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Evolution equation for the energy-momentum moments of the nonequilibrium
density function and regularized relativistic third-order hydrodynamics
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In this work, we first derive the evolution equation for the general energy-momentum moment of § f, where
8f is the deviation from the local equilibrium phase-space density. We then introduce a relativistic extension
of regularized hydrodynamics developed in the nonrelativistic case by Struchtrup and Torrilhon that judiciously
mixes the method of moments and Chapman-Enskog expansion. Hydrodynamic equations up to the third-order
in gradients are then systematically derived within the context of a single species system and the relaxation-time
approximation. This is followed by a series of linear stability and causality analysis. For the massless particles
without any charge conservation, the third-order hydrodynamics is shown to be linearly stable and causal.
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I. INTRODUCTION

The investigation of the hot and dense matter gener-
ated during ultrarelativistic heavy-ion collisions, commonly
referred to as quark-gluon plasma (QGP), constitutes a promi-
nent area of study within modern high-energy nuclear physics.
One of the most challenging aspects of this study is the diffi-
culty to obtain an analytic or numerical solution to a micro-
scopic many-body QCD problem using first-principles calcu-
lations. What is accessible is the coarse-grained collective mo-
tion of the fluid-like system once approximate local thermal
equilibrium is achieved [1]. Accordingly, relativistic viscous
hydrodynamics is an indispensable theoretical tool for model-
ing the evolution of QGP in relativistic heavy-ion collisions.

The most intuitive and straightforward way of obtaining
a relativistic viscous hydrodynamics theory is to extend the
nonrelativistic Navier-Stokes theory to a relativistic one [2,3].
These theories are also commonly referred to as the “first-
order theories,” which only include terms up to first order in
gradients. However, the Navier-Stokes theory is unstable and
acausal when slightly perturbed around thermal equilibrium in
linear regime [4-7], and it has been shown that this instability
is in fact caused by the acausality of the theory [7-9]. For this
reason, the original Navier-Stokes theory has been regarded as
not suitable for relativistic hydrodynamics. However, recent
work (usually referred to as the BDNK theory) [10-16] has
shown that with some modification of the energy-momentum
tensor, the first-order theory can be indeed made causal and
stable. (See also Refs. [17,18] for relationship between BDNK
and the second-order theories.)

The most well-known linearly stable and causal relativistic
viscous hydrodynamics theory is the Miiller-Isratel-Stewart
(MIS) theory [19-22] that used the method of moments gen-
eralizing Grad’s work on nonrelativistic hydrodynamics [23].
Unlike the first-order theories, the MIS theory contains terms
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that are up to second-order in gradients, thus it is also com-
monly referred to as the second-order theory. However, it has
been shown that even the MIS theory is not always linearly
stable and causal. Their transport coefficients must satisfy
a set of constraints to be so [7-9,24,25]. Furthermore, the
second-order theory is in fact, not unique. The original MIS
paper derived the second-order theory by considering entropy
production. More recent approaches start with the Boltzmann
equation and derive hydrodynamic equations either using the
Chapman-Enskog expansion [26-28], or the method of mo-
ments [29-31]. These approaches all give slightly different
results depending on the truncation scheme. One goal of this
work is to provide a framework where truncation scheme is
dictated by the theory itself.

There have also been several recent works that derived
the third-order hydrodynamics. One of the main motivation
to obtain the third-order hydrodynamics is the fact that the
third-order terms may significantly improve the agreement
with the kinetic theory results when the value of the spe-
cific shear viscosity n/s is large [27,32,33]. In Refs. [32,34]
positive entropy production rate argument was used to de-
rive third-order hydrodynamic equations. A Chapman-Enskog
approach to the third-order hydrodynamics was advocated in
Refs. [33,35,36]. Naively, these approaches result in parabolic
equations that may violate linear stability and causality as
shown in Ref. [37] but causality may be restored by promot-
ing gradients of viscous tensor to an independent variable
[38] following the prescription from Ref. [39]. In contrast,
the methods of moments was used to derive the third-order
equations in Refs. [37,39] which were shown to be linearly
stable and causal. In this work, we explore a method that
combines a certain features of the method of moments and the
Chapman-Enskog expansion. This will allow us to systemat-
ically derive relativistic viscous hydrodynamic equations up
to the third order starting from the evolution equations of the
energy-momentum moments.

This is accomplished by generalizing the nonrelativistic
13-moment regularized hydrodynamics (R13) developed by
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Struchtrup and Torrilhon [40-43], to the relativistic regu-
larized hydrodynamics. In short, the regularization method
combines both the method of moments and Chapman-Enskog
expansion by applying a Chapman-Enskog-like expansion to
the energy-momentum moments instead of the phase-space
density function. Using this method, we derive the third-order
hydrodynamic equations followed by a linear stability and
causality analysis for the massless case with a similar pro-
cedure outlined in Ref. [37].

This paper is organized as follows: in Sec. II we introduce
the conservation laws to mainly set the notations. In Sec. III,
we present the derivation of the evolution equations for gen-
eral energy-momentum moments of the phase-space density.
The regularization method is also introduced in this section.
In Sec. IV, we obtain the Chapman-Enskog-like expansion of
the energy-momentum moments up to the fourth momentum
rank to prepare for the derivation of the third-order hydrody-
namics. In Sec. V we first briefly discuss the second-order
equations obtained using regularization. Then, we proceed
to the derivation of the third-order theory before discussing
the special case of massless particles (m = 0) in Sec. VL
Section VII contains our linear analysis of the third-order
hydrodynamics with m = 0. We demonstrate the linear sta-
bility and causality of the theory. Finally, we conclude this
work in Sec. VIII. Appendixes A-E contains mathematical
and computational details on the projectors, irreducible mo-
mentum polynomials, some derivative identities, details of the
derivation of the general moment equation, and the integrals
with the equilibrium density function.

Throughout this paper, we consider only one parti-
cle species. We use the natural units ¢ =h =kg =1,
and adopt the mostly positive Minkowski metric g,, =
diag(—1, 1, 1, 1). To convert tensorial quantities to the mostly
negative metric, each subscripted (covariant) index is to be
multiplied by —1 except the derivatives which work in the
opposite way. In particular, for the Navier-Stokes tensor o,
(which involves derivatives of the flow velocity), this means
that 0,,, = —0y, 0"’ — —c*”, but o/‘: remains unchanged.
The expansion rate defined as 6 = d,u* (where u* is the
local fluid velocity) and the local time derivative defined as
D = u*9,, also remain the same.

II. CONSERVATION LAWS

The evolution equations of a hydrodynamics theory can
be categorized into two parts: the conservation laws and the
moment equations. The conservation laws are the continuity
equations related to the energy-momentum conservation, and
any other charge conservations. In this work, we only consider
a single species system that does not possess any additional
conserved charges (for instance, a real scalar A¢* theory) for
the sake of simplicity. Hence, only the energy-momentum
conservation is relevant:

8, T =0, (1)
where the energy-momentum tensor is further decomposed as

T = gultu’ + (P + DAY + i, 2)

The fluid 4-velocity u* is defined by
T"u, = —su*, 3)

where ¢ is the local energy density and the fluid 4-velocity
ut is normalized to u,u" = —1. The thermal pressure at local
equilibrium is subject to the equation of state, P = P(e), and
[T is the bulk pressure. The local 3-metric, A*Y = g"” + utu",
is the projector that extracts the components of any 4-vector
that is transverse to u*. The transverse, symmetric, and trace-
less rank-2 tensor " is the shear-stress tensor.

It is convenient to decompose Eq. (1) into the timelike and
the spacelike components with respect to the fluid 4-velocity
ut. Applying u, to 0, T#" = 0 yields the timelike component

De+ (e + P+ +71*Po,5 =0. “4)
Applying A% to 8, T*" = 0 yields the spacelike components
(e +P+T)Du* + V(P +TI) + A%, 7" =0, (5)

where we defined the relativistic substantial derivative (local
time derivative) D = u*9,,, the local spatial derivative V# =
ARY9,, the expansion rate 6 = d,u" =V, u", the Navier-
Stokes tensor o’ = V4" and the fluid acceleration Du* =
a*. The angular bracket around a set of indices represents
the transverse (with respect to u*), symmetric, and traceless
combination of the indices. In practice, this can be obtained
by applying the projector:

Al — AP AV (6)

Vy--Vp

where A*1*# is an arbitrary rank-n tensor. Some useful facts
about the projectors such as the explicit form for n = 2, 3, and
recursive relationships can be found in Appendix A.

Equations (4) and (5) enforce the energy conservation and
momentum conservation, respectively. Together, they consti-
tute the evolution equations for ¢ and u*. However, at this
point, the evolution equations for IT and 7#¥ are not yet
developed. In the following sections, we do so in the context
of a single-species kinetic theory.

III. GENERAL METHODS

A. Energy-momentum moments

To obtain the evolution equations for the bulk pressure IT
and the shear tensor 7#¥, one can start with the kinetic theory
equation

prouf =CIf], @)

where f(x, p) is the phase-space density, and C[f] is the
collision integral. As stated, we consider a system with a
single-particle species. This is also consistent with having no
other conserved quantities. The energy-momentum tensor is
defined as

d*p
™ = / PP ®)
3 9
Qn)E,
with E, = p” = (p? + m?)"/2. This tensor satisfies the conti-

nuity equations d,,7#" = 0 as long as the collisions conserve
energy and momentum.
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By further decomposing the phase-space density as the
local equilibrium part and the correction

fCx, p) = folx, p) +8f(x, p), )

where fy(x, p) is the local equilibrium density, we can further
define the ideal fluid part of the energy-momentum tensor

w_ [P v
—/mppfo_euu + PA"Y, (10)
and the dissipative part
8T = / i pipisf =nA" + 7 (11
(2n)’E,
The local energy density ¢ and the flow velocity u/* are defined
by the Landau matching condition

T"u, = T/ u, = —eu". (12)

As one can see, various components of 7" are obtained as
the energy-momentum moments of fy and & f. Accordingly,
their evolution equations can be obtained from the kinetic
theory equation Eq. (7). To obtain the evolution equations for
IT and 7#¥, it is convenient to define the energy-weighted
rank-n tensor moment of § f as

Mo hn 5 /Ln>’ 13

oy /(2)3Ef,pp p 13)
where £, = —u,, p* is the energy of a particle in the rest frame
of a fluid cell, and p¥#1 p> ... pir) = Al Pt v .o pn s
the symmetric and traceless combination of p*) = AXpk,

Here, the integer n is the rank of the tensor, and 5[’) is the
energy weight in which the integer exponent r indicates the
energy order. In the fluid-cell rest frame, the local equilib-
rium density function f; takes the form of fy = ﬁ in
which 8 = 1/T is the inverse temperature, and ¢ could be
1 (Bose-Einstein statistics), 0 (Boltzmann statistics), or —1
(Fermi-Dirac statistics).

Using the decomposition p* = E,u* 4+ p'*), the Landau
matching condition, Eq. (12), becomes the following two con-
ditions on the moments

In terms of the energy-momentum moments, the bulk pressure
is given by

m2

IM=——po, 15
3 P (15)

and the shear tensor is given by
Tt = pi". (16)

B. Derivation of the general moment equation

The evolution equation for p/'"*#» can be obtained by
applying the local time derivative D = u*9, to p!'"#» and
then using the kinetic equation Eq. (7) with f = fo +4f. In
this section, we outline the derivation of the evolution equa-
tion for the general energy-momentum moment p/'*#». Full
derivation can be found in Appendix D.

Applying the local time derivative to p/'"#* in Eq. (13),
and then projecting onto the transverse space, we get

AR MnDpvl'"Un

Vi Vy
n Vl)
AL f(2 5 DA P!
d*p
_n/ (271)3Ep5fg;+1p(#1p . ~a“" rAfjv]l #»xaa

Ep_ert o
< [ GbarE )
P

where we defined the fluid acceleration a* = Du*, and used
the fact that u,Du* = 0 so that DE, = —a, p° = —a, p'°
and also

AMT unDp(vl--pvn)

ViV

— _ngpp<ﬂl"'p/‘«n—la/‘vn>’ (18)
which is derived in Appendix C. Using the identity

) P 4 2n’; : (&2 —m?)

