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Evolution equation for the energy-momentum moments of the nonequilibrium
density function and regularized relativistic third-order hydrodynamics
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In this work, we first derive the evolution equation for the general energy-momentum moment of δ f , where
δ f is the deviation from the local equilibrium phase-space density. We then introduce a relativistic extension
of regularized hydrodynamics developed in the nonrelativistic case by Struchtrup and Torrilhon that judiciously
mixes the method of moments and Chapman-Enskog expansion. Hydrodynamic equations up to the third-order
in gradients are then systematically derived within the context of a single species system and the relaxation-time
approximation. This is followed by a series of linear stability and causality analysis. For the massless particles
without any charge conservation, the third-order hydrodynamics is shown to be linearly stable and causal.
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I. INTRODUCTION

The investigation of the hot and dense matter gener-
ated during ultrarelativistic heavy-ion collisions, commonly
referred to as quark-gluon plasma (QGP), constitutes a promi-
nent area of study within modern high-energy nuclear physics.
One of the most challenging aspects of this study is the diffi-
culty to obtain an analytic or numerical solution to a micro-
scopic many-body QCD problem using first-principles calcu-
lations. What is accessible is the coarse-grained collective mo-
tion of the fluid-like system once approximate local thermal
equilibrium is achieved [1]. Accordingly, relativistic viscous
hydrodynamics is an indispensable theoretical tool for model-
ing the evolution of QGP in relativistic heavy-ion collisions.

The most intuitive and straightforward way of obtaining
a relativistic viscous hydrodynamics theory is to extend the
nonrelativistic Navier-Stokes theory to a relativistic one [2,3].
These theories are also commonly referred to as the “first-
order theories,” which only include terms up to first order in
gradients. However, the Navier-Stokes theory is unstable and
acausal when slightly perturbed around thermal equilibrium in
linear regime [4–7], and it has been shown that this instability
is in fact caused by the acausality of the theory [7–9]. For this
reason, the original Navier-Stokes theory has been regarded as
not suitable for relativistic hydrodynamics. However, recent
work (usually referred to as the BDNK theory) [10–16] has
shown that with some modification of the energy-momentum
tensor, the first-order theory can be indeed made causal and
stable. (See also Refs. [17,18] for relationship between BDNK
and the second-order theories.)

The most well-known linearly stable and causal relativistic
viscous hydrodynamics theory is the Müller-Isratel-Stewart
(MIS) theory [19–22] that used the method of moments gen-
eralizing Grad’s work on nonrelativistic hydrodynamics [23].
Unlike the first-order theories, the MIS theory contains terms
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that are up to second-order in gradients, thus it is also com-
monly referred to as the second-order theory. However, it has
been shown that even the MIS theory is not always linearly
stable and causal. Their transport coefficients must satisfy
a set of constraints to be so [7–9,24,25]. Furthermore, the
second-order theory is in fact, not unique. The original MIS
paper derived the second-order theory by considering entropy
production. More recent approaches start with the Boltzmann
equation and derive hydrodynamic equations either using the
Chapman-Enskog expansion [26–28], or the method of mo-
ments [29–31]. These approaches all give slightly different
results depending on the truncation scheme. One goal of this
work is to provide a framework where truncation scheme is
dictated by the theory itself.

There have also been several recent works that derived
the third-order hydrodynamics. One of the main motivation
to obtain the third-order hydrodynamics is the fact that the
third-order terms may significantly improve the agreement
with the kinetic theory results when the value of the spe-
cific shear viscosity η/s is large [27,32,33]. In Refs. [32,34]
positive entropy production rate argument was used to de-
rive third-order hydrodynamic equations. A Chapman-Enskog
approach to the third-order hydrodynamics was advocated in
Refs. [33,35,36]. Naively, these approaches result in parabolic
equations that may violate linear stability and causality as
shown in Ref. [37] but causality may be restored by promot-
ing gradients of viscous tensor to an independent variable
[38] following the prescription from Ref. [39]. In contrast,
the methods of moments was used to derive the third-order
equations in Refs. [37,39] which were shown to be linearly
stable and causal. In this work, we explore a method that
combines a certain features of the method of moments and the
Chapman-Enskog expansion. This will allow us to systemat-
ically derive relativistic viscous hydrodynamic equations up
to the third order starting from the evolution equations of the
energy-momentum moments.

This is accomplished by generalizing the nonrelativistic
13-moment regularized hydrodynamics (R13) developed by
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Struchtrup and Torrilhon [40–43], to the relativistic regu-
larized hydrodynamics. In short, the regularization method
combines both the method of moments and Chapman-Enskog
expansion by applying a Chapman-Enskog-like expansion to
the energy-momentum moments instead of the phase-space
density function. Using this method, we derive the third-order
hydrodynamic equations followed by a linear stability and
causality analysis for the massless case with a similar pro-
cedure outlined in Ref. [37].

This paper is organized as follows: in Sec. II we introduce
the conservation laws to mainly set the notations. In Sec. III,
we present the derivation of the evolution equations for gen-
eral energy-momentum moments of the phase-space density.
The regularization method is also introduced in this section.
In Sec. IV, we obtain the Chapman-Enskog-like expansion of
the energy-momentum moments up to the fourth momentum
rank to prepare for the derivation of the third-order hydrody-
namics. In Sec. V we first briefly discuss the second-order
equations obtained using regularization. Then, we proceed
to the derivation of the third-order theory before discussing
the special case of massless particles (m = 0) in Sec. VI.
Section VII contains our linear analysis of the third-order
hydrodynamics with m = 0. We demonstrate the linear sta-
bility and causality of the theory. Finally, we conclude this
work in Sec. VIII. Appendixes A–E contains mathematical
and computational details on the projectors, irreducible mo-
mentum polynomials, some derivative identities, details of the
derivation of the general moment equation, and the integrals
with the equilibrium density function.

Throughout this paper, we consider only one parti-
cle species. We use the natural units c = h̄ = kB = 1,
and adopt the mostly positive Minkowski metric gμν =
diag(−1, 1, 1, 1). To convert tensorial quantities to the mostly
negative metric, each subscripted (covariant) index is to be
multiplied by −1 except the derivatives which work in the
opposite way. In particular, for the Navier-Stokes tensor σμν

(which involves derivatives of the flow velocity), this means
that σμν → −σμν , σμν → −σμν , but σ ν

μ remains unchanged.
The expansion rate defined as θ = ∂μuμ (where uμ is the
local fluid velocity) and the local time derivative defined as
D = uμ∂μ also remain the same.

II. CONSERVATION LAWS

The evolution equations of a hydrodynamics theory can
be categorized into two parts: the conservation laws and the
moment equations. The conservation laws are the continuity
equations related to the energy-momentum conservation, and
any other charge conservations. In this work, we only consider
a single species system that does not possess any additional
conserved charges (for instance, a real scalar λφ4 theory) for
the sake of simplicity. Hence, only the energy-momentum
conservation is relevant:

∂μT μν = 0, (1)

where the energy-momentum tensor is further decomposed as

T μν = εuμuν + (P + �)�μν + πμν. (2)

The fluid 4-velocity uμ is defined by

T μνuν = −εuμ, (3)

where ε is the local energy density and the fluid 4-velocity
uμ is normalized to uμuμ = −1. The thermal pressure at local
equilibrium is subject to the equation of state, P = P(ε), and
� is the bulk pressure. The local 3-metric, �μν = gμν + uμuν ,
is the projector that extracts the components of any 4-vector
that is transverse to uμ. The transverse, symmetric, and trace-
less rank-2 tensor πμν is the shear-stress tensor.

It is convenient to decompose Eq. (1) into the timelike and
the spacelike components with respect to the fluid 4-velocity
uμ. Applying uν to ∂μT μν = 0 yields the timelike component

Dε + (ε + P + �)θ + παβσαβ = 0. (4)

Applying �λ
ν to ∂μT μν = 0 yields the spacelike components

(ε + P + �)Duλ + ∇λ(P + �) + �λ
ν∂μπμν = 0, (5)

where we defined the relativistic substantial derivative (local
time derivative) D = uμ∂μ, the local spatial derivative ∇μ =
�μν∂ν , the expansion rate θ = ∂μuμ = ∇μuμ, the Navier-
Stokes tensor σμν = ∇〈μuν〉, and the fluid acceleration Duλ =
aλ. The angular bracket around a set of indices represents
the transverse (with respect to uμ), symmetric, and traceless
combination of the indices. In practice, this can be obtained
by applying the projector:

A〈μ1···μn〉 = �μ1···μn
ν1···νn

Aν1···νn , (6)

where Aμ1···μn is an arbitrary rank-n tensor. Some useful facts
about the projectors such as the explicit form for n = 2, 3, and
recursive relationships can be found in Appendix A.

Equations (4) and (5) enforce the energy conservation and
momentum conservation, respectively. Together, they consti-
tute the evolution equations for ε and uμ. However, at this
point, the evolution equations for � and πμν are not yet
developed. In the following sections, we do so in the context
of a single-species kinetic theory.

III. GENERAL METHODS

A. Energy-momentum moments

To obtain the evolution equations for the bulk pressure �

and the shear tensor πμν , one can start with the kinetic theory
equation

pμ∂μ f = C[ f ], (7)

where f (x, p) is the phase-space density, and C[ f ] is the
collision integral. As stated, we consider a system with a
single-particle species. This is also consistent with having no
other conserved quantities. The energy-momentum tensor is
defined as

T μν =
∫

d3 p

(2π )3Ep
pμ pν f , (8)

with Ep = p0 = (p2 + m2)1/2. This tensor satisfies the conti-
nuity equations ∂μT μν = 0 as long as the collisions conserve
energy and momentum.
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By further decomposing the phase-space density as the
local equilibrium part and the correction

f (x, p) = f0(x, p) + δ f (x, p), (9)

where f0(x, p) is the local equilibrium density, we can further
define the ideal fluid part of the energy-momentum tensor

T μν
0 =

∫
d3 p

(2π )3Ep
pμ pν f0 = εuμuν + P�μν, (10)

and the dissipative part

δT μν =
∫

d3 p

(2π )3Ep
pμ pνδ f = ��μν + πμν. (11)

The local energy density ε and the flow velocity uμ are defined
by the Landau matching condition

T μνuν = T μν
0 uν = −εuμ. (12)

As one can see, various components of T μν are obtained as
the energy-momentum moments of f0 and δ f . Accordingly,
their evolution equations can be obtained from the kinetic
theory equation Eq. (7). To obtain the evolution equations for
� and πμν , it is convenient to define the energy-weighted
rank-n tensor moment of δ f as

ρμ1···μn
r =

∫
d3 p

(2π )3Ep
δ f E r

p p〈μ1 pμ2 · · · pμn〉, (13)

where Ep = −uμ pμ is the energy of a particle in the rest frame
of a fluid cell, and p〈μ1 pμ2 · · · pμn〉 = �μ1···μn

ν1···νn
pν1 pν2 · · · pνn is

the symmetric and traceless combination of p〈μ〉 = �μ
ν pμ.

Here, the integer n is the rank of the tensor, and E r
p is the

energy weight in which the integer exponent r indicates the
energy order. In the fluid-cell rest frame, the local equilib-
rium density function f0 takes the form of f0 = 1

eβEp−ζ
, in

which β = 1/T is the inverse temperature, and ζ could be
1 (Bose-Einstein statistics), 0 (Boltzmann statistics), or −1
(Fermi-Dirac statistics).

