unfolding method for both large and small
colliding systems.
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FIG. 11. The percentage of the 2D overlapping volume between
the distribution P(v2, v3) for Pb + Pb collisions and that for p + Pb
collisions as a function of the number of final charged particles Nch in
the AMPT model with the parton cross section of 0 mb (solid curve),
3 mb (dashed curve), and 10 mb (dotted curve).

that the P(v2, v3) distributions between the two systems are so
similar that they are difficult to distinguish. This is also in line
with the observation that the PCN can not distinguish the two
colliding systems very well in EbyE manner, when we train
the PCN with input to be the normalized two-momentum of
final particles, as shown in Fig. 7.

V. SUMMARY AND OUTLOOK

In summary, we employ the point-cloud network to iden-
tify the events of p + Pb and peripheral Pb + Pb collisions
from a multiphase transport model. We reduce the input in-
formation for the PCN and observe the resulting changes in
accuracy to verify the specific physical features learned by
the PCN. Many different features between the two systems
are learned and captured by the PCN, such as pseudo-
rapidity distribution, pT spectra, and anisotropic flow. In
four-dimensional momentum space, the point-cloud network
can well identify the two different colliding systems. In the
transverse momentum plane, the point-cloud network can
learn the different features of pT spectra that can classify two
different colliding systems. After normalizing the transverse
momentum of final hadrons, the point-cloud network finally
distinguishes two different colliding systems according to the
feature of collective flow. In this big data and ML approach,
by changing the different input types, we confirm that the
discrepancy between the two systems is more reflected in

the pseudorapidity distribution and the pT spectra than in the
anisotropic flow.

Despite these successes, the PCN faces challenges in dis-
tinguishing the two systems solely based on event-by-event
(EbyE) collective flow, as the EbyE distributions of collective
flow parameters P(v2, v3) are quite similar between p + Pb
and Pb + Pb collisions. However, the PCN could differentiate
between ensembles of each system through features related to
v2 and v3, and it also revealed the dependence of these discrep-
ancies on Nch and parton cross section. Notably, our findings
indicate that the differences in collective flow between p + Pb
and Pb + Pb collisions become more pronounced with larger
parton scattering cross sections, consistent with the escape
mechanism characteristics for collective flow in the transport
model [68,69].

While our PCN has shown some ability to distinguish
between p + Pb and peripheral Pb + Pb collisions using
event-by-event (EbyE) collective flow analysis, its current
effectiveness is somewhat limited. Nevertheless, the applica-
tion of machine learning has yielded some promising results.
This study should be considered a preliminary analysis that
lays the foundation for future work involving diverse mod-
els and methodologies. However, we emphasize that further
research is essential to achieving our ultimate goal, i.e., uti-
lizing machine learning to assist experiments in determining
whether small systems also produce the QGP and investigat-
ing whether these systems exhibit different characteristics of
collective flow compared to large systems. On the other hand,
we hope that our PCN study can be applied to classify the
origin of atmospheric particle showers, which could improve
our understanding of the origins of cosmic rays. Additionally,
we also have some prospects for further development of PCN,
which holds potential as a valuable tool for various other
research interests. For instance, it could be used for search-
ing for the chiral magnetic effect [100,101] and exploring
the nuclear deformation structure [102,103] in high-energy
heavy-ion collisions.
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[7] K. Zhou, G. Endrődi, L.-G. Pang, and H. Stöcker, Phys. Rev.

D 100, 011501(R) (2019).
[8] L. K. Graczykowski et al. (ALICE Collaboration), J. Inst. 17,

C07016 (2022).
[9] M. Zhou, Y. Luo, and H. Song, Sci. China Phys. Mech. Astron.

52, 252002 (2022).
[10] L. Wang, L. Pang, and K. Zhou, Sci. China Phys. Mech.

Astron. 52, 252003 (2022).
[11] W. He, J. He, R. Wang, and Y. Ma, Sci. China Phys. Mech.

Astron. 52, 252004 (2022).
[12] Y.-L. Dy, D. Pablos, and K. Tywoniuk, Sci. China Phys. Mech.