. pllvn—l N (19)

p pwl ,,,pxm =p(/\pm .

% p(/tlpll-z ..

proven in Appendix B, we can expand the last term on the
right-hand side to get

AM] DpVI “Vn
AR DS V )
sty [ s p

p T
- n/ W5f5p+lp("‘p“2 )

/ (2m )3E

r—1 2
_2n+1 /(2 )E, 81€,7 () —m’)

X pulpuz_._AMn . (20)

p pmpm .. ,pw

For DS f, we can use the following form of the Boltzmann
equation

Proufo+ EDSf + PV, f = CLf], (1)

where C[f] is the collision term of the relativistic Boltzmann
equation, and we used

Po, =E,D+ pv,. (22)

024907-3



DASEN YE, SANGYONG JEON, AND CHARLES GALE

PHYSICAL REVIEW C 110, 024907 (2024)

This gives
vy, d3
Al\fll ‘i/;nDprl n — _n/ 3
(2n)’E)
n d*p
—r
2n+1) @2n)’E,

AR Ha P Er- Lod (viva o )
ALl ”n/(z )3E(,\f0) ppp p

d
ngr-Hp Mlplb Lat — Fay / _p

8f€;_l (ng _ mz)pw'p‘” .

3

ng;—lpwpmpuz . _p;m

(27 )’E,

3
altn 4 AR d 14 C[f]gr—lp(vlpvz . ,pvn>
VieeVy (27‘[)3E P

AR Ha V, 8§ F)E 1 ) plvr 2 L o)
vlv,l/(2)3E(kf) pptp P
(23)

The first three lines of Eq. (23) can be expressed in terms of the energy-momentum moments. The term with the collision
integral is in general a nonlinear functional of § f that will not admit a simple expression. In the rest of this work, we use the
relaxation-time approximation so that this term can be expressed in terms of the energy-momentum moments. The line involving
the equilibrium density fy will not result in the energy-momentum moments. Instead, it gives the constitutive relationships. The
rest of the derivation is then to deal with the last line. Details of transferring V, from §f to the other factors can be found in

Appendix D. The final result is

AR D oV — d3p C[ F1ET 1 pli pita Mn) d3p 9 Er=1phplin pa o)
v, DA = | S S E 1€, p*p™ - p m(,\fo)p pPptipTp
p P

2n+r+1

— _n( Zn +r1 )pﬁill o1 gy tn) +rm T lpr(lill Hnt gltn) _ oo pkm M A/:l] " V}\prkﬁnlwvn
n . n+r+2

_ P 1V Mlp;ﬁl “Hon) +m T lv(m ﬁl Hn) 3 Qp;umun —(r— 1)0,\(1,0‘”“1 M

r— Dm? n(2n+2r+1
+ ( 3 ) 0 ;412 M ( 3 ) z“(ﬂl“‘lin—lo-)fiﬁ . np;“(llvl‘“lin—la)f”)

Cn+r)y(n—1)n

T n—D@n+ 1)
4(r—1Xn Dn

n+ H2n—1)2

(e

Here, 0"’ = %(V“u” — VVu") is the antisymmetric vorticity
tensor. For n =0, 1, 2, 3, 4, Eq. (24) agrees with the results
obtained by Denicol and others [31,39] as they should. This
general evolution equation was first derived by one of the
authors in Ref. [44]. As far as we know, this was the first
time the evolution equation for a general energy-momentum
moment was explicitly derived in literature. This equation also
appeared in a recent paper [45]. Even though we eventually
use Boltzmann statistics, Eq. (24) is valid for quantum statis-
tics as well.

C. Regularization methods

As one can see in Eq. (24) the time evolution of p"““"" in-
volves pul M plf-l Mn’pr:tl Mon— |’)0r:t2 HMon— Z’pil-l"'ﬂn ’pr lﬂ»m’
and p/'; " As such, Eq. (24) represents an infinite set of
coupled partial differential equations. To get a closed set of
equations for a finite number of moments, one must use a trun-
cation scheme. The two well-known truncation schemes are
the method of moments [20-23], and the Chapman-Enskog
method [26]. In the method of moments, one assumes that §
is such that all nth rank moments are proportional to each
other regardless of their energy weights [39]. On the other
hand, the Chapman-Enskog method expands &f using the

(= Mn—2 1 )

(i1 tna i tan) +

Dn )\ﬂl Mn—1 _fn)

(r—
+2m? o,

2n+3
2 @n+2r—1Hn—Din (1 =2 o =1 )
Cn+1D)2n—1) !

(24)

(

Boltzmann equation as the recursion equation to obtain § f as
a derivative expansion.

In a series of papers [40—43], Struchtrup and Torrilhon
developed a novel method they named the “regularized hy-
drodynamics” that combines both the method of moments
and the Chapman-Enskog expansion. This technique applies
a Chapman-Enskog-like expansion directly to the energy-
momentum moments instead of § f, excluding the moments
that serve as the dynamic hydrodynamic variables. This tech-
nique provides a more systematic way to produce a set of
equations to any given order in the expansion parameter €
without introducing any additional assumptions.

In the usual Chapman-Enskog method, the collision term
is scaled as C[f] — (1/€)C[f] and the nonequilibrium part
of the phase-space density is expanded as

5f =) €"8fin.
n=1

Here and here after, the vertical bar in the subscript indi-
cates the relevant € order. These are then plugged into the
Boltzmann equation. Collecting terms having the same power
of €, the nth order piece 6 f|, can be found iteratively involving
a maximum of z spatial derivatives of 8 and u*. The resulting
equations are at best parabolic and hence potentially acausal.

(25)
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This can lead to instability unless additional evolution equa-
tions for IT, #**” and other dissipative currents are postulated
using the constitutive relationships [4-9,38].

In the method of Struchtrup and Torrilhon, instead of § f,
the energy-momentum moments of § f are expanded in powers
of €

oo
prit =) el (26)
n=1

Working out the order-by-order solution by putting Eq. (26)
in Eq. (24) would be completely equivalent to the usual
Chapman-Enskog method. What we would like to do differ-
ently, however, is not to expand the hydrodynamic variables,
such as IT and 7#", whenever they occur while expanding all
other moments in terms of them. However, at higher orders of
€, there is no guarantee that [T and 7#¥ [which are O(¢)] are
the only relevant dynamic variables. As we see below, we may
need to promote some higher moments to be dynamic to get a
closed set of equations.

IV. CHAPMAN-ENSKOG EXPANSION OF THE MOMENTS

In this section, we work out the € expansion of the energy-
momentum moments up to n = 4 within the relaxation-time
approximation. The results from this section will be used in
the later sections to build hydrodynamic equations.

To determine the € order of each p!'# explicitly, we
consider the relaxation-time approximation for the collision
term

&
Clfl1= ——8f(x, p), 27
€TR

where we have explicitly indicated the expansion parameter
€. The relaxation time 7z is assumed to be a constant. The
parameter € is set to one at the end of calculations. Putting
Egs. (26) and (27) into the general moment equation Eq. (24)
and collecting the O(e”) terms, we get the first-order coeffi-
cient function

T = (8)
where we defined the equilibrium density term to be
d’p
FH b — Er (Wi, L phn-t phtn) pha £ 29
v 27 )E, P PP p o fo. (29)

Here, pjj;""" is the O(e) part of p/*"/ and F!"[ [ is the

O(e°) part of F"'["". Using Eq. (22), one can show that
P, fo = —fo(1 + ¢ fo)p*0,(E,B) can contain only 1, pt),
p#ipt2) . Hence the orthogonality of the irreducible poly-
nomials p'*1 ... p*) [cf. Eq. (B6) in Appendix B and also
Ref. [30]] demands that

Fimtn =0 forn > 3. 30)
Forn =0, 1, 2, we get
Fo = ¢rob + @71 ("0, + OT1), (31)
Fl' =y (AL8,7"" + VI 4 d*T), (32)
F' = @00, (33)

where the coefficient functions ¢, ¥, and ¢ are functions of
only. Derivations can be found in Appendix E. Observe that
F., F!*, and F}*" all involve gradients and time derivatives of
the hydrodynamic variables. Consequently, they can be de-
scribed as physical thermodynamic forces that are driving the
evolution of the system. In deriving the above expressions, we
have used Eq. (4) to express Df in terms of spatial derivatives.
The acceleration a’* = Du* can also be expressed in terms of
spatial derivatives using Eq. (5) but we leave it as it is for
brevity. Details can be found in Appendix E.

From Egs. (28) and (30), it follows immediately
that p/}™"" =0 for n>3. One should also note that
,ofll = (0 because there is no number (mass) conservation.
Hence

prs PP = 0C(e), (34
ol = O(e?) forn=1andn > 3. (35)

In fact, only n = 1, 3, 4 moments are O(e?). To see this, note
that in Eq. (24), the lowest momentum order on the right-hand
side is n — 2. Hence, for n = 5, 6, the lowest momentum order
appearing on the right-hand side is n = 3 and n = 4, respec-
tively. This implies that the right-hand sides forn = 5, 6 are at
most O(e?), which further implies that pﬁ‘é'"”” /(etr) = 0 for
n =5, 6 since there are no O(¢) terms in the right-hand side
of Eq. (24). Equivalently,

pﬁll“‘lln — 0(63) for n = 5, 6. (36)
Continuing this way, it can be established that, in general,
P = O (e /21y for n > 3, (37

where [n/2] is the closest integer that is larger than or equal
ton/2.

The second-order hydrodynamics theory is based on en-
ergy density ¢, fluid flow velocity u”, shear stress tensor 7",
and bulk viscous pressure IT. From Eq. (34) one can see that
IT and #" are O(¢). Therefore, in this method, the second-
order theory includes the O(e?) terms and the O(¢) terms. To
obtain the third-order theory, we need to include the 0(€?)
terms.

Since we have now established the € order of the energy-
momentum moments, we do not have to carry € around from
here on although we keep referring to the € order of specific
terms. For the relaxation-time approximation, the € order is
the same as the number of z factors.

As stated, the goal of this section is to work out the €
expansion of the energy-momentum moments up ton = 4. We
start with the scalar moments. The general equation of motion
for an arbitrary scalar moment (n = 0) is

Or 1
Dp, = —— —F_ + Z[(r — Dm*p,. — 2+ r)p,10
TR 3
— Vol = rap;_ — (r = Doyapt,.  (38)

Collecting the 0(€%) terms, we get

ort = —TREr_1j0 = —TrOr_1100- (39)
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The scalar moment up to and including O(e?) terms are then
or = 'CR{ F_1—Dpy1 + = [(r — Dm*p,op — @+ 1)p )0 — (r — Doy p™ 21} + 0(e?), (40)

where we used the facts that 7z = O(e), pf_l = O0(€?), and F,_; contains both the O(€°) terms and O(¢) terms. The time
derivative term is

Dp1 = D(trr—1100)

9Pr—110
= TR( op | >X,f3092 + Tr¢r—10D0 + O(€?), 41
where g0 is defined in Appendix E. To keep the theory from becoming parabolic, the right-hand side of Eq. (40) should not
contain any derivatives of thermodynamic variables upon using suitable constitutive relationships. To deal with DO = Dd,,u",
which contains second derivatives, we can use

po = 2
_ d¢_10 2 L, ar 3
=1R|—F_1 — 18 0B Xxp100° — TRp_1)0DO — g(m p-21 +200011)6 + 030025, | + O(€”), (42)

which will be used only in the context of obtaining the ¢ expansion of other moments. Replacing D6 in Eq. (41) with D6 in
Eq. (42), we get

3 0dr—110 ¢ )
= —— @, —(Foyy — ®,F 1) — — o, 0
0 - +TR[ (Fr—11 11) TR< 0B 2B X810

24r 20, m? N o
- ( 3 P T T,Om)@ + ?[(V — Dproap + @rp-2p10 — 03[ (r — 1)p,f2‘1 + CDr,OzH]] +0(%), (43)

where @, = ¢,_1j0/P—1)0. Using the first-order constitutive relationships

2

m
M= =-7g-100 + O, (44)
Tt = —‘L’R(p_”()O'lw + 0(62), (45)
3
Pril = __zq)rl_[, (46)
m

o, can then be expressed solely in terms of IT and 7#¥ without involving any derivatives or an explicit factor of .
From Eq. (24), the evolution equation for the general rank-2 moment can obtained as