Using the decomposition pμ = Epuμ + p〈μ〉, the Landau
matching condition, Eq. (12), becomes the following two con-
ditions on the moments

ρ2 = ρ
μ
1 = 0. (14)

In terms of the energy-momentum moments, the bulk pressure
is given by

� = −m2

3
ρ0, (15)

and the shear tensor is given by

πμν = ρ
μν
0 . (16)

B. Derivation of the general moment equation

The evolution equation for ρμ1···μn
r can be obtained by

applying the local time derivative D = uμ∂μ to ρμ1···μn
r and

then using the kinetic equation Eq. (7) with f = f0 + δ f . In
this section, we outline the derivation of the evolution equa-
tion for the general energy-momentum moment ρμ1···μn

r . Full
derivation can be found in Appendix D.

Applying the local time derivative to ρμ1···μn
r in Eq. (13),

and then projecting onto the transverse space, we get

�μ1···μn
ν1···νn

Dρν1···νn
r

= �μ1···μn
ν1···νn

∫
d3 p

(2π )3Ep
(Dδ f )E r

p p〈ν1 pν2 · · · pνn〉

− n
∫

d3 p

(2π )3Ep
δ f E r+1

p p〈μ1 pμ2 · · · aμn〉 − r�μ1···μn
ν1···νn

aσ

×
∫

d3 p

(2π )3Ep
δ f E r−1

p p〈σ 〉 p〈ν1 pν2 · · · pνn〉, (17)

where we defined the fluid acceleration aμ = Duμ, and used
the fact that uμDuμ = 0 so that DEp = −aσ pσ = −aσ p〈σ 〉,
and also

�μ1···μn
ν1···νn

Dp〈ν1··· pνn〉 = −nEp p〈μ1··· pμn−1 aμn〉, (18)

which is derived in Appendix C. Using the identity

p〈λ〉 p〈μ1 · · · pμn〉 = p〈λ pμ1 · · · pμn〉 + n

2n + 1

(E2
p − m2)

× p〈μ1 pμ2 · · · pμn−1�μn〉λ (19)

proven in Appendix B, we can expand the last term on the
right-hand side to get

�μ1···μn
ν1···νn

Dρν1···νn
r

= �μ1···μn
ν1···νn

∫
d3 p

(2π )3Ep
(Dδ f )E r

p p〈ν1 pν2 · · · pνn〉

− n
∫

d3 p

(2π )3Ep
δ f E r+1

p p〈μ1 pμ2 · · · aμn〉

− raσ

∫
d3 p

(2π )3Ep
δ f E r−1

p p〈σ pμ1 pμ2 · · · pμn〉

− r
n

2n + 1
aσ

∫
d3 p

(2π )3Ep
δ f E r−1

p

(E2
p − m2

)
× p〈μ1 pμ2 · · ·�μn〉σ . (20)

For Dδ f , we can use the following form of the Boltzmann
equation

pμ∂μ f0 + EpDδ f + p〈μ〉∇μδ f = C[ f ], (21)

where C[ f ] is the collision term of the relativistic Boltzmann
equation, and we used

pμ∂μ = EpD + p〈μ〉∇μ. (22)
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This gives

�μ1···μn
ν1···νn

Dρν1···νn
r = −n

∫
d3 p

(2π )3Ep
δ f E r+1

p p〈μ1 pμ2 · · · aμn〉 − raσ

∫
d3 p

(2π )3Ep
δ f E r−1

p p〈σ pμ1 pμ2 · · · pμn〉

− r
n

2n + 1

∫
d3 p

(2π )3Ep
δ f E r−1

p

(E2
p − m2)p〈μ1 pμ2 · · · aμn〉 + �μ1···μn

ν1···νn

∫
d3 p

(2π )3Ep
C[ f ]E r−1

p p〈ν1 pν2 · · · pνn〉

− �μ1···μn
ν1···νn

∫
d3 p

(2π )3Ep
(∂λ f0)E r−1

p pλ p〈ν1 pν2 · · · pνn〉 − �μ1···μn
ν1···νn

∫
d3 p

(2π )3Ep
(∇λδ f )E r−1

p p〈λ〉 p〈ν1 pν2 · · · pνn〉.

(23)

The first three lines of Eq. (23) can be expressed in terms of the energy-momentum moments. The term with the collision
integral is in general a nonlinear functional of δ f that will not admit a simple expression. In the rest of this work, we use the
relaxation-time approximation so that this term can be expressed in terms of the energy-momentum moments. The line involving
the equilibrium density f0 will not result in the energy-momentum moments. Instead, it gives the constitutive relationships. The
rest of the derivation is then to deal with the last line. Details of transferring ∇λ from δ f to the other factors can be found in
Appendix D. The final result is

�μ1···μn
ν1···νn

Dρν1···νn
r =

∫
d3 p

(2π )3Ep
C[ f ]E r−1

p p〈μ1 pμ2 · · · pμn〉 −
∫

d3 p

(2π )3Ep
(∂λ f0)E r−1

p pλ p〈μ1 pμ2 · · · pμn〉

− n(2n + r + 1)

2n + 1
ρ

〈μ1···μn−1
r+1 aμn〉 + rm2 n

2n + 1
ρ

〈μ1···μn−1
r−1 aμn〉 − raλρ

λμ1···μn
r−1 − �μ1···μn

ν1···νn
∇λρ

λν1···νn
r−1

− n

2n + 1
∇〈μ1ρ

μ2···μn〉
r+1 + m2 n

2n + 1
∇〈μ1ρ

μ2···μn〉
r−1 − n + r + 2

3
θρμ1···μn

r − (r − 1)σλαρ
αλμ1···μn
r−2

+ (r − 1)m2

3
θρ

μ1···μn
r−2 − n(2n + 2r + 1)

2n + 3
ρλ〈μ1···μn−1

r σ
μn〉
λ − nρλ〈μ1···μn−1

r ω
μn〉
λ

− (2n + r)(n − 1)n

(2n − 1)(2n + 1)
ρ

〈μ1···μn−2
r+2 σμn−1μn〉 + 2m2 (r − 1)n

2n + 3
ρ

λ〈μ1···μn−1
r−2 σ

μn〉
λ

− m4 (r − 1)(n − 1)n

(2n + 1)(2n − 1)
ρ

〈μ1···μn−2
r−2 σμn−1μn〉 + m2 (2n + 2r − 1)(n − 1)n

(2n + 1)(2n − 1)
ρ〈μ1···μn−2

r σμn−1μn〉. (24)

Here, ωμν = 1
2 (∇μuν − ∇νuμ) is the antisymmetric vorticity

tensor. For n = 0, 1, 2, 3, 4, Eq. (24) agrees with the results
obtained by Denicol and others [31,39] as they should. This
general evolution equation was first derived by one of the
authors in Ref. [44]. As far as we know, this was the first
time the evolution equation for a general energy-momentum
moment was explicitly derived in literature. This equation also
appeared in a recent paper [45]. Even though we eventually
use Boltzmann statistics, Eq. (24) is valid for quantum statis-
tics as well.

C. Regularization methods

As one can see in Eq. (24) the time evolution of ρμ1···μn
r in-

volves ρμ1···μn
r , ρμ1···μn

r−2 , ρμ1···μn−1
r±1 , ρμ1···μn−2

r±2 , ρμ1···μn−2
r , ρμ1···μn+1

r−1 ,
and ρ

μ1···μn+2
r−2 . As such, Eq. (24) represents an infinite set of

coupled partial differential equations. To get a closed set of
equations for a finite number of moments, one must use a trun-
cation scheme. The two well-known truncation schemes are
the method of moments [20–23], and the Chapman-Enskog
method [26]. In the method of moments, one assumes that δ f
is such that all nth rank moments are proportional to each
other regardless of their energy weights [39]. On the other
hand, the Chapman-Enskog method expands δ f using the

Boltzmann equation as the recursion equation to obtain δ f as
a derivative expansion.

In a series of papers [40–43], Struchtrup and Torrilhon
developed a novel method they named the “regularized hy-
drodynamics” that combines both the method of moments
and the Chapman-Enskog expansion. This technique applies
a Chapman-Enskog-like expansion directly to the energy-
momentum moments instead of δ f , excluding the moments
that serve as the dynamic hydrodynamic variables. This tech-
nique provides a more systematic way to produce a set of
equations to any given order in the expansion parameter ε

without introducing any additional assumptions.
In the usual Chapman-Enskog method, the collision term

is scaled as C[ f ] → (1/ε)C[ f ] and the nonequilibrium part
of the phase-space density is expanded as

δ f =
∞∑

n=1

εnδ f|n. (25)

Here and here after, the vertical bar in the subscript indi-
cates the relevant ε order. These are then plugged into the
Boltzmann equation. Collecting terms having the same power
of ε, the nth order piece δ f|n can be found iteratively involving
a maximum of n spatial derivatives of β and uμ. The resulting
equations are at best parabolic and hence potentially acausal.
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This can lead to instability unless additional evolution equa-
tions for �, πμν and other dissipative currents are postulated
using the constitutive relationships [4–9,38].

In the method of Struchtrup and Torrilhon, instead of δ f ,
the energy-momentum moments of δ f are expanded in powers
of ε

ρμ1···μn
r =

∞∑
n=1

εnρ
μ1···μn
r|n . (26)

Working out the order-by-order solution by putting Eq. (26)
in Eq. (24) would be completely equivalent to the usual
Chapman-Enskog method. What we would like to do differ-
ently, however, is not to expand the hydrodynamic variables,
such as � and πμν , whenever they occur while expanding all
other moments in terms of them. However, at higher orders of
ε, there is no guarantee that � and πμν [which are O(ε)] are
the only relevant dynamic variables. As we see below, we may
need to promote some higher moments to be dynamic to get a
closed set of equations.

IV. CHAPMAN-ENSKOG EXPANSION OF THE MOMENTS

In this section, we work out the ε expansion of the energy-
momentum moments up to n = 4 within the relaxation-time
approximation. The results from this section will be used in
the later sections to build hydrodynamic equations.

To determine the ε order of each ρμ1···μn
r explicitly, we

consider the relaxation-time approximation for the collision
term

C[ f ] = − Ep

ετR
δ f (x, p), (27)

where we have explicitly indicated the expansion parameter
ε. The relaxation time τR is assumed to be a constant. The
parameter ε is set to one at the end of calculations. Putting
Eqs. (26) and (27) into the general moment equation Eq. (24)
and collecting the O(ε0) terms, we get the first-order coeffi-
cient function

ρ
μ1···μn
r|1 = −τRFμ1···μn

r−1|0 , (28)

where we defined the equilibrium density term to be

Fμ1···μn
r =

∫
d3 p

(2π )3Ep
E r

p p〈μ1 · · · pμn−1 pμn〉 pλ∂λ f0. (29)

Here, ρ
μ1···μn
r|1 is the O(ε) part of ρμ1···μn

r and Fμ1···μn
r−1|0 is the

O(ε0) part of Fμ1···μn
r−1 . Using Eq. (22), one can show that

pλ∂λ f0 = − f0(1 + ζ f0)pλ∂λ(Epβ ) can contain only 1, p〈μ1〉,
p〈μ1 pμ2〉. Hence the orthogonality of the irreducible poly-
nomials p〈μ1 · · · pμn〉 [cf. Eq. (B6) in Appendix B and also
Ref. [30]] demands that

Fμ1···μn
r = 0 for n � 3. (30)

For n = 0, 1, 2, we get

Fr = φr|0θ + φπ�
r|1 (πγρσγρ + θ�), (31)

Fμ
r = ψr|1

(
�μ

γ ∂ρπ
ργ + ∇μ� + aμ�

)
, (32)

Fμν
r = ϕr|0σμν, (33)

where the coefficient functions φ, ψ , and ϕ are functions of β

only. Derivations can be found in Appendix E. Observe that
Fr , Fμ

r , and Fμν
r all involve gradients and time derivatives of

the hydrodynamic variables. Consequently, they can be de-
scribed as physical thermodynamic forces that are driving the
evolution of the system. In deriving the above expressions, we
have used Eq. (4) to express Dβ in terms of spatial derivatives.
The acceleration aμ = Duμ can also be expressed in terms of
spatial derivatives using Eq. (5) but we leave it as it is for
brevity. Details can be found in Appendix E.