Astron. 52, 252017 (2022).
[13] F. LI, L. Pang, and X. Wang, Nuclear Techniques 46, 040014

(2023).
[14] W. He, Q. Li, Y. Ma, Z. Niu, J. Pei, and Y. Zhang, Sci. China

Phys. Mech. Astron. 66, 282001 (2023).
[15] Y.-G. Ma, L.-G. Pang, R. Wang, and K. Zhou, Chin. Phys. Lett.

40, 122101 (2023).
[16] K. Zhou, L. Wang, L.-G. Pang, and S. Shi, Prog. Part. Nucl.

Phys. 135, 104084 (2024).
[17] A. Boehnlein et al., Rev. Mod. Phys. 94, 031003 (2022).
[18] J. Steinheimer, L. Pang, K. Zhou, V. Koch, J. Randrup, and

H. Stoecker, J. High Energy Phys. 12 (2019) 122.
[19] M. Omana Kuttan, J. Steinheimer, K. Zhou, A. Redelbach, and

H. Stoecker, Phys. Lett. B 811, 135872 (2020).
[20] M. Omana Kuttan, J. Steinheimer, K. Zhou, A. Redelbach, and

H. Stoecker, Particles 4, 47 (2021).
[21] M. Omana Kuttan, K. Zhou, J. Steinheimer, A. Redelbach, and

H. Stoecker, J. High Energy Phys. 10 (2021) 184.
[22] Y. Huang, L.-G. Pang, X. Luo, and X.-N. Wang, Phys. Lett. B

827, 137001 (2022).
[23] J. Adams et al. (STAR Collaboration), Nucl. Phys. A 757, 102

(2005).
[24] K. Adcox et al. (PHENIX Collaboration), Nucl. Phys. A 757,

184 (2005).
[25] K. Aamodt et al. (ALICE Collaboration), JINST 3, S08002

(2008).
[26] A. Bzdak, S. Esumi, V. Koch, J. Liao, M. Stephanov, and

N. Xu, Phys. Rep. 853, 1 (2020).
[27] X. Luo and N. Xu, Nucl. Sci. Tech. 28, 112 (2017).
[28] U. Heinz and R. Snellings, Annu. Rev. Nucl. Part. Sci. 63, 123

(2013).
[29] H. Song and U. W. Heinz, Phys. Rev. C 77, 064901 (2008).
[30] S. Jeon and U. Heinz, Int. J. Mod. Phys. E 24, 1530010 (2015).
[31] C. Shen and L. Yan, Nucl. Sci. Tech. 31, 122 (2020).
[32] C. Gale, S. Jeon, and B. Schenke, Int. J. Mod. Phys. A 28,

1340011 (2013).
[33] L. Yan, Chin. Phys. C 42, 042001 (2018).
[34] B. Alver and G. Roland, Phys. Rev. C 81, 054905 (2010); 82,

039903(E) (2010).
[35] G.-L. Ma and X.-N. Wang, Phys. Rev. Lett. 106, 162301

(2011).

[36] L. Yan, J.-Y. Ollitrault, and A. M. Poskanzer, Phys. Rev. C 90,
024903 (2014).

[37] G.-Y. Qin, H. Petersen, S. A. Bass, and B. Muller, Phys. Rev.
C 82, 064903 (2010).

[38] J.-Y. Ollitrault, Phys. Rev. D 46, 229 (1992).
[39] H. Stoecker, Nucl. Phys. A 750, 121 (2005).
[40] V. Khachatryan et al. (CMS Collaboration), J. High Energy

Phys. 09 (2010) 091.
[41] S. Chatrchyan et al. (CMS Collaboration), Phys. Lett. B 718,

795 (2013).
[42] B. Abelev et al. (ALICE Collaboration), Phys. Lett. B 719, 29

(2013).
[43] G. Aad et al. (ALICE Collaboration), Phys. Rev. Lett. 110,

182302 (2013).
[44] A. M. Sirunyan et al. (CMS Collaboration), Phys. Rev. C 98,

044902 (2018).
[45] S. Acharya et al. (ALICE Collaboration), Phys. Rev. Lett. 123,

142301 (2019).
[46] A. Adare et al. (PHENIX Collaboration), Phys. Rev. Lett. 114,

192301 (2015).
[47] L. Adamczyk et al. (STAR Collaboration), Phys. Lett. B 747,

265 (2015).
[48] C. Aidala et al. (PHENIX Collaboration), Nature Phys. 15, 214

(2019).
[49] U. A. Acharya et al. (PHENIX Collaboration), Phys. Rev. C

105, 024901 (2022).
[50] N. J. Abdulameer et al. (PHENIX Collaboration), Phys. Rev.