123925
Altzppnv: — ——p; -+ —[ (44 r)pra +m*Q2r +3)p, — m*(r = Dp, 2]o"2 — rag p,"
R
2 2 (w1 pa) (w1 pn 2 (1, H2) 2y (mr , M2) (/tl a/\mm
+ g(rm p,_1at? —(r+35)p,a ) — g(V Prpl —mM°V ,orfl) 2w, — (r—1Dowp,”

\lll\J

[ (2’,_‘_5)0)\#1 prﬂz +2(r — 1)m20')§p“' prl/;z%)h] 3[ 2(,. _ l)pl’vlllz (4+l’),0,l,“ﬂ2] Aljlllgzv p:fllvz’
47)

where F/*V = Fr/fo = ¢,00*". Following the similar procedure as in the scalar case, we obtain

0
pitlltz =3 pltlll-z + TR|: _ g(rp;tliﬂz _ (r _ 1)m2p£u§|21 » mZpulzl‘l-lz)

+ (—2}”0')5“2 prll + 2r —2)m O')Lm ;Or 2|1 +2m’S GAMZ IOH21|)1)L)

[\)\”[\)

+ EG“'”Z[—(‘H- F)priat + 2r 4+ 3)m* py1 — (r — Dm* p,_o1 ]

d(gr-10) 5 3(¢-1)0)
B "B

2
— %, 0" (—dpyyy + 3m* popy +m’ p_opy) + TR(

3 )Xﬂ|096”‘“2] +0(h),  (48)
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where X, = ¢,_1j0/¢—1/0 and we used the € expansion of 7" = p{f " to replace AfP2Do . Upon using Egs. (44), (45), and
(46), pt1#2 can be reexpressed solely in terms of 7#" and IT without their derivatives or an explicit factor of tz.
For the O(e?) moments, we start with the vector moments whose evolution equation is given by

ARV, p’\”‘ a)ﬁf‘pf

231 1
Pr —FM", +§[(r— Dm*pl", — B+ r)pl]o — raqpt| —
T,

A'Dp)" = —
akm 1 2 1 1 2351 2711
—(r— Dowep, 5" + g(rm pr—1 — (r +3)pp)a™ — g(V Pre1 —m V¥ p,_1)

1 A 1231

5[ @2r +3)p} +2(r — Dm*p}_, ol (49)

Since p/* = O(€?), the O(¢) terms on the right-hand-side must add up to zero, yielding
prt = —trYran (AL B, + VI +a" TT) + TR[ — ALV — rapapft)

(50)

1 1
— ~ (V¥ prpapy = m*V* po_ypp) + g[rmzpr—m (r+ 3)Pr+11]“|0} +0(€).

Further details can be found in Appendix E. Unlike the O(¢) moments, this cannot be expressed solely in terms of IT and 7+¥

without involving derivatives.
For the rank-3 moments, we have

pH1M2H3 1
T+ 2[5+ D (r = Dm?p[25 6

atyepppn = -0 4 L
6
35[ 6+ r)pfilza H2p3) +Q2r+ 5)m2p}§ﬂl o M) (r— 1)m p O.,uzm ] _ 36();“' pruzu3)k
1
§[ Qr ~|—7)0'(M Iorﬂzm +2(r — 1)m2 (1 prlizét3>)~] raapfl/tll/bm
3 V(Hl H2/43) 2v<u1 H2/43) 3 Mk g 7 (ip2 o us)
= S (VI pfE =PV p BT o S [ — (r+ e a"]
/th]‘gil;zv IO)‘V]WV% (r— 1)0Aapalﬂlﬂzﬂz (51)
As before, the O(¢€) terms on the right-hand side must add up to zero, yielding
3t
prtets = =RV Il 4 o+ Dplr @) = mV I o — 1 ] + O, (52)

Again, this cannot be expressed solely in terms of IT and 7#¥ without any derivatives. One may take this as the first sign that the
rank-1 and rank-3 moments need to be promoted to dynamic variables, as we do below.

For the rank-4 moments, we have

K12 L3 (L4 ViV2V3Vy

V1V V3Vg Dp

_ p#IMMBM 0l,U-1MzM3M4 4 9 (ip2ps  ps) 2 (123 fLg) 4 V(m Ha3pa) V 243 /ha)
= — raqp;” = 5L+ 904 @) — rnp R ] — (VI ply /)

TR
Al]jll\f:%;l;\?f)\v pwwmm 4 [ 8+ r)pr”‘ma’””“) +Qr+ 7)m2p£m/ngusm> —(r—1Dm pr/ilzﬂzamm)]
—40);\’“ p,’”’“’“ —(r— 1)GM,0°M“‘”2”3"4 14 [ (2r+9)0 Mzmm)/\ +2(r — l)m Ux pr/izmm)x]

(53)

+ %[(r — l)mzpﬁ‘j’““”“‘ 6+ r)p;umusm]@'

Collecting all O(¢) terms on the right-hand side, the rank-4 moments up to O(e?) are given by
pflﬂzmm — ‘L’R[—(S + r);lpr(ilzl\? o Hata) +(7+ 2r)21m p;ﬁlm o M3kl —(r— 1)%”140,(“12712 U/Lzlm)] + 0(63), (54)

which can be expressed using only 7 1427 #3#4) and without an explicit factor of Tz
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V. RELATIVISTIC REGULARIZED
HYDRODYNAMICS UP TO O(€?)

Within the relaxation-time approximation, the full evolu-
tion equation for the bulk pressure IT = —(m? /3)po can be
obtained by setting r = 0 in Eq. (38):

n m?
DIl = ——+ ?[qﬁ,”oe + ¢ (0T + 177 5,,)]
R

R P SN VRN LA (55)
— — =0l — —034p”5 + —0p_s.

3 APy 3 3 % ) 9 P—2

From this, one can identify the bulk viscosity as ¢ =
trm*p_1j0/3. Similarly, the full evolution equation for 7#¥ =
py is obtained from Eq. (47) by setting r = 0:

v

T
Ag;D]‘[a’B = — - ((/) 1‘()0'” )— A’”V ,O)haﬁ
2m? 4
4+ v 0T + am,o“’w”
5 3
2
— m—@pﬁ; — En’w’“q{’> — 271)‘("@;)
3 7
4m2 A _v)

The shear viscosity can be identified as 1n = trp_1)0/2. In
obtaining Egs. (55) and (56), we used the Landau condition
P2 = p{‘ = 0. These equations are not closed because the
following moments appearing in the above two equations:

raf aApY (57)

p*Zv pﬁ]v pﬁ;9 p 1 > 10 2 9

are not IT nor w#”. The goal is to use the € expansion of these
moments to reexpress Egs. (55) and (56) so that the equa-
tions are closed, adding extra dynamic degrees of freedom
when necessary.

Before we carry out the O(e?) analysis, we can first check
the O(¢) results. Using the O(¢) terms from the € expansions
of p_, and pf; [Egs. (43) and (48)], the evolution equation for
IT can be expressed as

m2 2 2

p—_14 b 100 — =OTI + =™
T 3Ty 3 -

— m_2<(p_3|0>0,)han)»(x _ (¢ 3|0)91—[ 4 0(62)
3 \e-1p $-110
(58)

e+ 7""0,,)

Similarly, for /¥, the second-order evolution equation is

2
_am (_¢_30>ﬂk<u0;> _ énalw
T \¢-10 5

¢ %0> A ) P
— o™ — 270! + O(e?).
5 <¢ 10 -

(39)

Note that these equations are hyperbolic, namely, involves the
same number of temporal and spatial derivatives. This fact
does not automatically guarantee that the theory is stable, but
as long as g > n/(e + P), it is at least causal.

To go to the 0O(€?) order, one needs to examine p” , and
p"\"*"> more closely. There is no need to consider p"}*2#3#
any further since it can be expressed using m{“1H2ghats) =
O(€?). But the first moment and the third moment cannot be
expressed solely in terms of IT and 7*¥ without involving their
derivatives. As such, if the € expansion from Sec. IV is used,
parabolic equations will result. One way to remedy this prob-
lem is to promote the first moment p”; and the third moment
p"12"3 to be dynamic variables. Denoting W = m?p",, its
evolution equation can be obtained from Eq. (49):

Al DW™
- m’F") — Zowm Ly;‘IWA - o'W
TR 3

2 4
+ VAT + 2[Ta™ — §m49p m450/{“pk3

4
m
—mzA‘“ KV] +m aa,oa“‘ + —VHp_,

m4 A
—?a“'p_g + 2m’o Pt (60)

Denoting &/1#2#3 = pHi#215 Hits evolution equation can be
obtained from Eq. (51):

Alultz#wDé&V}szz

Vi3

P23
_ _%‘ e _ gn(muzam) _ EV(MlnﬂleS)

TR

+ Emzv puzz/tz _ 3m p_;uuzam)

7 7
_ ggé_-,ul#zm _ go_}fﬂlguzm)k _ Sa);’“ %—Mzus)k
18 12
+ EW(M o Hams) + m4§p(_"3‘ o Hajt3)
_mZ@ Hipop3 m24 ;0#32‘“ YA

37 3

— ALV + aupty 1 + O(€7). (61)
We can use the 6 expansions, Egs. (43), (48), and (54), in
place of p_,, p"3, and p"}**"3" | respectively, on the right-
hand-sides of Egs. (60) and (61). These terms do not contain
any derivatives. We can also use the € expansions, Egs. (50)
and (52), for "3, and p"§3", respectively This replacement
does involve derivatives, and since p", and p ‘3“‘22” 3 above are
accompanied by either 6 or oV, which results in terms with
two derivatives. Fortunately, we can avoid having two deriva-
tives by associating the explicit factor of 7z from Eqgs. (50) and
(52) to the factors € and o*¥ to turn them into IT and 7#". In
this way, we have a closed set of equations for IT, 7#”, WH,
and £#1/213 that involve no more than the first derivatives. Fur-
thermore, the relaxation time 7z does not appears explicitly
except for the collision integral term (the 1/t term).
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VI. THIRD-ORDER EQUATIONS FORm =0

The third-order hydrodynamic equations obtained in the
previous sections are nonlinear coupled differential equa-
tion of 20 degrees of freedom, making them hard to analyze.
For the sake of simplicity, from now on, we take the massless
limit. In this limit, the bulk pressure does not exist, [1 = 0, and
it is consistent to set W#* = 0 as well. As such, the dynamic
degrees of freedom reduce to the energy density &, the flow
vector u, the shear-stress tensor 7" and the third moment
gHualss Tn this limit, Eq. (56) reduces to

b datd
m _
ALDrP = —
TR

4
— ppot — ALV, gl — 5977'”

10
0 — e — 2w, (62)

where
8

To_110
In the m = 0 limit, Eq. (61) reduces to

S_aﬁ;w — afuv

= 7P L o). (63)

1 4 5
AQZ;D&.paﬂ — _T_%.Auv _ gegkuv _ §$Q<AMU&)>
R

_3501(?»#60:[) _ gn(kuaw _ ;Vunm

+a,s" = ALV + 0(E7). (64)

The dynamics variables are ¢, u*, "', & AV The number of
independent degrees of freedom is thus 16.

Equations (62) and (64) provide us with the third-order
dissipative equations for massless particles without conserva-
tion of the net particle number. As far as terms linear in 7",
£ and u* are concerned, these equations are equivalent
to the stable third-order theory postulated in Ref. [37] with
T, = 1, = T in their notation. Consequently, our 16 moment
formulation is also linearly stable and causal.

What we would like to do further here is to analyze an
alternative third-order theory where ¢®*" is also promoted
to be a dynamic variable. Setting r = —2 and m = 0, Eq. (53)
becomes

1 4 8
AifZ;Dgpmy _ _T_gaﬁuv _ gggaﬂuv _ S @By
R
28 4
_ 8 stapugy) _ Zglagpun)
9 § 9 §
20 iapu v) MaBu, ) 3
—Hg o, —4¢ w,’ + O0(e”).