From Eqs. (28) and (30), it follows immediately
that ρ

μ1···μn
r|1 = 0 for n � 3. One should also note that

ρ
μ

r|1 = 0 because there is no number (mass) conservation.
Hence

ρr, ρ
μ1μ2
r = O(ε), (34)

ρμ1···μn
r = O(ε2) for n = 1 and n � 3. (35)

In fact, only n = 1, 3, 4 moments are O(ε2). To see this, note
that in Eq. (24), the lowest momentum order on the right-hand
side is n − 2. Hence, for n = 5, 6, the lowest momentum order
appearing on the right-hand side is n = 3 and n = 4, respec-
tively. This implies that the right-hand sides for n = 5, 6 are at
most O(ε2), which further implies that ρ

μ1···μn
r|2 /(ετR) = 0 for

n = 5, 6 since there are no O(ε) terms in the right-hand side
of Eq. (24). Equivalently,

ρμ1···μn
r = O(ε3) for n = 5, 6. (36)

Continuing this way, it can be established that, in general,

ρμ1···μn
r = O(ε�n/2�) for n � 3, (37)

where �n/2� is the closest integer that is larger than or equal
to n/2.

The second-order hydrodynamics theory is based on en-
ergy density ε, fluid flow velocity uμ, shear stress tensor πμν ,
and bulk viscous pressure �. From Eq. (34) one can see that
� and πμν are O(ε). Therefore, in this method, the second-
order theory includes the O(ε0) terms and the O(ε) terms. To
obtain the third-order theory, we need to include the O(ε2)
terms.

Since we have now established the ε order of the energy-
momentum moments, we do not have to carry ε around from
here on although we keep referring to the ε order of specific
terms. For the relaxation-time approximation, the ε order is
the same as the number of τR factors.

As stated, the goal of this section is to work out the ε

expansion of the energy-momentum moments up to n = 4. We
start with the scalar moments. The general equation of motion
for an arbitrary scalar moment (n = 0) is

Dρr = −ρr

τR
− Fr−1 + 1

3
[(r − 1)m2ρr−2 − (2 + r)ρr]θ

− ∇λρ
λ
r−1 − raλρ

λ
r−1 − (r − 1)σλαραλ

r−2. (38)

Collecting the O(ε0) terms, we get

ρr|1 = −τRFr−1|0 = −τRφr−1|0θ. (39)
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The scalar moment up to and including O(ε2) terms are then

ρr = τR

{
−Fr−1 − Dρr|1 + 1

3

[
(r − 1)m2ρr−2|1 − (2 + r)ρr|1

]
θ − (r − 1)σλαραλ

r−2|1

}
+ O(ε3), (40)

where we used the facts that τR = O(ε), ρλ
r−1 = O(ε2), and Fr−1 contains both the O(ε0) terms and O(ε) terms. The time

derivative term is

Dρr|1 = D(τRφr−1|0θ )

= τR

(
∂φr−1|0

∂β

)
χβ|0θ2 + τRφr−1|0Dθ + O(ε2), (41)

where χβ|0 is defined in Appendix E. To keep the theory from becoming parabolic, the right-hand side of Eq. (40) should not
contain any derivatives of thermodynamic variables upon using suitable constitutive relationships. To deal with Dθ = D∂μuμ,
which contains second derivatives, we can use

ρ0 = − 3

m2
�

= τR

[
−F−1 − τR

(
∂φ−1|0

∂β

)
χβ|0θ2 − τRφ−1|0Dθ − 1

3
(m2ρ−2|1 + 2θρ0|1)θ + σλαραλ

−2|1

]
+ O(ε3), (42)

which will be used only in the context of obtaining the ε expansion of other moments. Replacing Dθ in Eq. (41) with Dθ in
Eq. (42), we get

ρr = − 3

m2
�r� + τR

[
−(Fr−1|1 − �rF−1|1) − τR

(
∂φr−1|0

∂β
− �r

∂φ−1

∂β

)
χβ|0θ2

−
(

2 + r

3
ρr|1 − 2�r

3
ρ0|1

)
θ + m2

3
[(r − 1)ρr−2|1 + �rρ−2|1]θ − σλα

[
(r − 1)ραλ

r−2|1 + �rρ
αλ
−2|1

]] + O(ε3), (43)

where �r = φr−1|0/φ−1|0. Using the first-order constitutive relationships

� = m2

3
τRφ−1|0θ + O(ε2), (44)

πμν = −τRϕ−1|0σμν + O(ε2), (45)

ρr|1 = − 3

m2
�r�, (46)

ρr can then be expressed solely in terms of � and πμν without involving any derivatives or an explicit factor of τR.
From Eq. (24), the evolution equation for the general rank-2 moment can obtained as

�μ1μ2
ν1ν2

Dρν1ν2
r = −ρμ1μ2

r

τR
− Fμ1μ2

r−1 + 2

15
[−(4 + r)ρr+2 + m2(2r + 3)ρr − m4(r − 1)ρr−2]σμ1μ2 − raαρ

αμ1μ2
r−1

+ 2

5

(
rm2ρ

〈μ1
r−1a μ2〉 − (r + 5)ρ〈μ1

r+1a μ2〉) − 2

5

(∇〈μ1 ρ
μ2〉

r+1 − m2∇〈μ1 ρ
μ2〉

r−1

) − 2ω
〈μ1
λ ρ μ2〉λ

r − (r − 1)σλαρ
αλμ1μ2
r−2

+ 2

7

[−(2r + 5)σ 〈μ1
λ ρ μ2〉λ

r + 2(r − 1)m2σ
〈μ1
λ ρ

μ2〉λ
r−2

] + 1

3

[
m2(r − 1)ρμ1μ2

r−2 − (4 + r)ρμ1μ2
r

]
θ − �μ1μ2

ν1ν2
∇λρ

λν1ν2
r−1 ,

(47)

where Fμν
r = Fμν

r|0 = ϕr|0σμν . Following the similar procedure as in the scalar case, we obtain

ρμ1μ2
r = �rρ

μ1μ2
0 + τR

[
− θ

3

(
rρμ1μ2

r|1 − (r − 1)m2ρ
μ1μ2
r−2|1 − �rm2ρ

μ1μ2
−2|1

)
+ 2

7

(−2rσ 〈μ2
λ ρ

μ1〉λ
r|1 + (2r − 2)m2σ

〈μ2
λ ρ

μ1〉λ
r−2|1 + 2m2�rσ

〈μ2
λ ρ

μ1〉λ
−2|1

)
+ 2

15
σμ1μ2

[−(4 + r)ρr+2|1 + (2r + 3)m2ρr|1 − (r − 1)m4ρr−2|1
]

−�r
2

15
σμ1μ2 (−4ρ2|1 + 3m2ρ0|1 + m4ρ−2|1) + τR

(
∂ (ϕr−1|0)

∂β
− �r

∂ (ϕ−1|0)

∂β

)
χβ|0θσμ1μ2

]
+ O(ε3), (48)
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where �r = ϕr−1|0/ϕ−1|0 and we used the ε expansion of πμν = ρ
μν
0 to replace �μ1μ2

ν1ν2
Dσ ν1ν2 . Upon using Eqs. (44), (45), and

(46), ρμ1μ2
r can be reexpressed solely in terms of πμν and � without their derivatives or an explicit factor of τR.

For the O(ε2) moments, we start with the vector moments whose evolution equation is given by

�μ1
ν1

Dρν1
r = −ρμ1

r

τR
− Fμ1

r−1 + 1

3

[
(r − 1)m2ρ

μ1
r−2 − (3 + r)ρμ1

r

]
θ − raαρ

αμ1
r−1 − �μ1

ν1
∇λρ

λν1
r−1 − ω

μ1
λ ρλ

r

− (r − 1)σλαρ
αλμ1
r−2 + 1

3
(rm2ρr−1 − (r + 3)ρr+1)aμ1 − 1

3
(∇μ1ρr+1 − m2∇μ1ρr−1)

+ 1

5

[−(2r + 3)ρλ
r + 2(r − 1)m2ρλ

r−2

]
σ

μ1
λ . (49)

Since ρμ
r = O(ε2), the O(ε) terms on the right-hand-side must add up to zero, yielding

ρμ1
r = −τRψr−1|1

(
�μ

γ ∂ρπ
ργ + ∇μ1� + aμ1�

) + τR

[
− �μ1

ν1
∇λρ

λν1
r−1|1 − ra|0αρ

αμ1
r−1|1

− 1

3
(∇μ1ρr+1|1 − m2∇μ1ρr−1|1) + 1

3
[rm2ρr−1|1 − (r + 3)ρr+1|1]aμ1

|0

]
+ O

(
ε3

)
. (50)

Further details can be found in Appendix E. Unlike the O(ε) moments, this cannot be expressed solely in terms of � and πμν

without involving derivatives.
For the rank-3 moments, we have

�μ1μ2μ3
ν1ν2ν3

Dρν1ν2ν3
r = −ρμ1μ2μ3

r

τR
+ 1

3

[−(5 + r)ρμ1μ2μ3
r + (r − 1)m2ρ

μ1μ2μ3
r−2

]
θ

+ 6

35

[−(6 + r)ρ〈μ1
r+2σ

μ2μ3〉 + (2r + 5)m2ρ〈μ1
r σ μ2μ3〉 − (r − 1)m4ρ

〈μ1
r−2σ

μ2μ3〉] − 3ω
〈μ1
λ ρ μ2μ3〉λ

r

+1

3

[−(2r + 7)σ 〈μ1
λ ρ μ2μ3〉λ

r + 2(r − 1)m2σ
〈μ1
λ ρ

μ2μ3〉λ
r−2

] − raαρ
αμ1μ2μ3
r−1

− 3

7

(∇〈μ1 ρ
μ2μ3〉

r+1 − m2∇〈μ1 ρ
μ2μ3〉

r−1

) + 3

7

[
rm2ρ

〈μ1μ2
r−1 a μ3〉 − (r + 7)ρ〈μ1μ2

r+1 a μ3〉]
−�μ1μ2μ3

ν1ν2ν3
∇λρ

λν1ν2ν3
r−1 − (r − 1)σλαρ

αλμ1μ2μ3
r−2 . (51)

As before, the O(ε) terms on the right-hand side must add up to zero, yielding

ρμ1μ2μ3
r = −3τR

7

[∇〈μ1ρ
μ2μ3〉
r+1|1 + (r + 7)ρ〈μ1μ2

r+1|1 a μ3〉 − m2∇〈μ1 ρ
μ2μ3〉

r−1|1 − rm2ρ
〈μ1μ2
r−1|1 a μ3〉] + O(ε3). (52)

Again, this cannot be expressed solely in terms of � and πμν without any derivatives. One may take this as the first sign that the
rank-1 and rank-3 moments need to be promoted to dynamic variables, as we do below.