C 107, 024907 (2023).
[51] K. Dusling, W. Li, and B. Schenke, Int. J. Mod. Phys. E 25,

1630002 (2016).
[52] C. Loizides, Nucl. Phys. A 956, 200 (2016).
[53] J. L. Nagle and W. A. Zajc, Annu. Rev. Nucl. Part. Sci. 68, 211

(2018).
[54] P. Bozek, Phys. Rev. C 85, 014911 (2012).
[55] A. Bzdak, B. Schenke, P. Tribedy, and R. Venugopalan, Phys.

Rev. C 87, 064906 (2013).
[56] E. Shuryak and I. Zahed, Phys. Rev. C 88, 044915 (2013).
[57] G.-Y. Qin and B. Müller, Phys. Rev. C 89, 044902 (2014).
[58] P. Bozek and W. Broniowski, Phys. Rev. C 88, 014903 (2013).
[59] P. Bozek, A. Bzdak, and G.-L. Ma, Phys. Lett. B 748, 301

(2015).
[60] H. Song, Y. Zhou, and K. Gajdosova, Nucl. Sci. Tech. 28, 99

(2017).
[61] Z.-W. Lin, C. M. Ko, B.-A. Li, B. Zhang, and S. Pal, Phys.

Rev. C 72, 064901 (2005).
[62] J. H. Chen, Y. G. Ma, G. L. Ma, X. Z. Cai, Z. J. He, H. Z.

Huang, J. L. Long, W. Q. Shen, C. Zhong, and J. X. Zuo, Phys.
Rev. C 74, 064902 (2006).

[63] Z.-W. Lin, Phys. Rev. C 90, 014904 (2014).
[64] G.-L. Ma and Z.-W. Lin, Phys. Rev. C 93, 054911 (2016).
[65] A. Bzdak and G.-L. Ma, Phys. Rev. Lett. 113, 252301

(2014).
[66] J. D. Orjuela Koop, A. Adare, D. McGlinchey, and J. L. Nagle,

Phys. Rev. C 92, 054903 (2015).
[67] G.-L. Ma and A. Bzdak, Nucl. Phys. A 956, 745 (2016).
[68] L. He, T. Edmonds, Z.-W. Lin, F. Liu, D. Molnar, and F. Wang,

Phys. Lett. B 753, 506 (2016).
[69] Z.-W. Lin, L. He, T. Edmonds, F. Liu, D. Molnar, and F. Wang,

Nucl. Phys. A 956, 316 (2016).
[70] L. Ma, G.-L. Ma, and Y.-G. Ma, Phys. Rev. C 103, 014908

(2021).