(65)

Equations (64) and Eq. (65) are similar to, but not identical to,
the equations for the third and the fourth moments in Ref. [39].
This is because the third and the fourth moments used in
Ref. [39] are pj'"**"* and p{'***"*"** while ours are p"|"*"* and
p!y/2#31 that naturally appear in the evolution equation of
ThY,

One way of justifying the promotion of ¢#1#2/3/4 to a
dynamic variable is to note that both are O(e?) and in

Eq. (65), AifZ;Dgp*‘”y is linearly coupled to V*£A") while

in Eq. (64), A?}Z;Dé reB is linearly coupled to Azg; V,c@Peb,
Hence, a consistent linear analysis can be carried out that
includes both &#1#2/3 and gH1#2#314 This way of including
gHimaisia 1o close the equations without incurring two deriva-
tives, however, is possible only when m = 0. If m # 0, the
right-hand side of Eq. (65) will contain V(1 p"2/#4) and

alim pharsit *) resulting in two derivatives. Even though we can

argue that promoting ¢/#'#2#34 to a dynamic variable is not
strictly necessary, we feel that it is still beneficial to carry
out a linear analysis as these types of equations do appear
elsewhere in literature (for instance Ref. [39]) without the full
linear analysis.

In the next section, we carry out linear analysis of this
extended 25-moment theory. Before we do so, let us consider
the physical meaning of the third moment £#1/23. We will
not regard ¢H1#21314 a5 a dynamic variable for this considera-
tion. Applying the thermodynamic identities 7s = ¢ + P and
Tds = de to the local equilibrium part, the energy conserva-
tion law, Eq. (4), in the massless limit can be reexpressed as

au(suﬂ) = _ﬂnﬂvalw’ (66)

where s is the local equilibrium entropy density. Within
the first-order approach, the right-hand side becomes non-
negative upon using the first-order constitutive equation,
Eq. (45), affirming the second law of thermodynamics in this
limit. In our case, upon using the full evolution equation for
" [Eq. (62)] to replace 0, Eq. (66) can be re-arranged as

8
- B _ Hipy 4 = (ah o pip2)
a/”shyd - Y_10 |:_L_R7TM1M27T + 7TR7T(M1M20/\W>7T o
5 10
B 2]3 Oﬂﬂlﬂzn“mnmmgﬂzm + 7035#277#]”77//«1#2
4
— g (V(m”uzm) + 6“(#1”#2#3))] + O(€™),
(67)
where
o '3 /t1//«2> M ﬂ HV1v2
Spog = | § — =—mu 7 ut — ——my 8
hyd < 290—1|0 | 3V2%) @110 ViV
(63)

can be interpreted as the hydrodynamic nonequilibrium en-
tropy current. In deriving Eq. (67), we used Egs. (E9), (E19),
and (E27) from Appendix E, and the constitutive relationship
for the fourth moment, Eq. (54). The term in Eq. (62) involv-
ing the vorticity tensor w,,,,, does not contribute because of its
antisymmetric property. Expressed this way, the meaning of
gmials g clear: It is a part of the dissipative entropy current.

In Eq. (68), the first term in the parentheses indicates that
the nonequilibrium entropy density is lower than the equi-
librium one, as it should be. This =, ,,7*'** term appears
in the original Israel-Stewart paper [22] and all subsequent
second-order and third-order analyses. The dissipative term is
transverse to u” because of £#"1"2, Hence, the fact that one
cannot assign definite sign to this term does not disturb the
requirement that the nonequilibrium entropy to be lower than
the equilibrium one.
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The second law of thermodynamics dictates that the en-
tropy of a system must increase when out of equilibrium.
This is guaranteed if the right-hand side of Eq. (67) is non-
negative. On the right-hand side of Eq. (67), the first line is
non-negative. The second line is not guaranteed to be non-
negative, but as #3#4 relaxes towards —tge_1j00 ", it will
become non-negative. A similar argument applies to the last
line which is the third-order contribution. As £#1#2/3 relaxes
towards —TR%(V<“'JT“2“3> + gl i)y [e.g., Eq. (61)], the
last line in Eq. (67) will become non-negative. The third line
cannot be manipulated into a total derivative and/or a square
even as w#'#? relaxes towards —Tg@_1j9oo#'#?. However, this
may be an artifact of the way we defined the nonequilibrium
entropy [18,46,47].

In Ref. [33], the entropy current was derived from the
Chapman-Enskog expansion of §f. Comparing the two ex-
pressions one can see that they are almost the same except
that their entropy current contains the third-order contribution
proportional to (7 7, p7*P)ut. The entropy density found in
Refs. [32,34] also have a similar term although their entropy
currents do not have our dissipative part. The difference be-
tween our expression and those from Refs. [32-34] mainly
comes from the fact that they are using the Boltzmann’s
H-function definition of the entropy current whereas we are
combining the energy conservation equation with thermody-
namic identities to define the entropy current following Israel
and Stewart’s work on the second-order hydrodynamics. Un-
fortunately, it is not at all straightforward to make an exact
correspondence because expressing the H-function definition
of entropy (which involves f In f) as a linear combination of
the energy-momentum moments of é f is highly nontrivial.

VII. LINEAR STABILITY AND CAUSALITY
ANALYSIS OF THE 25 MOMENTS

A. Linearized moment equations

The previous section provided us with the third-order mo-
ment equations for massless particles without conservation
of net particle number. The next step is to ensure that these
equations lead to stable and causal solutions. In general,
analyzing the stability and causality of nonlinear partial differ-
ential equations is a challenging task. In principle, one should
carry out a full nonlinear analysis as advocated in Ref. [48].
However, in this study we only perform the linear analysis of
the 25-moment equations as a first step towards establishing
the stability and causality of our third-order hydrodynamics.

Consider small fluctuations in the energy density ¢, fluid
4-velocity u**, and shear-stress tensor w#":

e=¢y+38, u'=uy+sut, " =", (69)
where &, ug are constants. Since m = 0, the equation of state
is simply P = ¢/3. Consider the energy and momentum con-
servation laws Egs. (4) and (5). The linearized conservation
laws are straightforward to get:

D()SS + ié‘ov,’ ()SMM = 0,
S (70)
Dy(ggdu™) + 1 V§de + 3V, odn™ =0,

where we defined Aj" = g"” + uguy and Vi = Af’d,. It is
convenient to express the above equations in Fourier space.
We use the following format of Fourier transform:

Flky = / ke f ),

(71)

o) d4 k. o~
s = [ e fw.
—oo (27)*

Here, k* = (w, K) is the wave 4-vector. Therefore, we can
express each Fourier component of the variables in the lin-
earized equations as a plane wave multiplied by a complex

amplitude ¢:

d) — $eikux” — aei(kx—wl). (72)

Note that since g"” = diag(—1, 1, 1, 1), we have k,x* =k -
x — wt. Furthermore, we rewrite the linearized equations in
terms of the Lorentz-covariant variables defined below:

Q= ugku,

(73)
P Ag”k\,,

which correspond to —w and Kk in the local rest frame of
the background system. We also define the covariant wave

number k as
Kk = \/klKy,. (74)

In terms of the covariant variables, the linearized conservation
laws (70) can now be rewritten as
Q% + Feok, 8u" = 0, a5)
Qegdil" + 1k 58 + k8T = 0.

From now on, we omit the tilde above the Fourier space
variables. All hydrodynamic variables below are expressed
in Fourier space. Furthermore, we scale 2 and « with the
timescale 1, = n/(eo + Py) so that they become dimension-
less quantities following Refs. [30,37]. Here, n = trp_1)0/2
is the shear viscosity.

The next step is to linearize the " equation. To do this,
we drop all the higher-order terms in Eq. (62) and keep
only the terms that are linear in e, du*, dwHV, E*1#213 and
g2l to obtain the linearized 7wV equation:

v 1 v o
Agﬂ,oDO‘S”aﬂ + afgﬂl"w + @-1j080"" + Agﬁ,ov)\,oé)\ F=o,
(76)

where §0#¥ = V%§u"). Using (E28) to express the coefficient
@—_1)0 in terms of gy leads us to the following linearized 7 *"
equation:

1 4i
Q4+ — )énh’ + %
TR 15

2
<K“8u“ + k"Sut — §/<a8u°‘AgV>
+ ik £ = 0. 77)

Similarly, the linearized equation for £**” is

1 3
A Ay Apv o
Aal;s;x)DOfaﬂy + t_Ré "+ iAalij,ovo 3P

+ A o Vos™ P =0, (78)
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which becomes
1 .
(iQ + —)s““ 2 (O it o)
TR

2i
35
4 ingwAuv — O

) 79
(A k28 + AL ksl + AL k@8ml) (79)

in the Fourier space after taking the derivatives Dy and V; .
To derive the above expression, we have used Eq. (A6) from
Appendix A for n =3 to express x*7*"). The linearized
equation for ¢*#* is also straightforward to obtain

1 4
A oD+~ AT (VET =0, (80)

which becomes
iQ 4+ L) capur 4 3 popm KHEVPY =0 (81)
T S 9 S1yp0.0 =

in the Fourier space after taking the derivatives. Using
Eq. (A6) for n = 4 from Appendix A, one can show that

afuv  Aseypfd
A)L)/,OQ,OK S

1
— Z(Ka%.ﬂ;w + Kﬁé(xuu _i_Ky,%.aﬂv _{_Kv%.(xﬂﬁ)

1 v v o
- ﬁ(Ag“né“” + Ag 16 EXM + AYKE P

+ A GE + A EN + AT EM). (8D)

Plugging this back into Eq. (81) gives the complete linearized
evolution equation for ¢*##.

B. Transverse modes

The linear stability and causality analysis presented in
this work adheres to the procedure outlined in de Brito &
Denicol’s work [25,37]. This involves decomposing the lin-
earized equations in Fourier space into longitudinal (parallel
to k*) and transverse (orthogonal to k*) components. This
method offers the advantage of decoupling the equations in
the linear regime, allowing them to be solved and analyzed
independently and greatly simplifying the calculations [37].
Due to the superposition principle of solutions to linear PDE:s,
this procedure is equivalent to analyzing the complete three-
dimensional linearized equations without decomposition.

It is beneficial to introduce a projector that is analogous to
A™ but with respect to k*:

J7AY
A[l.l) — g,l,lU _ &, (83)

K K2

where «2 is introduced to ensure normalization. Then, any 4-

vector A* can be decomposed into a linear combination of the
longitudinal and transverse parts:

KM
At =A— +AY, (84)
K

where A|| = k,A"/k and A"l = AXA,. Similarly, a rank-2
tensor A*Y can also be decomposed as

v

AT =4

1A mv 4 Al i AVKM Al
2 +§ AV ?-i-*l- — + )
(85)

where A = ki, AM /K2, AL = APYA,,, Al = kAR AL [k,
and A" = A"*PA, 4. Here, we defined the rank-2« projector
to be

AP = L(ALAY + ALPAY — A ALP).(86)

In this section, we analyze the linear stability and causality of
the transverse components of third-order regularized hydrody-
namics for m = 0. We discuss two cases: in the first, the wave
vector Kk is parallel to the background fluid velocity v, while
in the second, the wave vector is orthogonal to v.