For the rank-4 moments, we have

�μ1μ2μ3μ4
ν1ν2ν3ν4

Dρν1ν2ν3ν4
r

= −ρμ1μ2μ3μ4
r

τR
− raαρ

αμ1μ2μ3μ4
r−1 − 4

9

[
(r + 9)ρ〈μ1μ2μ3

r+1 a μ4〉 − rm2ρ
〈μ1μ2μ3
r−1 a μ4〉] − 4

9

(∇〈μ1 ρ
μ2μ3μ4〉

r+1 − m2∇〈μ1 ρ
μ2μ3μ4〉

r−1

)
−�μ1μ2μ3μλ

ν1ν2ν3ν4
∇λρ

λν1ν2ν3ν4
r−1 + 4

21

[−(8 + r)ρ〈μ1μ2
r+2 σ μ3μ4〉 + (2r + 7)m2ρ〈μ1μ2

r σ μ3μ4〉 − (r − 1)m4ρ
〈μ1μ2
r−2 σ μ3μ4〉]

− 4ω
〈μ1
λ ρ μ2μ3μ4〉λ

r − (r − 1)σλαρ
αλμ1μ2μ3μ4
r−2 + 4

11

[−(2r + 9)σ 〈μ1
λ ρ μ2μ3μ4〉λ

r + 2(r − 1)m2σ
〈μ1
λ ρ

μ2μ3μ4〉λ
r−2

]
+ 1

3

[
(r − 1)m2ρ

μ1μ2μ3μ4
r−2 − (6 + r)ρμ1μ2μ3μ4

r

]
θ. (53)

Collecting all O(ε) terms on the right-hand side, the rank-4 moments up to O(ε2) are given by

ρμ1μ2μ3μ4
r = τR

[−(8 + r) 4
21ρ

〈μ1μ2
r+2|1 σ μ3μ4〉 + (7 + 2r) 4

21 m2ρ
〈μ1μ2
r|1 σ μ3μ4〉 −(r − 1) 4

21 m4ρ
〈μ1μ2
r−2|1 σ μ3μ4〉] + O(ε3), (54)

which can be expressed using only π 〈μ1μ2πμ3μ4〉 and without an explicit factor of τR.
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V. RELATIVISTIC REGULARIZED
HYDRODYNAMICS UP TO O(ε2 )

Within the relaxation-time approximation, the full evolu-
tion equation for the bulk pressure � = −(m2/3)ρ0 can be
obtained by setting r = 0 in Eq. (38):

D� = −�

τR
+ m2

3
[φ−1|0θ + φπ�

−1|1(θ� + πγρσγρ )]

+ m2

3
∇λρ

λ
−1 − 2

3
θ� − m2

3
σλαρλα

−2 + m4

9
θρ−2. (55)

From this, one can identify the bulk viscosity as ζ =
τRm2φ−1|0/3. Similarly, the full evolution equation for πμν =
ρ

μν
0 is obtained from Eq. (47) by setting r = 0:

�
μν
αβDπαβ = −πμν

τR
− (ϕ−1|0σμν ) − �

μν
αβ∇λρ

λαβ

−1

+ 2m2

5
∇〈μρ

ν〉
−1 − 4

3
θπμν + σλαρ

αλμν
−2

− m2

3
θρ

μν
−2 − 10

7
πλ〈μσ

ν〉
λ − 2πλ〈μω

ν〉
λ

− 4m2

7
ρ

λ〈μ
−2 σ

ν〉
λ + 2m4

15
ρ−2σ

μν − 6

5
�σμν.

(56)

The shear viscosity can be identified as η = τRϕ−1|0/2. In
obtaining Eqs. (55) and (56), we used the Landau condition
ρ2 = ρ

μ
1 = 0. These equations are not closed because the

following moments appearing in the above two equations:

ρ−2, ρ
μ
−1, ρ

μν
−2, ρ

λαβ

−1 , ρ
αλμν
−2 , (57)

are not � nor πμν . The goal is to use the ε expansion of these
moments to reexpress Eqs. (55) and (56) so that the equa-
tions are closed, adding extra dynamic degrees of freedom
when necessary.

Before we carry out the O(ε2) analysis, we can first check
the O(ε) results. Using the O(ε) terms from the ε expansions
of ρ−2 and ρ

μν
−2 [Eqs. (43) and (48)], the evolution equation for

� can be expressed as

D� = −�

τR
+ m2

3
φ−1|0θ − 2

3
θ� + m2

3
φπ�

−1|1(θ� + πγρσγρ )

− m2

3

(
ϕ−3|0
ϕ−1|0

)
σλαπλα − m2

3

(
φ−3|0
φ−1|0

)
θ� + O(ε2).

(58)

Similarly, for πμν , the second-order evolution equation is

�
μν
αβDπαβ = −πμν

τR
− ϕ−1|0σμν − 4

3
θπμν

− m2

3
θ

(
ϕ−3|0
ϕ−1|0

)
πμν − 10

7
πλ〈μσ

ν〉
λ

− 4m2

7

(
ϕ−3|0
ϕ−1|0

)
πλ〈μσ

ν〉
λ − 6

5
�σμν

− 2m2

5

(
φ−3|0
φ−1|0

)
�σμν − 2πλ〈μω

ν〉
λ + O(ε2).

(59)

Note that these equations are hyperbolic, namely, involves the
same number of temporal and spatial derivatives. This fact
does not automatically guarantee that the theory is stable, but
as long as τR > η/(ε + P), it is at least causal.

To go to the O(ε2) order, one needs to examine ρ
μ
−1 and

ρ
μ1μ2μ3
−1 more closely. There is no need to consider ρ

μ1μ2μ3μ4
−2

any further since it can be expressed using π 〈μ1μ2πμ3μ4〉 =
O(ε2). But the first moment and the third moment cannot be
expressed solely in terms of � and πμν without involving their
derivatives. As such, if the ε expansion from Sec. IV is used,
parabolic equations will result. One way to remedy this prob-
lem is to promote the first moment ρ

μ
−1 and the third moment

ρ
μ1μ2μ3
−1 to be dynamic variables. Denoting W μ = m2ρ

μ
−1, its

evolution equation can be obtained from Eq. (49):

�μ1
ν1

DW ν1

= −W μ1

τR
− m2Fμ1

−2 − 2

3
θW μ1 − 1

5
σ

μ1
λ W λ − ω

μ1
λ W λ

+∇μ1� + 2�aμ1 − 2

3
m4θρ

μ1
−3 − m4 4

5
σ

μ1
λ ρλ

−3

− m2�μ1
ν1

∇λρ
λν1
−2 + m2aαρ

αμ1
−2 + m4

3
∇μ1ρ−2

−m4

3
aμ1ρ−2 + 2m2σλαρ

αλμ1
−3 . (60)

Denoting ξμ1μ2μ3 = ρ
μ1μ2μ3
−1 , its evolution equation can be

obtained from Eq. (51):

�μ1μ2μ3
ν1ν2ν3

Dξν1ν2ν3

= −ξμ1μ2μ3

τR
− 18

7
π 〈μ1μ2 a μ3〉 − 3

7
∇〈μ1 π μ2μ3〉

+ 3

7
m2∇〈μ1 ρ

μ2μ3〉
−2 − 3

7
m2ρ

〈μ1μ2
−2 a μ3〉

− 4

3
θξμ1μ2μ3 − 15

9
σ

〈μ1
λ ξ μ2μ3〉λ − 3ω

〈μ1
λ ξ μ2μ3〉λ

+ 18

35
W 〈μ1 σ μ2μ3〉 + m4 12

35
ρ

〈μ1
−3 σ μ2μ3〉

− m2 2θ

3
ρ

μ1μ2μ3
−3 − m2 4

3
σ

〈μ1
λ ρ

μ2μ3〉λ
−3

−�μ1μ2μ3
ν1ν2ν3

∇λρ
λν1ν2ν3
−2 + aαρ

αμ1μ2μ3
−2 + O(ε3). (61)

We can use the ε expansions, Eqs. (43), (48), and (54), in
place of ρ−2, ρ

μν
−2, and ρ

μ1μ2μ3μ4
−2 , respectively, on the right-

hand-sides of Eqs. (60) and (61). These terms do not contain
any derivatives. We can also use the ε expansions, Eqs. (50)
and (52), for ρ

μ1
−3|2 and ρ

μ1μ2μ3
−3|2 , respectively. This replacement

does involve derivatives, and since ρ
μ

−3|2 and ρ
μ1μ2μ3
−3|2 above are

accompanied by either θ or σμν , which results in terms with
two derivatives. Fortunately, we can avoid having two deriva-
tives by associating the explicit factor of τR from Eqs. (50) and
(52) to the factors θ and σμν to turn them into � and πμν . In
this way, we have a closed set of equations for �, πμν , W μ,
and ξμ1μ2μ3 that involve no more than the first derivatives. Fur-
thermore, the relaxation time τR does not appears explicitly
except for the collision integral term (the 1/τR term).
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VI. THIRD-ORDER EQUATIONS FOR m = 0

The third-order hydrodynamic equations obtained in the
previous sections are nonlinear coupled differential equa-
tion of 20 degrees of freedom, making them hard to analyze.
For the sake of simplicity, from now on, we take the massless
limit. In this limit, the bulk pressure does not exist, � = 0, and
it is consistent to set W μ = 0 as well. As such, the dynamic
degrees of freedom reduce to the energy density ε, the flow
vector u, the shear-stress tensor πμν and the third moment
ξμ1μ2μ3 . In this limit, Eq. (56) reduces to

�
μν
αβDπαβ = −πμν

τR
− ϕ−1|0σμν − �

μν
αβ∇λξ

λαβ − 4

3
θπμν

+ σλαςαλμν − 10

7
πλ〈μσ

ν〉
λ − 2πλ〈μω

ν〉
λ , (62)

where

ςαβμν = ρ
αβμν

−2 = − 8

7ϕ−1|0
π 〈αβπμν〉 + O(ε3). (63)

In the m = 0 limit, Eq. (61) reduces to

�
λμν
ραβDξραβ = − 1

τR
ξλμν − 4

3
θξλμν − 5

3
ξα〈λμσ ν〉

α

− 3ξα〈λμων〉
α − 18

7
π 〈λμaν〉 − 3

7
∇〈λπμν〉

+ aρς
ρλμν − �

λμν

ραβ∇ωςωραβ + O(ε3). (64)

The dynamics variables are ε, uμ, πμν , ξλμν . The number of
independent degrees of freedom is thus 16.

Equations (62) and (64) provide us with the third-order
dissipative equations for massless particles without conserva-
tion of the net particle number. As far as terms linear in πμν ,
ξλμν , and uμ are concerned, these equations are equivalent
to the stable third-order theory postulated in Ref. [37] with
τρ = ηρ = τπ in their notation. Consequently, our 16 moment
formulation is also linearly stable and causal.

What we would like to do further here is to analyze an
alternative third-order theory where ςαβμν is also promoted
to be a dynamic variable. Setting r = −2 and m = 0, Eq. (53)
becomes

�
αβμν

ρλωγ Dςρλωγ = − 1

τR
ςαβμν − 4

3
θςαβμν − 8

7
π 〈αβσμν〉

−28

9
ξ 〈αβμaν〉 − 4

9
∇〈αξβμν〉

−20

11
ςλ〈αβμσ

ν〉
λ − 4ςλ〈αβμω

ν〉
λ + O(ε3).