024910-9

https://doi.org/10.1063/5.0033376
https://doi.org/10.1016/j.jcp.2022.111510
https://arxiv.org/abs/2210.09728
https://doi.org/10.1080/17452759.2020.1832695
https://doi.org/10.1038/s41467-017-02726-3
https://doi.org/10.1103/PhysRevD.100.011501
https://doi.org/10.1088/1748-0221/17/07/C07016
https://doi.org/10.1360/SSPMA-2021-0321
https://doi.org/10.1360/SSPMA-2021-0300
https://doi.org/10.1360/SSPMA-2021-0309
https://doi.org/10.1360/SSPMA-2022-0046
https://doi.org/10.11889/j.0253-3219.2023.hjs.46.040014
https://doi.org/10.1007/s11433-023-2116-0
https://doi.org/10.1088/0256-307X/40/12/122101
https://doi.org/10.1016/j.ppnp.2023.104084
https://doi.org/10.1103/RevModPhys.94.031003
https://doi.org/10.1007/JHEP12(2019)122
https://doi.org/10.1016/j.physletb.2020.135872
https://doi.org/10.3390/particles4010006
https://doi.org/10.1007/JHEP10(2021)184
https://doi.org/10.1016/j.physletb.2022.137001
https://doi.org/10.1016/j.nuclphysa.2005.03.085
https://doi.org/10.1016/j.nuclphysa.2005.03.086
https://doi.org/10.1088/1748-0221/3/08/S08002
https://doi.org/10.1016/j.physrep.2020.01.005
https://doi.org/10.1007/s41365-017-0257-0
https://doi.org/10.1146/annurev-nucl-102212-170540
https://doi.org/10.1103/PhysRevC.77.064901
https://doi.org/10.1142/S0218301315300106
https://doi.org/10.1007/s41365-020-00829-z
https://doi.org/10.1142/S0217751X13400113
https://doi.org/10.1088/1674-1137/42/4/042001
https://doi.org/10.1103/PhysRevC.81.054905
https://doi.org/10.1103/PhysRevC.82.039903
https://doi.org/10.1103/PhysRevLett.106.162301
https://doi.org/10.1103/PhysRevC.90.024903
https://doi.org/10.1103/PhysRevC.82.064903
https://doi.org/10.1103/PhysRevD.46.229
https://doi.org/10.1016/j.nuclphysa.2004.12.074
https://doi.org/10.1007/JHEP09(2010)091
https://doi.org/10.1016/j.physletb.2012.11.025
https://doi.org/10.1016/j.physletb.2013.01.012
https://doi.org/10.1103/PhysRevLett.110.182302
https://doi.org/10.1103/PhysRevC.98.044902
https://doi.org/10.1103/PhysRevLett.123.142301
https://doi.org/10.1103/PhysRevLett.114.192301
https://doi.org/10.1016/j.physletb.2015.05.075
https://doi.org/10.1038/s41567-018-0360-0
https://doi.org/10.1103/PhysRevC.105.024901
https://doi.org/10.1103/PhysRevC.107.024907
https://doi.org/10.1142/S0218301316300022
https://doi.org/10.1016/j.nuclphysa.2016.04.022
https://doi.org/10.1146/annurev-nucl-101916-123209
https://doi.org/10.1103/PhysRevC.85.014911
https://doi.org/10.1103/PhysRevC.87.064906
https://doi.org/10.1103/PhysRevC.88.044915
https://doi.org/10.1103/PhysRevC.89.044902
https://doi.org/10.1103/PhysRevC.88.014903
https://doi.org/10.1016/j.physletb.2015.06.007
https://doi.org/10.1007/s41365-017-0245-4
https://doi.org/10.1103/PhysRevC.72.064901
https://doi.org/10.1103/PhysRevC.74.064902
https://doi.org/10.1103/PhysRevC.90.014904
https://doi.org/10.1103/PhysRevC.93.054911
https://doi.org/10.1103/PhysRevLett.113.252301
https://doi.org/10.1103/PhysRevC.92.054903
https://doi.org/10.1016/j.nuclphysa.2016.01.057
https://doi.org/10.1016/j.physletb.2015.12.051
https://doi.org/10.1016/j.nuclphysa.2016.01.017
https://doi.org/10.1103/PhysRevC.103.014908


GUO, WANG, ZHOU, AND MA PHYSICAL REVIEW C 110, 024910 (2024)

[71] H.-S. Wang and G.-L. Ma, Phys. Rev. C 106, 064907
(2022).

[72] G. Aad et al. (ATLAS Collaboration), J. High Energy Phys. 11
(2013) 183.

[73] J. Adams et al. (STAR Collaboration), Phys. Rev. D 74,
032006 (2006).

[74] B. B. Abelev et al. (ALICE Collaboration), Phys. Lett. B 728,
25 (2014).

[75] J. Adam et al. (ALICE Collaboration), Phys. Rev. C 91,
064905 (2015).

[76] S. Acharya et al. (ALICE Collaboration), Eur. Phys. J. C 80,
693 (2020).

[77] B. I. Abelev et al. (STAR Collaboration), Phys. Rev. C 79,
034909 (2009).

[78] B. B. Abelev et al. (ALICE Collaboration), Phys. Lett. B 727,
371 (2013).

[79] K. Adcox et al. (PHENIX Collaboration), Phys. Rev. C 69,
024904 (2004).

[80] M. Erdmann, J. Glombitza, and D. Walz, Astropart. Phys. 97,
46 (2018).

[81] M. Erdmann, F. Schlüter, and R. Smida, J. Inst. 14, P04005
(2019).

[82] R. E. Lingenfelter, Astrophys. J. Suppl. Ser. 245, 30 (2019).
[83] H. Tokuno et al., Nucl. Instrum. Meth. Phys. Res. A 676, 54

(2012).
[84] J. Abraham et al. (Pierre Auger), Nucl. Instrum. Meth. Phys.