1. Case 1: K is parallel to v

For simplicity and without loss of generality, we assume
that k and v are both in the x axis:

uy =y (1,v,0,0),

k* = (w, k,0,0). 7
It immediately follows that

Q =yk - w),

K2 = y2k — vw)*. (88)

Note that the first equation in Eq. (75), which corresponds to
the energy-conservation law, is a scalar equation. Thus it is
purely longitudinal and does not contribute to the transverse
analysis. The transverse component of the momentum conser-
vation law and the moment equations can be easily obtained
by applying the projector AZ" and «*. Doing so gives us

3
Qeodu'} + Z/aSnf =0,

. 1 w 4 . n . W

iQ+ — )én| + —ikeodu'| + i€ =0,
TR 15

(89)

. 1 8 . .
<ZQ + ;)Sf + gz/«Sni‘ +iksl =0,
: 1 5.
(lQ + a);ﬁ + ﬁZKéﬁ =0,
no__ " sadlv 2 [
where we defined & = kui AL Y /ik® and ¢) =

KaKﬂK)\Aﬁkgaﬂ)w/K3. This can be written in the following
matrix form:

Q 2k 0 0 eodu't
i Q4L i 0 s
8 . 1 " =
0 35k Q2+ ™ iK 1
0 0 25—11K Q2+ Tl §f

(90)

We require that the determinant of the 4 x 4 matrix be zero
to obtain nontrivial solutions, the resulting equation is the
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FIG. 1. Real and imaginary parts of the transverse modes of the massless third-order hydrodynamics without conservation of net particle
number, in the case of fluid velocity vector being parallel to the wave vector. The relaxation time is chosen to be 7z = 5.

dispersion relation. However, we should note that the disper-
sion relation is extremely complicated, even displaying the
leading-order terms is not feasible. Therefore, we only present
the numerical solutions to the dispersion relation shown in
Fig. 1, assuming 7z = 5 in units of 7, [30,37]. This particular
value for the shear relaxation time tx is calculated from the
Boltzmann equation in the ultrarelativistic limit, using the 14
moments approximation. However, since the matrix is linear
in 1/7g, 2, and «, the value of tz does not really matter
in the current and the subsequent linear analysis. We cho-
sen value for tx is just to facilitate the comparison between
our results and those in Refs. [30,37] by having a common
scale.

To determine whether these solutions are linearly sta-
ble, we first take a look at the plane waves formula
[Eq. (72)]:

¢ ~ ei(kx—wt) — eikxe—iw,-lew,-t’ (91)

where w = w, + iw; is complex. Note that the first two ex-
ponential terms are simply oscillating waves, therefore only
the third term contributes to the damping, and thus, stability.
To ensure exponential suppression of Eq. (91) for ¢ > 0, it
is necessary that w; be less than or equal to zero. Thus, in
general, stability requires

w; <0 92)

for all # > 0. The determinant of the matrix in Eq. (90) results
in a fourth order polynomial in w, thus we should expect to
obtain four modes. Indeed, Fig. 1 shows four distinct curves,
two of which have the same imaginary parts for static fluids,
i.e., v = 0. As one can easily see, all the modes have non-
positive imaginary parts for small k. We have also ascertained
that the imaginary parts of all four modes become nonpositive
constants for large k.

For the causality analysis, we plot the asymptotic behavior
of the group velocity of the four modes in Fig. 2. In the large-k
limit, the magnitude of the group velocity remains subluminal
for all values of the fluid velocity v. Thus, the linear theory is
causal.

2. Case 2: Kk is orthogonal to v

We now discuss the second case in which the wave vector
is orthogonal to the fluid velocity vector. Without loss of
generality, we assume that V is still in the x axis, but k is
now in the y axis:

uy =y(1,v,0,0),

93
k" = (w,0,k,0). ©3)

1.0

0.8 e YA

o
o
\

N . !
o3<C P n

|aRe(w) |
oK
/

<
i

0.2 .
. o .

0.0

0.0 0.2 0.4 0.6 0.8 1.0
4

FIG. 2. Magnitude of the group velocity for the transverse modes
of the massless third-order hydrodynamics without conservation of
net particle number, as a function of the fluid velocity v in the large-
k limit and with 7z = 5, in the case of the fluid velocity vector is
parallel to the wave vector.
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FIG. 3. Real and Imaginary parts of the transverse modes of the massless third-order hydrodynamics without conservation of net particle
number, in the case of fluid velocity vector being orthogonal to the wave vector and with 7z = 5.

It follows that

Q=—yo,
k? = yR’w? + k2. (94)

It is then straightforward to obtain the solutions for this
case by substituting Eq. (94) into the dispersion relation and
then solving it numerically. The results are shown in Fig. 3.
From the figure, we can again see that all the modes are
linearly stable as their imaginary parts are always nonpositive
for small k, regardless of the background fluid velocity. As
before, we can further extend the linear stability of the modes
to all £ > O from the asymptotic behavior of the modes which
asymptote to constant negative values.

Figure 4 shows asymptotic group velocity as a function
of v. Note that there are only two curves for four solutions.
This is because the group velocities for each pair of solutions
are only off by a sign. Since the y axis is the absolute value
of the group velocity, both solutions coincide in this case.
Also, note that both curves approach zero when the fluid
velocity reaches the speed of light. This is expected since
the plane wave propagates in the orthogonal direction with
respect to the fluid flow. As the fluid moves faster and faster,
the wave is eventually “dragged” by the fluid flow under the
effect of shear viscosity and moves in the fluid flow direction
eventually, resulting in zero group velocity in the orthogonal
direction.

C. Longitudinal modes
1. Case I: k is parallel to v

Similar to the second-order case, the first step is to obtain
the longitudinal components of the conservation laws and the
equations for 4V, E**V and ¢*P*’. Applying k*«" and k" to

the corresponding equations, we get
4
Qde + gsoxéuu =0,
Qeoduy + ! de + ) 8 0
& —_ —_ =
00U 4/( & 4K )| y
Q + ! 8wy + 16, Suy +ik&; =0
— |om + —ie =0,
l o )TN g ok om FIKE, (95)
Q2+ ! &+ % Smy +i 0
1 — —IKOTT K =V,
r Il 35 Il Sl

Q-+ Vo + ik =0
l R g” 63”( ="

1.0

0.8

ok
o
o

|aRe(w) |

<
i

0.2

i
0.0 0.0 0.2 0.4 0.6 0.8 1.0

FIG. 4. Magnitude of the group velocity for the transverse modes
of the massless third-order hydrodynamics without conservation of
net particle number, as a function of the fluid velocity v in the large-
k limit and with tz = 5, in the case of fluid velocity vector being
orthogonal to the wave vector.
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FIG. 5. Real and imaginary parts of the longitudinal modes of the massless third-order hydrodynamics without conservation of net particle
number, in the case of fluid velocity vector being parallel to the wave vector and with 7z = 5.

where we defined &) = kokpr %P /> and ¢ =
KoKkl §¥PH /kc*. Note that we have included the purely
longitudinal energy conservation law in this system of
equations. Written in the matrix form, this is equivalent to

Q 3k 0 0 0 se
£Q 2k 0 0 £oduy

0 ik iQ++ iK 0 st | =o0.
0 0 i Q4+ L ik g

0 0 0 Sic i+ L)\ s

(96)

Since 2 is of fifth-order in the determinant, we should ex-
pect to obtain five modes. Indeed, Fig. 5 shows that all five
solutions are linearly stable since for small &, their imaginary
parts are all nonpositive for various background fluid veloc-
ities. Again, one can numerically show that all five modes
asymptote to nonpositive constants.

In Fig. 6, we show asymptotic group velocities of 5 modes
as a function of v. One can see that all solutions are linearly
causal since the magnitude of the group velocity is less than 1
for all of them, in the large-k limit. Also, note that the straight
diagonal line in the figure corresponds to a stationary mode in
the fluid rest frame since its group velocity is simply the fluid
flow velocity.

2. Case 2: k is orthogonal to v

As before, we insert Eq. (94) into the dispersion relation
and solve numerically for the solutions. Figure 7 shows the
result. Note that two out of the five solutions have the same
imaginary parts, and we can see that all solutions are lin-
early stable since they all have nonpositive imaginary parts

for small k. Again, we checked that all modes asymptote to
nonpositive constants in the large-k limit.

To verify the causality of these solutions, we repeat the
process from the previous sections. The group velocities of
the solutions are shown in Fig. 8 as a function of the fluid
flow velocity. Note that there are three curves in this figure,
one of them lies on the x axis and corresponds to the stationary
mode with zero group velocity.

VIII. DISCUSSIONS AND CONCLUSIONS

The main results of this work are the derivation of the evo-
lution equation for the general energy-momentum moment of

1.0

0.8

ok
o
o

|aRe(w) |

<
i

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0

v

FIG. 6. Magnitude of the group velocity for the longitudinal
modes of the massless third-order hydrodynamics without conser-
vation of net particle number, as a function of the fluid velocity v in
the large-k limit and with 7z = 5, in the case of fluid velocity vector
being parallel to the wave vector.
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FIG. 7. Real and imaginary parts of the longitudinal modes of the massless third-order hydrodynamics without conservation of net particle
number, in the case of fluid velocity vector being orthogonal to the wave vector and with 7z = 5.

the phase-space density function, introduction of the regular-
ized hydrodynamics, and the derivation and the analysis of the
third-order hydrodynamics. As far as we can find out, this is
the first time that the derivation of the evolution equation for a
general energy-momentum moment has appeared in literature.

Our derivation of hydrodynamic equations from the gen-
eral moment equations follows closely the derivation of the
regularized hydrodynamics by Struchtrup and Torrilhon in
which the Chapman-Enskog-like expansion is applied to the
moments, not to the density function, except for hydro-
dynamic variables. In this way, we avoided the inherent

1.0

0.8

\
\
‘\
0.6 5\

aRe(w)
ok

0.4 T |

0.2

0.0 0.0 0.2 0.4 0.6 0.8 1.0

v

FIG. 8. Magnitude of the group velocity for the longitudinal
modes of the massless third-order hydrodynamics without conser-
vation of net particle number, as a function of the fluid velocity v
in the large-k limit and with tz = 5, in the case of fluid velocity
vector being orthogonal to the wave vector. Notice that there is
a stationary mode with zero group velocity along the direction of
wave’s propagation.

ambiguity in the method of moments [31] as well as possi-
ble acausality in the Chapman-Enskog method [35,37]. The
third-order hydrodynamics unambiguously derived this way
includes additional rank-1 moment and rank-3 moment as
dynamic variable.

In recent literature, other versions of third-order theories
appeared. The versions most closely related to ours are those
from Refs. [37,39]. The authors of Ref. [37] proposed a third-
order theory based on Ref. [35] in which they promoted the
gradient of 7" to a new hydrodynamic variable

V(anuv) — pap_v

o7

to eliminate the second-order gradients in the evolution equa-
tion of /¥, This is analogous to £**" we defined in Eqs. (63)
and (64), but it was done in a heuristic way. This situation was
remedied by the same authors in Ref. [39] where they derived
the equations for the third and the fourth moments using
p(/)tlmlf-z and p(l)/-1ll-2u3//«4’ while we use pﬁllll-zlts and pﬁlzll-w-zlhx'
In their approach, all p¥'"**» up to n = 4 are proportional to
py' """ while ours clearly differ. Nevertheless, linear analysis
should yield similar results.

To further analyze the properties of this theory and for
simplicity, we assume the particles to be massless. A series
of linear stability and causality analysis was then performed,
and we showed that all the modes of the massless third-order
theory are linearly stable and causal.

The hybrid method advocated in this work may be
extended to higher orders. However, given that the Chapman-
Enskog expansion is asymptotic in nature [49], and the fact
that we need to promote higher and higher-order moments
to be dynamic, this path may not be a profitable one to
study the effect of higher-order moments. Instead, one may
consider resummation approaches such as the generalized
hydrodynamics formulated by Eu [50,51]. Other ways to ex-
tend our method include applying it to systems with multiple
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species and multiple conserved charges, to spin hydrodynam-
ics [52-60], and to the general-frame theories with off-shell
transport parameters [11,47]. We leave these as possible
venues for further investigations.

ACKNOWLEDGMENTS

We acknowledge the support of the Natural Sciences
and Engineering Research Council of Canada (NSERC),
[funding reference number SAPIN-2020-00048 and SAPIN-
2018-00024].

S.J. is grateful to H. Struchtrup, M. Kroger, G. Denicol,
and A. Jaiswal for fruitful discussions. S.J. also acknowledges
insightful discussions with late B. C. Eu whose work on
nonequilibrium statistical mechanics and generalized hydro-
dynamics inspired this paper.