(65)

Equations (64) and Eq. (65) are similar to, but not identical to,
the equations for the third and the fourth moments in Ref. [39].
This is because the third and the fourth moments used in
Ref. [39] are ρ

μ1μ2μ3
0 and ρ

μ1μ2μ3μ4
0 while ours are ρ

μ1μ2μ3
−1 and

ρ
μ1μ2μ3μ4
−2 that naturally appear in the evolution equation of

πμν .
One way of justifying the promotion of ςμ1μ2μ3μ4 to a

dynamic variable is to note that both are O(ε2) and in
Eq. (65), �

αβμν

ρλωγ Dςρλωγ is linearly coupled to ∇〈αξβμν〉 while

in Eq. (64), �
λμν
ραβDξραβ is linearly coupled to �

λμν
ραβ∇ωςωραβ .

Hence, a consistent linear analysis can be carried out that
includes both ξμ1μ2μ3 and ςμ1μ2μ3μ4 . This way of including
ςμ1μ2μ3μ4 to close the equations without incurring two deriva-
tives, however, is possible only when m = 0. If m 	= 0, the
right-hand side of Eq. (65) will contain ∇〈μ1ρ

μ2μ3μ4〉
−3 and

a〈μ1ρ
μ2μ3μ4〉
−3 resulting in two derivatives. Even though we can

argue that promoting ςμ1μ2μ3μ4 to a dynamic variable is not
strictly necessary, we feel that it is still beneficial to carry
out a linear analysis as these types of equations do appear
elsewhere in literature (for instance Ref. [39]) without the full
linear analysis.

In the next section, we carry out linear analysis of this
extended 25-moment theory. Before we do so, let us consider
the physical meaning of the third moment ξμ1μ2μ3 . We will
not regard ςμ1μ2μ3μ4 as a dynamic variable for this considera-
tion. Applying the thermodynamic identities T s = ε + P and
T ds = dε to the local equilibrium part, the energy conserva-
tion law, Eq. (4), in the massless limit can be reexpressed as

∂μ(suμ) = −βπμνσμν, (66)

where s is the local equilibrium entropy density. Within
the first-order approach, the right-hand side becomes non-
negative upon using the first-order constitutive equation,
Eq. (45), affirming the second law of thermodynamics in this
limit. In our case, upon using the full evolution equation for
πμν [Eq. (62)] to replace σμν , Eq. (66) can be re-arranged as

∂μsμ
hyd = β

ϕ−1|0

[
1

τR
πμ1μ2π

μ1μ2 + 8

7
τRπ〈μ1μ2σλα〉π 〈αλσμ1μ2〉

− 5

2I3,0
πμ1μ2πμ1μ2π

μ3μ4σμ3μ4 + 10

7
σ

〈μ2
λ πμ1〉λπμ1μ2

− ξμ1μ2μ3
(∇〈μ1πμ2μ3〉 + 6a〈μ1πμ2μ3〉

)] + O(ε4),

(67)

where

sμ
hyd =

(
s − β

2ϕ−1|0
πμ1μ2π

μ1μ2

)
uμ − β

ϕ−1|0
πν1ν2ξ

μν1ν2

(68)

can be interpreted as the hydrodynamic nonequilibrium en-
tropy current. In deriving Eq. (67), we used Eqs. (E9), (E19),
and (E27) from Appendix E, and the constitutive relationship
for the fourth moment, Eq. (54). The term in Eq. (62) involv-
ing the vorticity tensor ωμ1μ2 does not contribute because of its
antisymmetric property. Expressed this way, the meaning of
ξμ1μ2μ3 is clear: It is a part of the dissipative entropy current.

In Eq. (68), the first term in the parentheses indicates that
the nonequilibrium entropy density is lower than the equi-
librium one, as it should be. This πμ1μ2π

μ1μ2 term appears
in the original Israel-Stewart paper [22] and all subsequent
second-order and third-order analyses. The dissipative term is
transverse to uμ because of ξμν1ν2 . Hence, the fact that one
cannot assign definite sign to this term does not disturb the
requirement that the nonequilibrium entropy to be lower than
the equilibrium one.
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The second law of thermodynamics dictates that the en-
tropy of a system must increase when out of equilibrium.
This is guaranteed if the right-hand side of Eq. (67) is non-
negative. On the right-hand side of Eq. (67), the first line is
non-negative. The second line is not guaranteed to be non-
negative, but as πμ3μ4 relaxes towards −τRϕ−1|0σμ3μ4 , it will
become non-negative. A similar argument applies to the last
line which is the third-order contribution. As ξμ1μ2μ3 relaxes
towards −τR

3
7 (∇〈μ1πμ2μ3〉 + 6a〈μ1πμ2μ3〉) [e.g., Eq. (61)], the

last line in Eq. (67) will become non-negative. The third line
cannot be manipulated into a total derivative and/or a square
even as πμ1μ2 relaxes towards −τRϕ−1|0σμ1μ2 . However, this
may be an artifact of the way we defined the nonequilibrium
entropy [18,46,47].

In Ref. [33], the entropy current was derived from the
Chapman-Enskog expansion of δ f . Comparing the two ex-
pressions one can see that they are almost the same except
that their entropy current contains the third-order contribution
proportional to (πγ

α πγβπαβ )uμ. The entropy density found in
Refs. [32,34] also have a similar term although their entropy
currents do not have our dissipative part. The difference be-
tween our expression and those from Refs. [32–34] mainly
comes from the fact that they are using the Boltzmann’s
H-function definition of the entropy current whereas we are
combining the energy conservation equation with thermody-
namic identities to define the entropy current following Israel
and Stewart’s work on the second-order hydrodynamics. Un-
fortunately, it is not at all straightforward to make an exact
correspondence because expressing the H-function definition
of entropy (which involves f ln f ) as a linear combination of
the energy-momentum moments of δ f is highly nontrivial.

VII. LINEAR STABILITY AND CAUSALITY
ANALYSIS OF THE 25 MOMENTS

A. Linearized moment equations

The previous section provided us with the third-order mo-
ment equations for massless particles without conservation
of net particle number. The next step is to ensure that these
equations lead to stable and causal solutions. In general,
analyzing the stability and causality of nonlinear partial differ-
ential equations is a challenging task. In principle, one should
carry out a full nonlinear analysis as advocated in Ref. [48].
However, in this study we only perform the linear analysis of
the 25-moment equations as a first step towards establishing
the stability and causality of our third-order hydrodynamics.

Consider small fluctuations in the energy density ε, fluid
4-velocity uμ, and shear-stress tensor πμν :

ε = ε0 + δε, uμ = uμ
0 + δuμ, πμν = δπμν, (69)

where ε0, uμ
0 are constants. Since m = 0, the equation of state

is simply P = ε/3. Consider the energy and momentum con-
servation laws Eqs. (4) and (5). The linearized conservation
laws are straightforward to get:

D0δε + 4
3ε0∇μ,0δuμ = 0,

D0(ε0δuμ) + 1
4∇μ

0 δε + 3
4∇λ,0δπ

λμ = 0,
(70)

where we defined �
μν
0 = gμν + uμ

0 uν
0 and ∇μ

0 = �
μν
0 ∂ν . It is

convenient to express the above equations in Fourier space.
We use the following format of Fourier transform:

f̃ (k) =
∫ ∞

−∞
d4x e−ikμxμ

f (x),

f (x) =
∫ ∞

−∞

d4k

(2π )4 eikμxμ

f̃ (k).

(71)

Here, kμ = (ω, k) is the wave 4-vector. Therefore, we can
express each Fourier component of the variables in the lin-
earized equations as a plane wave multiplied by a complex
amplitude φ̃:

φ = φ̃eikμxμ = φ̃ei(k·x−ωt ). (72)

Note that since gμν = diag(−1, 1, 1, 1), we have kμxμ = k ·
x − ωt . Furthermore, we rewrite the linearized equations in
terms of the Lorentz-covariant variables defined below:

� ≡ uμ
0 kμ,

(73)
κμ ≡ �

μν
0 kν,

which correspond to −ω and k in the local rest frame of
the background system. We also define the covariant wave
number κ as

κ ≡ √
κμκμ. (74)

In terms of the covariant variables, the linearized conservation
laws (70) can now be rewritten as

�δ̃ε + 4
3ε0κμδũμ = 0,

�ε0δũμ + 1
4κμδ̃ε + 3

4καδπ̃αμ = 0.
(75)

From now on, we omit the tilde above the Fourier space
variables. All hydrodynamic variables below are expressed
in Fourier space. Furthermore, we scale � and κ with the
timescale τη = η/(ε0 + P0) so that they become dimension-
less quantities following Refs. [30,37]. Here, η = τRϕ−1|0/2
is the shear viscosity.

The next step is to linearize the πμν equation. To do this,
we drop all the higher-order terms in Eq. (62) and keep
only the terms that are linear in δε, δuμ, δπμν , ξμ1μ2μ3 , and
ςμ1μ2μ3μ4 to obtain the linearized πμν equation:

�
μν

αβ,0D0δπ
αβ + 1

τR
δπμν + ϕ−1|0δσμν + �

μν

αβ,0∇λ,0ξ
λαβ = 0,

(76)

where δσμν = ∇〈μδuν〉. Using (E28) to express the coefficient
ϕ−1|0 in terms of ε0 leads us to the following linearized πμν

equation:(
i� + 1

τR

)
δπμν + 4iε0

15

(
κμδuν + κνδuμ − 2

3
καδuα�

μν
0

)
+ iκλξ

λμν = 0. (77)

Similarly, the linearized equation for ξλμν is

�
λμν

αβγ ,0D0ξ
αβγ + 1

τR
ξλμν + 3

7
�

λμν

αβγ ,0∇α
0 δπβγ

+ �
λμν
αβγ ,0∇ω,0ς

ωαβγ = 0, (78)
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which becomes(
i� + 1

τR

)
ξλμν + i

7
(κλδπμν + κμδπνλ + κνδπμλ)

− 2i

35

(
�

λμ
0 κωδπν

ω + �λν
0 κωδπμ

ω + �
μν
0 κωδπλ

ω

)
+ iκωςωλμν = 0

(79)

in the Fourier space after taking the derivatives D0 and ∇λ,0.
To derive the above expression, we have used Eq. (A6) from
Appendix A for n = 3 to express κ 〈λπμν〉. The linearized
equation for ςαβμν is also straightforward to obtain

�
αβμν

λγρθ,0D0ς
λγρθ + 1

τR
ςαβμν + 4

9
�

αβμν

λγρθ,0∇λ
0 ξγρθ = 0, (80)

which becomes(
i� + 1

τR

)
ςαβμν + 4i

9
�

αβμν

λγρθ,0κ
λξγρθ = 0 (81)

in the Fourier space after taking the derivatives. Using
Eq. (A6) for n = 4 from Appendix A, one can show that

�
αβμν

λγρθ,0κ
λξγρθ

= 1

4
(καξβμν + κβξαμν + κμξαβν + κνξαμβ )

− 1

14

(
�

βμ

0 κλξ
ανλ + �

βν

0 κλξ
αμλ + �

μν
0 κλξ

αβλ

+�
αμ
0 κλξ

βνλ + �αν
0 κλξ

βμλ + �
αβ

0 κλξ
μνλ

)
. (82)

Plugging this back into Eq. (81) gives the complete linearized
evolution equation for ςαβμν .