Res. A 523, 50 (2004).
[85] M. Gyulassy and X.-N. Wang, Comput. Phys. Commun. 83,

307 (1994).

[86] Z.-W. Lin and C. M. Ko, Phys. Rev. C 65, 034904 (2002).
[87] B. Zhang, Comput. Phys. Commun. 109, 193 (1998).
[88] Y. He and Z.-W. Lin, Phys. Rev. C 96, 014910 (2017).
[89] Z.-W. Lin and L. Zheng, Nucl. Sci. Tech. 32, 113 (2021).
[90] B.-A. Li and C. M. Ko, Phys. Rev. C 52, 2037 (1995).
[91] S. Voloshin and Y. Zhang, Z. Phys. C 70, 665 (1996).
[92] S. Ioffe and C. Szegedy, ACM 37, 448 (2015).
[93] D. P. Kingma and J. L. Ba, ADAM a method for stochastic op-

timization, in Proceedings of the 3rd International Conference
on Learning Representations (ICLR 2015) (2015), pp. 1–15.

[94] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, J. Mach. Learn. Res. 15, 1929 (2014).

[95] A. Y. Ng, in Proceedings of the Twenty-First International
Conference on Machine Learning (Association for Computing
Machinery, New York, 2004), p. 78.

[96] S. Chatrchyan et al. (CMS Collaboration), Phys. Lett. B 724,
213 (2013).

[97] A. Leonidov, M. Nardi, and H. Satz, Z. Phys. C 74, 535 (1997).
[98] S. S. Adler et al. (PHENIX Collaboration), Phys. Rev. Lett.

97, 052301 (2006).
[99] X.-L. Zhao, Z.-W. Lin, L. Zheng, and G.-L. Ma, Phys. Lett. B

839, 137799 (2023).
[100] K. Fukushima, D. E. Kharzeev, and H. J. Warringa, Phys. Rev.

D 78, 074033 (2008).
[101] Y.-S. Zhao, L. Wang, K. Zhou, and X.-G. Huang, Phys. Rev. C

106, L051901 (2022).
[102] J. Jia, G. Giacalone, and C. Zhang, Phys. Rev. Lett. 131,

022301 (2023).
[103] X.-L. Zhao and G.-L. Ma, Phys. Rev. C 106, 034909 (2022).

024910-10

https://doi.org/10.1103/PhysRevC.106.064907
https://doi.org/10.1007/JHEP11(2013)183
https://doi.org/10.1103/PhysRevD.74.032006
https://doi.org/10.1016/j.physletb.2013.11.020
https://doi.org/10.1103/PhysRevC.91.064905
https://doi.org/10.1140/epjc/s10052-020-8125-1
https://doi.org/10.1103/PhysRevC.79.034909
https://doi.org/10.1016/j.physletb.2013.10.054
https://doi.org/10.1103/PhysRevC.69.024904
https://doi.org/10.1016/j.astropartphys.2017.10.006
https://doi.org/10.1088/1748-0221/14/04/P04005
https://doi.org/10.3847/1538-4365/ab4b58
https://doi.org/10.1016/j.nima.2012.02.044
https://doi.org/10.1016/j.nima.2003.12.012
https://doi.org/10.1016/0010-4655(94)90057-4
https://doi.org/10.1103/PhysRevC.65.034904
https://doi.org/10.1016/S0010-4655(98)00010-1
https://doi.org/10.1103/PhysRevC.96.014910
https://doi.org/10.1007/s41365-021-00944-5
https://doi.org/10.1103/PhysRevC.52.2037
https://doi.org/10.1007/s002880050141
https://dl.acm.org/doi/10.5555/3045118.3045167
http://jmlr.org/papers/v15/srivastava14a.html
https://doi.org/10.1016/j.physletb.2013.06.028
https://doi.org/10.1007/s002880050416
https://doi.org/10.1103/PhysRevLett.97.052301
https://doi.org/10.1016/j.physletb.2023.137799
https://doi.org/10.1103/PhysRevD.78.074033
https://doi.org/10.1103/PhysRevC.106.L051901
https://doi.org/10.1103/PhysRevLett.131.022301
https://doi.org/10.1103/PhysRevC.106.034909