APPENDIX A: ON PROJECTORS

The definition of the rank n projector is a tensor of rank
(n, n) that selects the symmetric and traceless part of a tensor
or rank (m, n) or rank (n, m). The basic building block is the
spatial metric tensor for a fluid cell moving with the flow
velocity u*:

AL =gy +utu, (A1)

which is the rank-1 projector. When applied to a
4-momentum, it gives
pY = AlpY
=P = (&, (A2)
where £, = —u, p” is the time-component of the 4-vector in

the fluid-cell rest frame. From here on the angular bracket
around indices indicate the symmetric and traceless part of
the tensor. Forn = 2

mipa — LA A 12 HiAM2 2 12
A - 2(AV1 sz + sz AV] 3A"1"2A )’

Vv

(A3)
and forn =3

AL = G[A AL + A MEAL + AL AL AY
HALARAD + ATAR AL + ALAR AL
_ %[AMMZ(AWWA‘V‘; + Ay, AL+ AV3U1A“f23)
FAPE (A AT Ay AR A, AR
FA (A, A2 Ay, AL 4 A, AR
(A4)

The above projectors are constructed in such a way that
they are symmetric and traceless in both (u, ..., u,) and
(v1, ..., v,). For the sake of projecting TV to T (H1#n)
this is actually not necessary. It turned out that we just need to
make sure that the superscripted indices are symmetric and
traceless. In that case, the following recursive construction

works just as well as a projector [61],

I « 2
Aﬂl"'ﬂrz —_ _ E AM:’AM---M—MM'“M _
Vi+Vp n P Vi V2 Vp n(zn _ 1)

n n
) ~ QL i it it ld
X § : 2 : AM,M,A‘}]&AW/{}.UNI, L1 B j—1 B j+1 /n.
i=1 j=i+l

(A5)

This is explicitly constructed so that it is symmetric and trace-
less in (ug, ..., iUy), but not necessarily in (v, ..., v,). We
do have Ak12 = At butforn > 2, Al # s neither sym-
metric nor traceless in (vy, ..., v,). As an example, applying

this projector to g"' P*>""* yields

q<u1puz---un> — A/’v]“'ﬂan]PVZ“'Vn

Vil

1
- Z q(lli)P(Ml“'ui—ll/-fH---/Ln>
n

i=1

2 n n .
— —n(zn — 1) Z Z Ammq(w

i=1 j=i+1

L ] fhid -1 fh a1
s Pl ist i -1 s Mn>’

(A6)

where ¢"' is an arbitrary 4-vector and P*>"" is an arbitrary
rank-(n—1) tensor. Equation (B3) is a particular example of
this identity.

The full rank-n projector that are symmetric and traceless
in both sets of indices can be recursively built by averaging
Eq. (AS) over n different choices of v, that can be isolated

n n
1
Hyfn — i A 1 i1 i1 on
Avl"'vn - n2 Zj :Avk Avl“-vk—lvk+1"'vu
i=1 k=1

2 n n .
T E@n—1) ;,;1 At

n
Oy it Pip 1 M j—1 L j 17 fon
X E PANTINVA SRR .
k=1

(A7)

The right-hand side is explicitly constructed in such a way
that it is symmetric and traceless in (g, ..., i,). It looks
only symmetric in (v, .. ., v,), but it would be also traceless
provided that the following identities holds:

AFH2 -1 — (211 — 1) M2 Pen—1 (AS)
oV Vyg (2}’1 _ 3) V2 Vpoy 2
n 2 n n
MO A Je et i1 oy Hilkj
Z A Awlzg--~vnl “ - 2n—13) Z Z AR
i=1 i=1 j=i+1
X A{)‘;l-:“f:i—l/’«#l"'/’-jflli/’Jrl"‘Mn,
(A9)
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and
n n
AH2 B — 2n—1) 1 AMi A2 it i
V2-eVy 2 Vi V2o V1 Vi1 Vn
nn—1)\ 2n—3) ==
1 n n
; Cp L1 1
- 2n — 1 Z Z AM/IBAVkaA,BVZ“‘VkiIVkJ:r'"Vn
(2n ) j=2 k=2

(A10)

These identities can be proven by using the following mathe-
matical induction strategy:

(1) Show that Egs. (A7), (A8), (A9), and (A10) are valid
forn = 2.

(2) Assume that Egs. (A8), (A9), and (A10) are valid for
an arbitrary n.

(3) Show that the projector recursion relationship,
Eq. (A7), is valid for this .

(4) Using Egs. (A7)—(A10) for n, show that Eqs. (A8)—
(A10) are valid for n + 1.

Due to the symmetry between u and v, the following is
equivalent to Eq. (A9):

n
§ : O3V
Avia Byl oo,
i=1

2 n n

REESP P

i=1 j=i+1

K3 fhn
Vi VietVig1 - Vj—1Vj41Vn

(A1)

By combining Eq. (A7) and Eq. (A11), we can have a recur-
sion relationship which is explicitly symmetric under u; <> v;
swapping:

n n
1
B — i A1 it i1
A = g 2 D ANALTIEN
i=1 k=1

4 nonoonoon
C n22n—1)(2n —3) 202020 A,

I=1 m=I+1 i=1 j=i+1

Witk A MU= =1 L K
X A AV]“'UF]WH'“VWIVm+1"'vn .

(A12)

APPENDIX B: IRREDUCIBLE POLYNOMIALS

In the rest frame of the fluid cell, the irreducible tensors of
rank 7 is defined as the symmetric and traceless combinations
of the n factors of p”', where m = 1, 2, 3 is the spatial index.
For instance, the rank-1 tensor is just p™ and the rank-2 tensor
is

Amlmz
3
where A™"™ = §"™"™ ig the spatial metric tensor in the rest

frame and p? = p,, pm, A™"™. Here the angular bracket over
indices indicate the symmetric and traceless part. For n = 3,

P, (B1)

p<m1pm2> =pmpn —

2
p<m1pm2pm3> = pmpmpm — %(Amlmzpmz + AMims pin

+ AT ), (B2)

Higher rank irreducible tensors can be built using lower
rank ones by using the following recursion relationship:

n
p<mlpmz . pmn) — % meip<ml . pmi—lpmiJrl . p’nn>
i=1

2 - : mim; a
_mz Z A "PaP<

i=1 j=i+1

)

P s
(B3)

mi i1 4 Mit1

X P - p p ..pmfflpijrl..

which comes from applying Eq. (A6) to p*1 p®2 ... k),

When the fluid-cell has a nonzero flow velocity u*, then
the spatial metric tensor is

AR = g +utu”, (B4)

and the spatial part of a 4-momentum is

p(m — Aff P’
=P —u'E,, (B5)
where &, = —p,u* is the time component of the 4-

momentum in the fluid-cell rest frame. All results in this
sections can be generalized to the nonzero fluid velocity
case by changing m; — (u;) and p*> — (sz — m?) where
mr=— Pl

The orthogonality condition for the momentum polynomial
is [30,62]

d3p
/ m”%)p““ PPy Py

n! d’p 5 o
- Gt | Gy FE e =)

(B6)
In deriving the evolution equation for a general energy-

momentum moment, the following identity is frequently
needed:

) (i L ) — kot ) (2
pp pr=prpt et A L& —m?)
x pliip/e .. it At (B7)

To prove this, first we go to the rest frame where u” =
(1,0, 0, 0). In that case,

p — p", (B8)

where m = 1, 2, 3 are the spatial component of a momentum
and

5[% —m* — p, (B9)
where p? = pip'.
The identity to prove is then
p(lpml - pmn> — plp(ml - pm,,>
_ 2n’:- 1p2p<m1pmz...pmn—lAmn”. (B10)
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Our starting point is the fact that these polynomials can be obtained from

1 p<m1pmz ... pmn)
8mn..-8m2 my ; = ( 1)”(271 1)”T, (Bll)
where 0,, = d/dp™. This expression is explicitly symmetric since derivatives commute. It is also traceless since
2] 12
Vp; o 8(p). (B12)

The normalization constant is chosen so that the coefficient of p™ - .. p™ in p¥™ ... p"™ is one.
We can get the following recursion relation by considering the product rule of taking one more derivative of Eq. (B11):

(my gyma |, it pftat) 1
pp pp
(=) @en+ ! s = Ay, Oy~ Oy O, »
pmn+]p(m1p e pmﬂ> ., (p(ml . pmﬂ>)
=(—1)"2n — 1)!!((—1)(2n +1) T + O p2n+1 ,
(B13)
which yields
»
P pT e ) = P pI e T = S B P P (B14)
The identity (B10) is proven if we can show
O\ P mlpmz . .pmu) — np<m1pmz N (B15)
n+1 .
To start mathematical induction, consider n = 2:
Amlmz
3m3p<M1me) — 8m3 <pm1pm2 _ 3 p2>
Amlmz
— AWI[WL3pmz + Amzm3pm1 _ 2 3 p}’H3
1 mymy
— 2 E(Amlm3pmz + Am2m3pm|) _ 3 pm3
— 2p<m1 Amz)’ﬂ}’ (B16)
which gives the correct expression.
To prove Eq. (B15) for general n, we need some identities first. The right-hand side of the following expression:
p<ml L e LS R mel (m P plil it A1
n(2n —1) Z Z A" p plpM T i P A (B17)
i=1 j+1
is explicitly constructed in such a way that it is symmetric and traceless in (m, ..., m,). The tensor p p" ... p/n=t A"
can be also expressed as
1 n
p(mlpmz . _pm,,,l Amn>m,l+1 i Z Amn+lmip<l711 . 'pmi—lpmHl . pmn)
n
i=1
n(zn s Z Z AN m/p(ml . .pmi—lpm[Jrl . 'pm/7|pm/'+] . _pmnpmn+l). (B18)
i=1 j=i+1
Again the right-hand side (RHS) is explicitly constructed so that it is symmetric and traceless in (my, . .., m,).
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To prove Eq. (B15), assume that it works for n — 1. We then take another derivative of Eq. (B3):

n

1
my pymy ) mi My M)
g PP n;apmm(p plm - prr p )
2 n
n(—2n - Z Z A 8p’"u+1 (pap ”pml ol pMimt il L it gL .pm,,))‘ (B19)
i=1 j=i+1

One can then show Eq. (B15) can be reproduced with for n 4 1 using the identities (B17) and (B18).
This proves

My ) [ my )

=pp

n p2p(m1pm2 . pmn,l Amn)l7 (B20)
2n+1

which can be found in Ref. [63]. In a moving frame, this becomes

plp™ .- p P

n
p()u)p(ﬂvl . pﬂn> — p()hpl/'«l .. .pﬂn) + o n 1 (5; _ mz)p<M|pH2 . pﬂn—l AM,I))L' (le)
One can also show
() (&) {11 Hn—1 poln) a7 Hn—1 poln) 1 Mo ()» i1 gyt o)
PP et = O o (E = m? ZA M
1 n
4 52 _ m2 ARt (o 1 | il il | L i)
o & ); pept - php p
4
e AMiH o it il T gt L pltn)
(2n+3)(2n—1) ; P* PP PP P
1
—g_m A)“D[ /L">
Ty & ) P
I’l(n - 1) 2 2 2 X . ’ ’
g2 _ (L plietpltivt o APt AR g0 AR B22
@it Dan =1 )P o) (B22)
by using
n
p“‘)p(‘“ coplt At — % Z Au«fapb\pm co pllietphinn ,p;m
2 n
_ Aﬂi:u'jp()‘p"‘pﬂl . _pMi—lpH1+1 .. pﬂf—lpMjH - p””>
n2n—1) ;
2 n n—1 a2 At A ) A MK ’
+(& —m )mp<“1~-'p“ 2AM AL AP A (B23)
[
APPENDIX C: A USEFUL MATHEMATICAL IDENTITY Now, if we let
Consider the following rank-n tensor: i, = Py - Pii (C4)
A — AM1 ,unDp<v1~--pvn>_ (ChH

Vi then all terms in Eq. (C2) except the first one vanish under

Following Egs. (C.8) and (C.9) in Ref. [63], for any symmetric A;‘l'_'_'_i’; D since
tensor IT we have '"

D(A; DF

il

F) = (DA;

il

W+ Ay,

Iy = T, + o1 (A, I, ik + permutation)
+ o (Agyi, Ay sk + permutation) + - - -, = (@i, + uicai,)F + Ay, DF. (©5)