B. Transverse modes

The linear stability and causality analysis presented in
this work adheres to the procedure outlined in de Brito &
Denicol’s work [25,37]. This involves decomposing the lin-
earized equations in Fourier space into longitudinal (parallel
to κμ) and transverse (orthogonal to κμ) components. This
method offers the advantage of decoupling the equations in
the linear regime, allowing them to be solved and analyzed
independently and greatly simplifying the calculations [37].
Due to the superposition principle of solutions to linear PDEs,
this procedure is equivalent to analyzing the complete three-
dimensional linearized equations without decomposition.

It is beneficial to introduce a projector that is analogous to
�μν but with respect to κμ:

�μν
κ = gμν − κμκν

κ2
, (83)

where κ2 is introduced to ensure normalization. Then, any 4-
vector Aμ can be decomposed into a linear combination of the
longitudinal and transverse parts:

Aμ = A||
κμ

κ
+ Aμ

⊥, (84)

where A|| = κμAμ/κ and Aμ

⊥ = �μν
κ Aν . Similarly, a rank-2

tensor Aμν can also be decomposed as

Aμν = A||
κμκν

κ2
+ 1

3
A⊥�μν

κ + Aμ

⊥
κν

κ
+ +Aν

⊥
κμ

κ
+ Aμν

⊥ ,

(85)

where A|| = κμκνAμν/κ2, A⊥ = �μν
κ Aμν , Aμ

⊥ = κλ�μν
κ Aλν/κ ,

and Aμν

⊥ = �μν,αβ
κ Aαβ . Here, we defined the rank-2κ projector

to be

�μν,αβ
κ = 1

2

(
�μα

κ �νβ
κ + �μβ

κ �να
κ − 2

3�μν
κ �αβ

κ

)
. (86)

In this section, we analyze the linear stability and causality of
the transverse components of third-order regularized hydrody-
namics for m = 0. We discuss two cases: in the first, the wave
vector k is parallel to the background fluid velocity v, while
in the second, the wave vector is orthogonal to v.

1. Case 1: k is parallel to v

For simplicity and without loss of generality, we assume
that k and v are both in the x axis:

uμ
0 = γ (1, v, 0, 0),

kμ = (ω, k, 0, 0).
(87)

It immediately follows that

� = γ (vk − ω),

κ2 = γ 2(k − vω)2. (88)

Note that the first equation in Eq. (75), which corresponds to
the energy-conservation law, is a scalar equation. Thus it is
purely longitudinal and does not contribute to the transverse
analysis. The transverse component of the momentum conser-
vation law and the moment equations can be easily obtained
by applying the projector �μν

κ and κμ. Doing so gives us

�ε0δuμ

⊥ + 3

4
κδπ

μ

⊥ = 0,(
i� + 1

τR

)
δπ

μ

⊥ + 4

15
iκε0δuμ

⊥ + iκξ
μ

⊥ = 0,(
i� + 1

τR

)
ξ

μ

⊥ + 8

35
iκδπ

μ

⊥ + iκς
μ

⊥ = 0,(
i� + 1

τR

)
ς

μ

⊥ + 5

21
iκξ

μ

⊥ = 0,

(89)

where we defined ξ
μ

⊥ = κακλ�
μ
ν,κξ

αλν/κ2 and ς
μ

⊥ =
κακβκλ�

μ
ν,κς

αβλν/κ3. This can be written in the following
matrix form:⎛⎜⎜⎜⎜⎜⎝

� 3
4κ 0 0

4
15 iκ i� + 1

τR
iκ 0

0 8
35 iκ i� + 1

τR
iκ

0 0 5
21 iκ i� + 1

τR

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

ε0δuμ

⊥
δπ

μ

⊥
ξ

μ

⊥
ς

μ

⊥

⎞⎟⎟⎟⎟⎠ = 0.

(90)

We require that the determinant of the 4 × 4 matrix be zero
to obtain nontrivial solutions, the resulting equation is the
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FIG. 1. Real and imaginary parts of the transverse modes of the massless third-order hydrodynamics without conservation of net particle
number, in the case of fluid velocity vector being parallel to the wave vector. The relaxation time is chosen to be τR = 5.

dispersion relation. However, we should note that the disper-
sion relation is extremely complicated, even displaying the
leading-order terms is not feasible. Therefore, we only present
the numerical solutions to the dispersion relation shown in
Fig. 1, assuming τR = 5 in units of τη [30,37]. This particular
value for the shear relaxation time τR is calculated from the
Boltzmann equation in the ultrarelativistic limit, using the 14
moments approximation. However, since the matrix is linear
in 1/τR, �, and κ , the value of τR does not really matter
in the current and the subsequent linear analysis. We cho-
sen value for τR is just to facilitate the comparison between
our results and those in Refs. [30,37] by having a common
scale.

To determine whether these solutions are linearly sta-
ble, we first take a look at the plane waves formula
[Eq. (72)]:

φ ∼ ei(kx−ωt ) = eikxe−iωr t eωit , (91)

where ω = ωr + iωi is complex. Note that the first two ex-
ponential terms are simply oscillating waves, therefore only
the third term contributes to the damping, and thus, stability.
To ensure exponential suppression of Eq. (91) for t � 0, it
is necessary that ωi be less than or equal to zero. Thus, in
general, stability requires

ωi � 0 (92)

for all t � 0. The determinant of the matrix in Eq. (90) results
in a fourth order polynomial in ω, thus we should expect to
obtain four modes. Indeed, Fig. 1 shows four distinct curves,
two of which have the same imaginary parts for static fluids,
i.e., v = 0. As one can easily see, all the modes have non-
positive imaginary parts for small k. We have also ascertained
that the imaginary parts of all four modes become nonpositive
constants for large k.

For the causality analysis, we plot the asymptotic behavior
of the group velocity of the four modes in Fig. 2. In the large-k
limit, the magnitude of the group velocity remains subluminal
for all values of the fluid velocity v. Thus, the linear theory is
causal.

2. Case 2: k is orthogonal to v

We now discuss the second case in which the wave vector
is orthogonal to the fluid velocity vector. Without loss of
generality, we assume that V is still in the x axis, but k is
now in the y axis:

uμ
0 = γ (1, v, 0, 0),

kμ = (ω, 0, k, 0).
(93)

FIG. 2. Magnitude of the group velocity for the transverse modes
of the massless third-order hydrodynamics without conservation of
net particle number, as a function of the fluid velocity v in the large-
k limit and with τR = 5, in the case of the fluid velocity vector is
parallel to the wave vector.
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FIG. 3. Real and Imaginary parts of the transverse modes of the massless third-order hydrodynamics without conservation of net particle
number, in the case of fluid velocity vector being orthogonal to the wave vector and with τR = 5.

It follows that

� = −γω,

κ2 = γ 2v2ω2 + k2. (94)

It is then straightforward to obtain the solutions for this
case by substituting Eq. (94) into the dispersion relation and
then solving it numerically. The results are shown in Fig. 3.
From the figure, we can again see that all the modes are
linearly stable as their imaginary parts are always nonpositive
for small k, regardless of the background fluid velocity. As
before, we can further extend the linear stability of the modes
to all k � 0 from the asymptotic behavior of the modes which
asymptote to constant negative values.

Figure 4 shows asymptotic group velocity as a function
of v. Note that there are only two curves for four solutions.
This is because the group velocities for each pair of solutions
are only off by a sign. Since the y axis is the absolute value
of the group velocity, both solutions coincide in this case.
Also, note that both curves approach zero when the fluid
velocity reaches the speed of light. This is expected since
the plane wave propagates in the orthogonal direction with
respect to the fluid flow. As the fluid moves faster and faster,
the wave is eventually “dragged” by the fluid flow under the
effect of shear viscosity and moves in the fluid flow direction
eventually, resulting in zero group velocity in the orthogonal
direction.

C. Longitudinal modes

1. Case 1: k is parallel to v

Similar to the second-order case, the first step is to obtain
the longitudinal components of the conservation laws and the
equations for πμν , ξλμν , and ςαβμν . Applying κμκν and κμ to

the corresponding equations, we get

�δε + 4

3
ε0κδu|| = 0,

�ε0δu|| + 1

4
κδε + 3

4
κδπ|| = 0,(

i� + 1

τR

)
δπ|| + 16

45
iε0κδu|| + iκξ|| = 0,(

i� + 1

τR

)
ξ|| + 9

35
iκδπ|| + iκς|| = 0,(

i� + 1

τR

)
ς|| + 16

63
iκξ|| = 0,

(95)

FIG. 4. Magnitude of the group velocity for the transverse modes
of the massless third-order hydrodynamics without conservation of
net particle number, as a function of the fluid velocity v in the large-
k limit and with τR = 5, in the case of fluid velocity vector being
orthogonal to the wave vector.
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FIG. 5. Real and imaginary parts of the longitudinal modes of the massless third-order hydrodynamics without conservation of net particle
number, in the case of fluid velocity vector being parallel to the wave vector and with τR = 5.

where we defined ξ|| = κακβκλξ
αβλ/κ3 and ς|| =

κακβκμκνς
αβμν/κ4. Note that we have included the purely

longitudinal energy conservation law in this system of
equations. Written in the matrix form, this is equivalent to⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

� 4
3κ 0 0 0

κ
4 � 3

4κ 0 0

0 16
45 iκ i� + 1

τR
iκ 0

0 0 9
35 iκ i� + 1

τR
iκ

0 0 0 16
63 iκ i� + 1

τR

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

δε

ε0δu||
δπ||
ξ||
ς||

⎞⎟⎟⎟⎟⎟⎟⎟⎠
= 0.

(96)

Since � is of fifth-order in the determinant, we should ex-
pect to obtain five modes. Indeed, Fig. 5 shows that all five
solutions are linearly stable since for small k, their imaginary
parts are all nonpositive for various background fluid veloc-
ities. Again, one can numerically show that all five modes
asymptote to nonpositive constants.

In Fig. 6, we show asymptotic group velocities of 5 modes
as a function of v. One can see that all solutions are linearly
causal since the magnitude of the group velocity is less than 1
for all of them, in the large-k limit. Also, note that the straight
diagonal line in the figure corresponds to a stationary mode in
the fluid rest frame since its group velocity is simply the fluid
flow velocity.

2. Case 2: k is orthogonal to v

As before, we insert Eq. (94) into the dispersion relation
and solve numerically for the solutions. Figure 7 shows the
result. Note that two out of the five solutions have the same
imaginary parts, and we can see that all solutions are lin-
early stable since they all have nonpositive imaginary parts

for small k. Again, we checked that all modes asymptote to
nonpositive constants in the large-k limit.

To verify the causality of these solutions, we repeat the
process from the previous sections. The group velocities of
the solutions are shown in Fig. 8 as a function of the fluid
flow velocity. Note that there are three curves in this figure,
one of them lies on the x axis and corresponds to the stationary
mode with zero group velocity.

VIII. DISCUSSIONS AND CONCLUSIONS

The main results of this work are the derivation of the evo-
lution equation for the general energy-momentum moment of

FIG. 6. Magnitude of the group velocity for the longitudinal
modes of the massless third-order hydrodynamics without conser-
vation of net particle number, as a function of the fluid velocity v in
the large-k limit and with τR = 5, in the case of fluid velocity vector
being parallel to the wave vector.
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FIG. 7. Real and imaginary parts of the longitudinal modes of the massless third-order hydrodynamics without conservation of net particle
number, in the case of fluid velocity vector being orthogonal to the wave vector and with τR = 5.

the phase-space density function, introduction of the regular-
ized hydrodynamics, and the derivation and the analysis of the
third-order hydrodynamics. As far as we can find out, this is
the first time that the derivation of the evolution equation for a
general energy-momentum moment has appeared in literature.

Our derivation of hydrodynamic equations from the gen-
eral moment equations follows closely the derivation of the
regularized hydrodynamics by Struchtrup and Torrilhon in
which the Chapman-Enskog-like expansion is applied to the
moments, not to the density function, except for hydro-
dynamic variables. In this way, we avoided the inherent

FIG. 8. Magnitude of the group velocity for the longitudinal
modes of the massless third-order hydrodynamics without conser-
vation of net particle number, as a function of the fluid velocity v

in the large-k limit and with τR = 5, in the case of fluid velocity
vector being orthogonal to the wave vector. Notice that there is
a stationary mode with zero group velocity along the direction of
wave’s propagation.

ambiguity in the method of moments [31] as well as possi-
ble acausality in the Chapman-Enskog method [35,37]. The
third-order hydrodynamics unambiguously derived this way
includes additional rank-1 moment and rank-3 moment as
dynamic variable.

In recent literature, other versions of third-order theories
appeared. The versions most closely related to ours are those
from Refs. [37,39]. The authors of Ref. [37] proposed a third-
order theory based on Ref. [35] in which they promoted the
gradient of πμν to a new hydrodynamic variable

∇〈απμν〉 → ραμν (97)

to eliminate the second-order gradients in the evolution equa-
tion of πμν . This is analogous to ξλμν we defined in Eqs. (63)
and (64), but it was done in a heuristic way. This situation was
remedied by the same authors in Ref. [39] where they derived
the equations for the third and the fourth moments using
ρ

μ1μ2μ3
0 and ρ

μ1μ2μ3μ4
0 , while we use ρ

μ1μ2μ3
−1 and ρ

μ1μ2μ3μ4
−2 .

In their approach, all ρμ1···μn
r up to n = 4 are proportional to

ρ
μ1···μn
0 while ours clearly differ. Nevertheless, linear analysis

should yield similar results.
To further analyze the properties of this theory and for

simplicity, we assume the particles to be massless. A series
of linear stability and causality analysis was then performed,
and we showed that all the modes of the massless third-order
theory are linearly stable and causal.

The hybrid method advocated in this work may be
extended to higher orders. However, given that the Chapman-
Enskog expansion is asymptotic in nature [49], and the fact
that we need to promote higher and higher-order moments
to be dynamic, this path may not be a profitable one to
study the effect of higher-order moments. Instead, one may
consider resummation approaches such as the generalized
hydrodynamics formulated by Eu [50,51]. Other ways to ex-
tend our method include applying it to systems with multiple
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species and multiple conserved charges, to spin hydrodynam-
ics [52–60], and to the general-frame theories with off-shell
transport parameters [11,47]. We leave these as possible
venues for further investigations.
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APPENDIX A: ON PROJECTORS

The definition of the rank n projector is a tensor of rank
(n, n) that selects the symmetric and traceless part of a tensor
or rank (m, n) or rank (n, m). The basic building block is the
spatial metric tensor for a fluid cell moving with the flow
velocity uμ:

�μ
ν = gμ

ν + uμuν, (A1)

which is the rank-1 projector. When applied to a
4-momentum, it gives

p〈μ〉 = �μ
ν pν

= pμ − (Ep)uμ, (A2)

where Ep = −uν pν is the time-component of the 4-vector in
the fluid-cell rest frame. From here on the angular bracket
around indices indicate the symmetric and traceless part of
the tensor. For n = 2

�μ1μ2
ν1ν2

= 1
2

(
�μ1

ν1
�μ2

ν2
+ �μ1

ν2
�μ2

ν1
− 2

3�ν1ν2�
μ1μ2

)
, (A3)

and for n = 3

�μ1μ2μ3
ν1ν2ν3

= 1
6

[
�μ1

ν1
�μ2

ν2
�μ3

ν3
+ �μ1

ν1
�μ2

ν3
�μ3

ν2
+ �μ1

ν2
�μ2

ν1
�μ3

ν3

+�μ1
ν2

�μ2
ν3

�μ3
ν1

+ �μ1
ν3

�μ2
ν1

�μ3
ν2

+ �μ1
ν3

�μ2
ν2

�μ3
ν1

]
− 1

15

[
�μ1μ2

(
�ν1ν2�

μ3
ν3

+ �ν2ν3�
μ3
ν1

+ �ν3ν1�
μ3
ν2

)
+�μ2μ3

(
�ν1ν2�

μ1
ν3

+ �ν2ν3�
μ1
ν1

+ �ν3ν1�
μ1
ν2

)
+�μ3μ1

(
�ν1ν2�

μ2
ν3

+ �ν2ν3�
μ2
ν1

+ �ν3ν1�
μ2
ν2

)]
.

(A4)

The above projectors are constructed in such a way that
they are symmetric and traceless in both (μ1, . . . , μn) and
(ν1, . . . , νn). For the sake of projecting T ν1···νn to T 〈μ1···μn〉,
this is actually not necessary. It turned out that we just need to
make sure that the superscripted indices are symmetric and
traceless. In that case, the following recursive construction

works just as well as a projector [61],

�̃μ1···μn
ν1···νn

= 1

n

n∑
i=1

�μi
ν1

�̃μ1···μi−1μi+1···μn
ν2···νn

− 2

n(2n − 1)

×
n∑

i=1

n∑
j=i+1

�μiμ j �ν1α�̃
αμ1···μi−1μi+1···μ j−1μ j+1···μn
ν2···νn .

(A5)

This is explicitly constructed so that it is symmetric and trace-
less in (μ1, . . . , μn), but not necessarily in (ν1, . . . , νn). We
do have �μ1μ2

ν1ν2
= �̃μ1μ2

ν1ν2
, but for n > 2, �̃μ1···μn

ν1···νn
is neither sym-

metric nor traceless in (ν1, . . . , νn). As an example, applying
this projector to qν1 Pν2···νn yields

q〈μ1 Pμ2···μn〉 = �̃μ1···μn
ν1···νn

qν1 Pν2···νn

= 1

n

n∑
i=1

q〈μi〉P〈μ1···μi−1μi+1···μn〉

− 2

n(2n − 1)

n∑
i=1

n∑
j=i+1

�μiμ j q〈α〉

× P〈αμ1···μi−1μi+1···μ j−1μ j+1···μn〉, (A6)

where qν1 is an arbitrary 4-vector and Pν2···νn is an arbitrary
rank-(n−1) tensor. Equation (B3) is a particular example of
this identity.

The full rank-n projector that are symmetric and traceless
in both sets of indices can be recursively built by averaging
Eq. (A5) over n different choices of νk that can be isolated

�μ1···μn
ν1···νn

= 1

n2

n∑
i=1

n∑
k=1

�μi
νk

�μ1···μi−1μi+1···μn
ν1···νk−1νk+1···νn

− 2

n2(2n − 1)

n∑
i=1

n∑
j=i+1

�μiμ j

×
n∑

k=1

�νkα�
αμ1···μi−1μi+1···μ j−1μ j+1···μn
ν1···νk−1νk+1···νn . (A7)

The right-hand side is explicitly constructed in such a way
that it is symmetric and traceless in (μ1, . . . , μn). It looks
only symmetric in (ν1, . . . , νn), but it would be also traceless
provided that the following identities holds:

�αμ2···μn−1
αν2···νn−1

= (2n − 1)

(2n − 3)
�μ2···μn−1

ν2···νn−1
, (A8)

n∑
i=1

�μiα�μ1···μi−1μi+1···μn
αν3···νn

= 2

(2n − 3)

n∑
i=1

n∑
j=i+1

�μiμ j

×�
μ1···μi−1μi+1···μ j−1μ j+1···μn
ν3···νn ,

(A9)
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and

�μ2···μn
ν2···νn

= (2n − 1)

n(n − 1)

(
1

(2n − 3)

n∑
i=2

n∑
k=2

�μi
νk

�μ2···μi−1μi+1···μn
ν2···νk−1νk+1···νn

− 1

(2n − 1)

n∑
j=2

n∑
k=2

�μ jβ�νkα�
αμ2···μ j−1μ j+1···μn

βν2···νk−1νk+1···νn

⎞⎠.

(A10)

These identities can be proven by using the following mathe-
matical induction strategy:

(1) Show that Eqs. (A7), (A8), (A9), and (A10) are valid
for n = 2.

(2) Assume that Eqs. (A8), (A9), and (A10) are valid for
an arbitrary n.

(3) Show that the projector recursion relationship,
Eq. (A7), is valid for this n.

(4) Using Eqs. (A7)–(A10) for n, show that Eqs. (A8)–
(A10) are valid for n + 1.

Due to the symmetry between μ and ν, the following is
equivalent to Eq. (A9):

n∑
i=1

�νiα�αμ3···νn
ν1···νi−1νi+1···νn

= 2

(2n − 3)

n∑
i=1

n∑
j=i+1

�νiν j �
μ3···μn
ν1···νi−1νi+1···ν j−1ν j+1···νn

. (A11)

By combining Eq. (A7) and Eq. (A11), we can have a recur-
sion relationship which is explicitly symmetric under μi ↔ νi

swapping:

�μ1···μn
ν1···νn

= 1

n2

n∑
i=1

n∑
k=1

�μi
νk

�μ1···μi−1μi+1···μn
ν1···νk−1νk+1···νn

− 4

n2(2n − 1)(2n − 3)

n∑
l=1

n∑
m=l+1

n∑
i=1

n∑
j=i+1

�νl νm

×�μiμ j �
μ1···μi−1μi+1···μ j−1μ j+1···μn
ν1···νl−1νl+1···νm−1νm+1···νn . (A12)

APPENDIX B: IRREDUCIBLE POLYNOMIALS

In the rest frame of the fluid cell, the irreducible tensors of
rank n is defined as the symmetric and traceless combinations
of the n factors of pm, where m = 1, 2, 3 is the spatial index.
For instance, the rank-1 tensor is just pm and the rank-2 tensor
is

p〈m1 pm2〉 = pm1 pm2 − �m1m2

3
p2, (B1)

where �m1m2 = δm1m2 is the spatial metric tensor in the rest
frame and p2 = pm1 pm2�

m1m2 . Here the angular bracket over
indices indicate the symmetric and traceless part. For n = 3,

p〈m1 pm2 pm3〉 = pm1 pm2 pm3 − p2

5
(�m1m2 pm3 + �m1m3 pm2

+�m2m3 pm1 ). (B2)

Higher rank irreducible tensors can be built using lower
rank ones by using the following recursion relationship:

p〈m1 pm2 · · · pmn〉 = 1

n

n∑
i=1

pmi p〈m1 · · · pmi−1 pmi+1 · · · pmn〉

− 2

n(2n − 1)

n∑
i=1

n∑
j=i+1

�mimj pa p〈a

× pm1 · · · pmi−1 pmi+1 · · · pmj−1 pmj+1 · · · pmn〉,

(B3)

which comes from applying Eq. (A6) to pk1 p〈k2 · · · pkn〉.
When the fluid-cell has a nonzero flow velocity uμ, then

the spatial metric tensor is

�μν = gμν + uμuν, (B4)

and the spatial part of a 4-momentum is

p〈μ〉 = �μ
ν pν

= pμ − uμEp, (B5)

where Ep = −pμuμ is the time component of the 4-
momentum in the fluid-cell rest frame. All results in this
sections can be generalized to the nonzero fluid velocity
case by changing mi → 〈μi〉 and p2 → (E2

p − m2) where
m2 = −pμ pμ.