1314

(C2) This expression vanishes when the projector is applied due to
the presence of u;,, u;,, or A;; . Consequently, we arrive at the

h
where following useful identity:
(=D* (©3)
Uk = . n Vi Vp n v Vn
T en—2j-1) AL Dpp™ = AL DpM - pt(CE)
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Note that
Dpw) — DAP«VPU
= D" + u"u")p,
= (u"*Du’ + u’"Du")p,
=u"p,a’ — Epa” €7
=ut(p™ + Euda, — Eyat
— u“p<”>av _ 5;,61“,
where the term with #* vanishes when being projected. With
some simple algebraic manipulations, we get

AR lf:"DpM"'p”“> = —n(‘,'pp(“"“p““*‘a“"). (C8)
Similarly, one can also argue for the same reasons
ARV PPty = AL (M ) (C9)
and
VAP(V) = Vi(p" — &)
= —u"V,.&, — E,(Vau”). (C10)

Once again, the first term vanishes when being projected.
After some manipulations, we get:

N V}L(pW]‘“p

VpsVp

u,,>) — _ngppwl ,punflvww_ (C11)

APPENDIX D: DERIVATION OF THE GENERAL
MOMENT EQUATION
The starting point is the general rank-n energy-momentum

moments of § f:

L d’p SfE! (1 itz | itn) (D1)
Py - (27T)3Ep pP P P

Taking the comoving derivative D = u*d,, which corre-
sponds to the time derivative in the fluid rest frame, and then
projecting onto the transverse space, we get

AM] Dpvl “Vn

AHT DS )
vl vn/(z )3E( f) p

ARy "D pvt P V)
+ AJUT /(2 VE, SfED p

d*p
+ A{)‘vl""'“fln 5f(D5r)p(v‘ pvz L pvn>
v | 2r)E, ’

3
— AMHn d’p ———(DSf)E] pip ... pind
e | (2n)’E,

/(2 )3E SfE r+1pu1puz,_,aun>

—rA Ml ,un /(2 )3E fgr lpa)p<u1pvz_._pvn)7
(D2)

where we defined the fluid acceleration by a* = Du", and
used the fact that DE, = —a,p" = —a,p™, along with

Eq. (C8). Using Eq. (B21), we can expand the last term on
the right-hand side:

Aﬁll ‘ﬁnDpV] “VUn
n n)
lVLll lfj / (2 )3E (Daf) VI pv

’p r > 0
- / W8f6p+'p<mpﬂ--~~w

/(2 vE, A AR

s5rEN(E2 —md)

P

d3
B 2n+1 ”/(2 )E,

% p<M1pM2 e Al (D3)

To express DS f in terms of § f, we can use the following form
of the Boltzmann equation:

Poufo+EDST +pHV,Sf =CIfl, (D4
in Eq. (D3) where we used the decomposition
0y = g;‘iaa = (—uuu“ + A;’;)aa =—-uD+V,. (D5)
This gives
ApL D

r+1p<u1puz cooghtn)

/ (2m )3E

/(2 )3E p p 7 pii 2 ,p/m

d3
_ SFEUE2—m?) pii pha . .. ghn)
2n+1/(2 )3E fp (pm)p p a

Ml /tn/
V] “Vn (2 )3E

9 Er= LA (v va L )
AR Vn/(z )3E(xfo) rpp P

Vn)

(c/»r IPVIPVZ"']?

AL ”/ o )3E (W HE P M ptip - p.
(D6)
Here, we define V,, = A} 9, as the projected derivative, corre-

sponding to the spatial gradient in the fluid rest frame. Using
the chain rule, we can pull V;, in the last term on the right-hand
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side of Eq. (D6) out of the integral:

3 3
ARUTHR D oV — _p d’p 8f5r+1 (i pua L ghn) _ pq d’p 5fgl’*1 (O 1 yH2 | yHn)
ViV, IO (27_[ )3E P p p o (27‘[)3Ep p p p p p

5r 1 g 2\ (1 2 L M) ANI / P c 51 Lo oova )
2n—|—1/(2 )E, (& —m’)pip a4+ Ay, n );E (F1E " pMp - p

d*p d’p
Al‘fl]mlﬂ:n / G )3E (akfo)gr lpxp ip” . .an) _ ACL,]---J:”V?»/ —ngp P p(mp .. .pvn>

(2n)’E,
+ Al‘fl]':".lﬂ:” %Bf(vkg;,l)ﬁmpmpw - 'PV”) + Aﬁll.:}ﬁ” / %ng;l(v)\pm )p(”‘ p-- -p“">
+ AN /(2 VE, 8fE pM (Vi p p - p). (D7)
Now, note that the second-last term on the right-hand side can be simplified as
Al:11~.~.~.!ﬁ” (zi;)é’Effgg—l(vxp(x))p(vlpvz . ~p””> — A/;]{-_-_-lf:n %ng;—lvk (pk _ 5pux)p(u,pu2 . .pvn)
_9/(2 pE, &P Y

since V;p* = 0 and 'V, €, = u* A%9,E, = 0. Here, we define 6 = 9,u” = V,u", which represents the expansion rate of the
fluid.
To briefly summarize, so far we have

d’p _
Alvf-ll ‘itln v1 Vn (2 )3E ;+1p iphe ... aktn — ra, f (27[)3Ep (ng[r) lp(o-pmpm . p“”>

d3
_ SFETL(EE — ) plttphta L . ghn) /
2n+1 Qn )3Epfn (& —m?)pHphe- - a +

p .
Gy, S e

_ / d3p (3xfo)5r71p’\p<“‘p"2 .. .pun AHinyg / d3p (ngrflp(Mp(wp\Jz .. .pvn>
(27 )3E, 4 e Qnm)E, ~ "
4 AP / 8f€r 1 (V (v V2 vn>) 0 / d3p gr(;f (1,12 )
U Qr )3E wpp p Q@r)E, * PP u
+ / d3p 3f(v)\gr*1)p<l>p<mp#2 . pMn)_ (D9)
(2n)’E, I
We continue to simplify the last three terms by calculating the gradients. Observe that
ViET = (r = DETHVLE)
= —(r — DE Vi (uap®)
= —(r = D& p* Vg
=—(r— 1)(‘,'1272(17("‘> + Eu") Vg
= —(r = D& PV, (D10)

using the normalization condition u,u® = —1. Plugging this into Eq. (D9) gives

d’p d’p
AP D ViV — 8 5r+1 (U1 2 | ) a/ S grfl (0 1 pl2 . pyhn)
by DP; nf(2n)3Ep fE€, ptp a ra @7)E, fE P p p
d3
—r n p
2n+1/J) @n)E,
d*p
(271')3Ep

_ d’p .
(ng; 1(83 _ m2)p<mpll«2 cog) 4 / (2n)3E C[f]gp 1p<M1pI/-2 . pMn)
(8xf0)€;71pkp(u1puz . p,u,n) _ /;]1 15:,, / o )3E fgr 1p )»>p(\)1 pvz . an>
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//Ln \V/ (Vi V2 Un <//*l Lo )
Bl /(2 R /(2 pE, P
—1)/‘ P SFEA(Vautg )@ pM pltipha . pitn). (D1D)
Qn)E,"”

Now, using Eq. (C11) proven in Appendix C, the third-to-last term on the right-hand side can be written as

r— U v v, d3p r
AL ”f an )3E a8 fE T P (Vaptp - p™) = _n/—(Zn)3E Esfp ptipie - . (D12)
P

Equation (D11) now becomes

3 3
AR D oV Ve — dp 5 gr-H (1 pi2 ., gHn) _ dp 5 gr—l (0 1 o2 | pya)
D Doy " | GaVE fE& T ptp a rao | GayE fE€ P p P
P 14

n d*p
—r
2n+1J) @2n)’E,

- d&’p -
(ngp l(ng _ m2)p<mpltz . aﬂn) + / (271)3Epc[f]gp ]p(p_lpuz . .pp_,,)

_/ p_ (8xfo)5"'p*p<’“p”2~-p’“‘”)—A’“"'“”VA/ “p_ sfey pMptip - p
(27.[ )3E17 p VieVn (27.[ )SEP P

3 3
_n/ d’p grafp(k)p(/ilpuz ~--V;LMM"> _9/ d’p (c/"rafp(/ilplbz ,.,p/in>
(%4 )3Ep P (%4 )3Ep P

d3
(r — 1)/ ﬁsfglr,_z(v)\ua)PMP(A)P(M'PM . ,pu,». (D13)
P

Applying Eq. (B21) again to the sixth term on the right-hand side, we get

ARy d’p sfE! iy g Ay d’p SFET I ptpripha . pin)
Vpev, VA (27[)3Ep 4 p P p P = Vv, VA (27T)3E P p pp P

_ INZR v/ [l Y | gr 1 2) plvi gz L AV
2n V] “Vn f (2 )3E f ( -m )p p

(D14)
Plugging this back into Eq. (D13) gives us

AW oVl — d’p CIAIE it pita . .. pita) d’p 9, £)ET i Jin)
o Dp, T = W 1€, p*p™ - p — ) E @ fo)E, p'p™p - p
p

gr+l Hn) _ n d3p
3 &P a r 3
(2 ) E 2n+1) (2n)E,

/(2 SEOE PP — A % G, $E, I P

dp d&p
NI sfEr! 2) v v L A / E18 £ p™ plit . )
2n+1 b A/(z VE, & (E—m?)p™ p | o, o ptipt Vi

5f gr= 1( mz)p("‘p‘” ot

Vn)

dsp d3p
-0 ETSfpitipha ... phad _ (p — / SFE2(v » (o) (A) (1 . phtn) D15
/(27[)3Ep p frp p (r ) (27T)3Ep f » (Vg )p*' p* p't pH2 p ( )

Using the definition of the moments, we get

d’p
AL Dp M = 2n)’E, ————CIf1&,  prpa ... pt /(2 VE, @Sy prptpte -
pr-l Hn A{)’-ll ‘i/:nv pkvl Uy 5 1(V prlizl “An) V prﬂz /Ln>)
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n n(r+2n+1
_raap:‘/‘ll l‘»t+r2n+1m 'Orml Mon— a,u,,)_ ( ) (e fn—1

Hn)
m+1 e

d3p d3p
— =B ersfpMplripre Loyt (p / SFEA(V , (@) ) i ppa L )
I’l/ (27{)3Ep p fP pp AU (l" ) —(27T)3Ep f » ( AU, )p prptp )4

(D16)
Now, we can further expand the term —n f (233)5;5 g;g Fp™ pli pia .,y as the follows:
»
d*p
— £S5 W) plr pra g, gy nd
n/ (27T)3E 4 fp pp au
/(2 )3E gr(Sf(Z (V)‘Mul)p p/j'] p/’l'l p”’H»l p//«n>>
i=1
2 &p " itk (N 40 oo it it Uit it )
+2n—1 (2n)’E SPSf ZAIJ(VWQ)F ptp ptpT pT T o pt ), D17)
P

i#]
where we used

| — 2
(lll"'pﬂn—laﬂn> I Za(ﬂr‘>p<lf-l"'pl’~i—lp#i+l"'pﬂlx) —
n

i=1

n
Z Al/«iﬂjaa)p()»plil "'pﬂi—]pﬂi+l"'pﬂ_/—l pﬂj+1--~pﬂn) , (D18)

p -
n2n—1) Py

in which a'® is an arbitrary transverse vector. This identity comes frmo Eq. (A6). Using Eq. (B21) to combine the angular
brackets, we can further expand Eq. (D17) as

_n/ d’p £78 ) i iz ., i)
(7)E, "

& u - s
= / (o )3E — (SfZ(VAu/‘l)p()\p,ul plhflp#m pu_,,)
i=1

n—1 d3p
2n—1J) 2n)’E,

5;,3f Z (qum)(g; _ mZ)p<u1~~~pu, N
i=1

2 EPp e _ et et L e
+ T (27_[)3Ep5p5fzAM'M’(VMa)PMPaPM plint plist ™ pltict pltisi pm
i#]
Z(n— 1) -
1)zf @r )sE E8 Y NI (Vaug)(E) — m?)pleppophist plm o A (D19)
i#]
which can be written in terms of the moments:
d*p
—n ErS ™ p pia LNy, tn)
/(2:1)313,, L8P ptp A
2 n
:_Z(quﬂl)p/\m Wit it AMI (T, 14, )pkam i i1 =L L e
2n—1
i#]
_ n—1 ipﬁh Wimt Hi 17 =1 N7 ) b 2(n — Z Mi/t/p"‘”‘ N L R e e R lvltn)
m—1 ' r+2 (2 _ 1)2
m*(n—1) ¢ 2m2(n—1) “ Qi Hit st f b
1 Z Hl"'ﬂi—llﬁm"'un—lVﬂn>uﬂi_ (2 1)2 ZAuiu,pr Pt i i1 =1 4] n—lvﬂn>ua
2n — — n—

i#]
n

n 2 n
et e n—1 ol i y o omi(n—1) i i1 :
- _ § :V,\u“",oﬁ“ Y P o § :px:lz Himt it =t o i) ﬁ § :,Or““ Hie1 fit1 /L,Haunu,)’ (D20)
i=1 i=1 i=1

024907-23



DASEN YE, SANGYONG JEON, AND CHARLES GALE PHYSICAL REVIEW C 110, 024907 (2024)

where
otV = vy (D21)

is the symmetric Navier-Stokes shear tensor. Since the angular bracket represents the traceless and symmetric combination of
the Lorentz indices, all permutations of the Lorentz indices inside the bracket give the same term. Thus,

d3p nn—1) | m?(n—1)n
_ TP erspM il pie Loy, i) — gy pMB ey, i) (=2 1 o) T et 1
n/ @nyE, PP M ner MO T T P 1 P
(D22)
Here, we can replace V, u"" using
0
Vil = o™ + o' + §M“, (D23)
where
o = 3(VFu’ — Vi) (D24)
is the antisymmetric vorticity tensor. Doing so gives us
d3p
—n ErS o™l pia g i) — oMt ) Mt ) 9 K1
/(2n)3EP 0P ptp ) Py A oy V300
2
— _n(n — 1) (b 2 o M1 M) + m”(n — Unp(m~~~/4u_zaun_mu)_ (D25)

2n—1 "2 2n—1 "7
Now let us go back to the general moment equation Eq. (D16) and take a look at the term —(r—
DS %ngpfﬂ(vwa )p' @ p? pl piz ... i) Using Eq. (D23), this term can be written as
P

d’p _ o
—(r— 1)/ (277)3E ng; Z(V)J/la)P( )pmp(“‘pm . ,pMn)
)4

&p 1)
— (- Doy 5 FET2ple) 8 i ) / SFET2(E2 — m)plht phta . )
(r )m/(ZnFEpfppppp p (2)3Efp(,, m*)piph . p
d*p -2 r=0 4 r=Dm?
— —(V— 1)0)La/m5f€p 2p< )p<)~)p<lllpl/-2,,,plln) _ Qpﬁl-l Mn_’_TQ ’l:l'lzll‘u. (D26)
p

Note that the term with w,, vanishes due to its antisymmetric property. We then proceed to expand the first term on the right-hand
side using Eq. (B22)

d’p
— (r— 1o, / —3f5’*2p(a>p()»)p(mpuz p)
Qr)yE, * 7

20r— 1) &

Mi Oy i i1+ on
a,'p +
21’1 3 Z a r
+ i=1

4r—1) ‘

G AFili g, QAL it it =1 [ j1 = o
2n+3)2n—1) 4 Z abr

=—(r— 1)0’)@,0

2 _ n 2 _
2m*“(r — 1) Z(T”"pamw“';llliﬂmun _ 4m*(r — 1) ZAMMJMHOCYAM Piet i1 -1 1 b

243 e (2n+3)2n—1) 4
_ (r =D —n pw] Hn=2 o Hn—1 Bn) + 2m2(r — D@m= Dn (B tn=2 o =1 Bn) __ 4(r — D —Dn (m =2 o Pt )
Cn+1)2n—1) r+2 Cn+1)R2n—-1) "7 2n+1)2n—-1)

(D27)

QL= i—] Hit1"Un

Note that each pair of summations give the traceless and symmetric combination of ¢/ and p;, . Thus this reduces

to

d3p r=2_ (o) (1 )
= (r = Dojg mfsfgp P pHplipt .l
p

n 2
=—(r— l)O'Aa)Oa)\M o M ZO—(Uvip'l:"l"'l’«i—lﬂiﬂ“'ﬂn)a 2m (}’ -D Z Bt Bim L i1+ o ) O

3 &= g3 L0 P
2 4
(r — D — Dn (b2 o i) g 2m”(r — )(n — Ln (141 tn2 g Pt ) m*(r— D@ —n |

_(2n—i-1)(2n—1)'0’+2 @Cn+1D2n—-1) " 2n+1)2n—-1)

Ml =2 o mn)

(D28)
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Since all permutations of the Lorentz indices inside the angular brackets give the same term, this can be simplified to

d’p —
—(r= 1oy, / m(gfgp 2ple) pd) plit pha . pha)
P

2r—Dn
— _ _ 1 o QALY [hn _
(r = Dozep, 5 o 3

_ G —D@w—Dn R Py )

o1 - 1aun>+

2m*(r — Dn
2n+3 Pr=2
2m%(r — D(n— n

a{pr a1 _y)
o,"

4 — _
<Ml"‘l¢n—20-/4n71ﬂrl>_m(r D@ = Dn (i1 2 g fon )

Cn+ DH@2n—1)""*2

2n+1D)2rn—-1)

2n+1D2rn—-1)
(D29)

Plugging all the above results back into Eq. (D16) and expressing everything in terms of the moments, we arrive at the final form

of the general moment equation:

d3p d3p
AR D oV — - gr—l (1 2 |, pitn) _/— P gr—l Ao ol L o)
v, PPr / @n)E, f1€, " p™'p p (271)3Ep( L )E p p p p
nn+r+1) . n
_ T pﬁill M=t i) +rm T 1p£lil Bt gltn) _ iy p:»ui My A;UAII ¥y v p/\vl Dy
n " 2 . n+r+2
_2n+1vmpﬁlﬂ +m 2n+lv(u1pﬁtjlu)_Tepﬁ, P
(r— Dm? o n@2n+2r+1) )
—(r— 1)O’Aap°‘)‘141 ;Ln T@ itlzlt _ TP?(M an—lor)tl' )

Mt
np; "y

s =1D1n—1Dn
M s Dan—1nr?

APPENDIX E: F INTEGRALS AND ¢, ¢, ¥ COEFFICIENTS

To evaluate the F integrals, we first need to know the
conservation laws. The stress-energy tensor is

o= / & fop'p’ + 7"+ TIAM. (E1)
(2n)’E,

The energy-momentum conservation law is

0=20,T"
d3p JTY nv v
= W(aufo)l? p’+ 09,7 + (V')
p

+ W' +a"), (E2)
where we used
A" =0, (u"u”)
=u"0 +a’, (E3)

and we specify fy = e .

In the time direction u,d, T"" = 0 yields
0= _leo_lw —0IT + 13,0D‘B — 2913,1, (E4)
where we defined
gn—2k(g2 2\k
& — , E5
/ (n >3E (& =m) 9

which can be evaluated in the local rest frame where £, —
E, and (§; —m?®) — p*. This integral is always finite when

w Cn+r)(n—1n
2n—12n+ )P+

(i1 tna 1 pan) +

(l’-l"'l‘-nfzo.,un—]ﬂn) +2 2—(1’ —Dn MMIWM'HO'M”
2n+3 *

2@n+42r —1)(n — 1)np(lll"'.uvn—2o-ﬂ/nflﬂn).
Cn+1)2n—1) !

(D30)

(

m # 0 and k > 0. In the m — 0 limit, the integral behaves as
log(mpB) forn = =2, and I, ; ~ T"*2.
Using integration by part, it can be shown that

d’p 2% 2%k
L= ———Er#pHe b
=6 e B
d*p -2+l 2k=1g ,—PBE,
Qn)’E, ” g
= 2k + Dly14-1+ (n = 2K, 1 ks (E6)
as long as all integrals are finite. In particular
BL1 =3ho+h,
=3(e + P). (E7)
In the spatial direction A9, T#" = 0 yields
VP 0
0= A28, + (VPTI) + a°T1 — I 17’3 + %13 N
(E8)

Solving for the time derivatives DB and a” = Du”, we
obtain

DB = xpf + Xéﬂ ("0, + 116), (E9)
where
B 5
XBlo = gm and Xﬁll = E (EIO)
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From Eq. (5), we get
1

Pl [—VPP— (V°II) — APQ, "
a TR P)[ ( ) 00,
1
~ —VPP — (VPII) — AP9, "
e+ P[ ( ) v Tt ]
1 (=V*P) (E11)
(e +P)? '
where we used
VB
Th 1 =—VP. (E12)
The zeroth-order acceleration is
vrp I Y
dy= -t —wp BT )
e+ P 3(e + P) B
and the first-order one satisfies
1
Pa’ = ——(=VPIl — A’V 7)) — ———TI(-V*P),
(E14)
where
1
=gl + P, (E15)

e+P °

Now, observe that the only nonzero F' integrals are the spin
0, 1, and 2 integrals. The scalar integral is

_ [ _dp
’_/ (2n)E,

d3
(2n YE,

£y (9fo)
—¢&r fo( EDB + ﬂ%(sj — m2))

B
=—Il.20DB + 591r+2,1

= G100 + ¢ (T 01, + OTD), (E16)
where
B L2061
o= (1., — 2B E17
Orio = 3 (21 Lo (E17)
and
I,
ol = — 20 (E18)
L

using Eq. (E9). Note that ¢o =0 and d)ﬁ? = —1. In the
massless limit, we have

d3p . Tr+2

= rlemp/T = . E19
i /(2n>3p e St D) (E19)

For the 14 moments, we need F_; whose coefficients are

T2
_110 = —4—, E20
$-1p0 72 (E20)
and

= —ip% (E21)

The vector integral is

d*p
7= | g P 0 fop"
/ (27[)3Ep P

f G g M Ep Va4 £

= Y (A0, 7" + VI 4+ a°T0), (E22)
where we used a slight different form of Eq. (E11):
3
Ba’ — VP = —I—[A{jaun‘“’ + (VT +a’MT].  (E23)
3,1
The coefficient is
I
'Q//r“ - _ +3,1 . (E24)
IR
Note that yro; = —1. Here, I3; = 3(¢ + P)T and ,; = 3P
can be used if needed. With r = —1 and m = 0,
Yo =—3 (E25)
The spin-2 integral is relatively 51mple
d’p
F°V — Er A 9 (o .y)
; f 2n)E, P (0. f0)p* p
d’p
= | —2_¢" X, 1, ) p?!
/ @n)E, 2 fo(BPY P Vaue)pp
= @007, (E26)
where
00 = EBlyar = E(5Ly31 + rlis) (E27)

is obtained with the help of the normalization condition
Eq. (B6) (see also Refs. [31,62]), and Eq. (E6). With r = —1
andm =0,

16 T* 8

P =S 0 T T

Let us check whether Landau conditions p, = 0 and p;’ =
0 are consistent with the F integrals. Setting » = 2 in Eq. (38),
we get

(E28)

02 0 4
Dpy=—=—F+m'—po— =6,
TR 3 3
—Vipt = ra,py

— Gl (E29)

Setting r = 1 in Eq. (49), we get

/41

M1
P

TR 3

— AV p’\”' a)f\“,o{‘

AMDp!t = —
_aapg
15
+30m°p0 — 4p2)a™
1
— VM
3’( 02

Using 7 = pj*, 11 = —m 2po/3 as well as

Fi=—(7"0,, +6011)

—m*V" o) — piof. (E30)

(E31)
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and
F'=—(AVn +an™ + VP +a’T),  (E32)
these evolution equations become
;4
Dp, = —T— — 59,02 — VAP% - rakpf‘, (E33)
R

and

ALDp) = === — 20pf" — o) pj
TR 3
4 M ! M A1
3P = §V p2 — proy . (E34)

Hence as long as the initial values for p, and p}" all vanish, p,
and p}' remain zero.
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