The orthogonality condition for the momentum polynomial
is [30,62]∫

d3 p

(2π )3 p0
F (Ep)p〈μ1 · · · pμn〉 p〈ν1 · · · pνm〉

= n!

(2n + 1)!!
δmn�

μ1···μn
ν1···νn

∫
d3 p

(2π )3 p0
F (Ep)

(E2
p − m2

)n
.

(B6)

In deriving the evolution equation for a general energy-
momentum moment, the following identity is frequently
needed:

p〈λ〉 p〈μ1 · · · pμn〉 = p〈λ pμ1 · · · pμn〉 + n

2n + 1

(E2
p − m2

)
× p〈μ1 pμ2 · · · pμn−1�μn〉λ. (B7)

To prove this, first we go to the rest frame where uμ =
(1, 0, 0, 0). In that case,

p〈μ〉 → pm, (B8)

where m = 1, 2, 3 are the spatial component of a momentum
and

E2
p − m2 → p2, (B9)

where p2 = pi pi.
The identity to prove is then

p〈l pm1 · · · pmn〉 = pl p〈m1 · · · pmn〉

− n

2n + 1
p2 p〈m1 pm2 · · · pmn−1�mn〉l . (B10)
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Our starting point is the fact that these polynomials can be obtained from

∂mn · · · ∂m2∂m1

1

p
= (−1)n(2n − 1)!!

p〈m1 pm2 · · · pmn〉

p2n+1
, (B11)

where ∂m = ∂/∂ pm. This expression is explicitly symmetric since derivatives commute. It is also traceless since

∇2
p

1

p
∝ δ(p). (B12)

The normalization constant is chosen so that the coefficient of pm1 · · · pmn in p〈m1 · · · pmn〉 is one.
We can get the following recursion relation by considering the product rule of taking one more derivative of Eq. (B11):

(−1)n+1(2n + 1)!!
p〈m1 pm2 · · · pmn pmn+1〉

p2n+3
= ∂mn+1∂mn · · · ∂m2∂m1

1

p

= (−1)n(2n − 1)!!

(
(−1)(2n + 1)

pmn+1 p〈m1 pm2 · · · pmn〉

p2n+3
+ ∂mn+1 (p〈m1 pm2 · · · pmn〉)

p2n+1

)
,

(B13)

which yields

p〈m1 pm2 · · · pmn pmn+1〉 = pmn+1 p〈m1 pm2 · · · pmn〉 − p2

2n + 1
∂mn+1 p〈m1 pm2 · · · pmn〉. (B14)

The identity (B10) is proven if we can show

∂mn+1 p〈m1 pm2 · · · pmn〉 = n p〈m1 pm2 · · · �mn〉mn+1 . (B15)

To start mathematical induction, consider n = 2:

∂m3 p〈m1 pm2〉 = ∂m3

(
pm1 pm2 − �m1m2

3
p2

)
= �m1m3 pm2 + �m2m3 pm1 − 2

�m1m2

3
pm3

= 2

(
1

2
(�m1m3 pm2 + �m2m3 pm1 ) − �m1m2

3
pm3

)
= 2p〈m1�m2〉m3 , (B16)

which gives the correct expression.
To prove Eq. (B15) for general n, we need some identities first. The right-hand side of the following expression:

p〈m1 pm2 · · · pmn−1�mn〉mn+1 = 1

n

n∑
i=1

pmi p〈m1 pm2 · · · pmi−1 pmi+1 · · · �mn〉mn+1

− 2

n(2n − 1)

n∑
i=1

n∑
j+1

�mimj pa p〈a pm1 pm2 · · · pmi−1 pmi+1 · · · �mn〉mn+1 (B17)

is explicitly constructed in such a way that it is symmetric and traceless in (m1, . . . , mn). The tensor p〈m1 pm2 · · · pmn−1�mn〉mn+1

can be also expressed as

p〈m1 pm2 · · · pmn−1�mn〉mn+1 = 1

n

n∑
i=1

�mn+1mi p〈m1 · · · pmi−1 pmi+1 · · · pmn〉

− 2

n(2n − 1)

n∑
i=1

n∑
j=i+1

�mimj p〈m1 · · · pmi−1 pmi+1 · · · pmj−1 pmj+1 · · · pmn pmn+1〉. (B18)

Again the right-hand side (RHS) is explicitly constructed so that it is symmetric and traceless in (m1, . . . , mn).
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To prove Eq. (B15), assume that it works for n − 1. We then take another derivative of Eq. (B3):

∂

∂ pmn+1
p〈m1 pm2 · · · pmn〉 = 1

n

n∑
i=1

∂

∂ pmn+1
(pmi p〈m1 · · · pmi−1 pmi+1 · · · pmn〉)

− 2

n(2n − 1)

n∑
i=1

n∑
j=i+1

�mimj
∂

∂ pmn+1
(pa p〈a pm1 · · · pmi−1 pmi+1 · · · pmj−1 pmj+1 · · · pmn〉). (B19)

One can then show Eq. (B15) can be reproduced with for n + 1 using the identities (B17) and (B18).
This proves

p〈l pm1 · · · pmn〉 = pl p〈m1 · · · pmn〉 − n

2n + 1
p2 p〈m1 pm2 · · · pmn−1�mn〉l , (B20)

which can be found in Ref. [63]. In a moving frame, this becomes

p〈λ〉 p〈μ1 · · · pμn〉 = p〈λ pμ1 · · · pμn〉 + n

2n + 1

(E2
p − m2

)
p〈μ1 pμ2 · · · pμn−1�μn〉λ. (B21)

One can also show

p〈α〉 p〈λ〉 p〈μ1 · · · pμn−1 pμn〉 = p〈α pλ pμ1 · · · pμn−1 pμn〉 + 1

(2n + 3)

(E2
p − m2

) n∑
i=1

�μiα p〈λ pμ1 · · · pμi−1 pμi+1 · · · pμn〉

+ 1

(2n + 3)

(E2
p − m2

) n∑
i=1

�μiλ p〈α pμ1 · · · pμi−1 pμi+1 · · · pμn〉

− 4

(2n + 3)(2n − 1)

(E2
p − m2

) n∑
i< j

�μiμ j p〈α pλ pμ1 · · · pμi−1 pμi+1 · · · pμ j−1 pμ j+1 · · · pμn〉

+ 1

(2n + 3)

(E2
p − m2

)
(�λα p〈μ1 · · · pμn〉)

+ n(n − 1)

(2n + 1)(2n − 1)

(E2
p − m2

)2(
p〈μ1 · · · pμi−1 pμi+1 · · · �μn−1

α′ �
μn〉
λ′

)
�αα′

�λλ′
(B22)

by using

p〈λ〉 p〈μ1 · · · pμn−1�μn〉α = 1

n

n∑
i=1

�μiα p〈λ pμ1 · · · pμi−1 pμi+1 · · · pμn〉

− 2

n(2n − 1)

n∑
i< j

�μiμ j p〈λ pα pμ1 · · · pμi−1 pμi+1 · · · pμ j−1 pμ j+1 · · · pμn〉

+ (E2
p − m2

) n − 1

(2n − 1)
p〈μ1 · · · pμn−2�

μn−1
λ′ �

μn〉
α′ �λλ′

�αα′
. (B23)

APPENDIX C: A USEFUL MATHEMATICAL IDENTITY

Consider the following rank-n tensor:

Aμ1···μn = �μ1···μn
ν1···νn

Dp〈ν1··· pνn〉. (C1)

Following Eqs. (C.8) and (C.9) in Ref. [63], for any symmetric
tensor � we have

�〈i1···in〉 = �i1···in + αn1(�i1i2�i3···inkk + permutation)

+ αn2(�i1i2�i3i4�i5···inkkll + permutation) + · · · ,

(C2)

where

αnk = (−1)k

�k−1
j=0(2n − 2 j − 1)

. (C3)

Now, if we let

�i1···in = p〈i1〉 · · · p〈in〉, (C4)

then all terms in Eq. (C2) except the first one vanish under
�

i1···in
j1··· jn

D since

D(�ik il F ) = (D�ik il )F + �ik il DF

= (
aik uil + uik ail

)
F + �ik il DF. (C5)

This expression vanishes when the projector is applied due to
the presence of uik , uil , or �il ik . Consequently, we arrive at the
following useful identity:

�μ1···μn
ν1···νn

Dp〈ν1··· pνn〉 = �μ1···μn
ν1···νn

Dp〈ν1〉 · · · p〈νn〉. (C6)
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Note that

Dp〈μ〉 = D�μν pν

= D(gμν + uμuν )pν

= (uμDuν + uνDuμ)pν

= uμ pνaν − Epaμ

= uμ(p〈ν〉 + Epuν )aν − Epaμ

= uμ p〈ν〉aν − Epaμ,

(C7)

where the term with uμ vanishes when being projected. With
some simple algebraic manipulations, we get

�μ1···μn
ν1···νn

Dp〈ν1··· pνn〉 = −nEp p〈μ1··· pμn−1 aμn〉. (C8)

Similarly, one can also argue for the same reasons

�μ1···μn
ν1···νn

∇λ(p〈ν1··· pνn〉) = �μ1···μn
ν1···νn

∇λ(p〈ν1〉 · · · p〈νn〉) (C9)

and

∇λ p〈ν〉 = ∇λ(pν − Epuν )

= −uν∇λEp − Ep(∇λuν ). (C10)

Once again, the first term vanishes when being projected.
After some manipulations, we get:

�μ1···μn
ν1···νn

∇λ(p〈ν1··· pνn〉) = −nEp p〈μ1 · · · pμn−1∇λuν〉. (C11)

APPENDIX D: DERIVATION OF THE GENERAL
MOMENT EQUATION

The starting point is the general rank-n energy-momentum
moments of δ f :

ρμ1···μn
r =

∫
d3 p

(2π )3Ep
δ f E r

p p〈μ1 pμ2 · · · pμn〉. (D1)

Taking the comoving derivative D = uμ∂μ, which corre-
sponds to the time derivative in the fluid rest frame, and then
projecting onto the transverse space, we get

�μ1···μn
ν1···νn

Dρν1···νn
r

= �μ1···μn
ν1···νn

∫
d3 p

(2π )3Ep
(Dδ f )E r

p p〈ν1 pν2 · · · pνn〉

+ �μ1···μn
ν1···νn

∫
d3 p

(2π )3Ep
δ f E r

pDp〈ν1 pν2 · · · pνn〉

+ �μ1···μn
ν1···νn

∫
d3 p

(2π )3Ep
δ f

(
DE r

p

)
p〈ν1 pν2 · · · pνn〉

= �μ1···μn
ν1···νn

∫
d3 p

(2π )3Ep
(Dδ f )E r

p p〈ν1 pν2 · · · pνn〉

− n
∫

d3 p

(2π )3Ep
δ f E r+1

p p〈μ1 pμ2 · · · aμn〉

− r�μ1···μn
ν1···νn

aσ

∫
d3 p

(2π )3Ep
δ f E r−1

p p〈σ 〉 p〈ν1 pν2 · · · pνn〉,

(D2)

where we defined the fluid acceleration by aμ = Duμ, and
used the fact that DEp = −aμ pμ = −aμ p〈μ〉, along with

Eq. (C8). Using Eq. (B21), we can expand the last term on
the right-hand side:

�μ1···μn
ν1···νn

Dρν1···νn
r

= �μ1···μn
ν1···νn

∫
d3 p

(2π )3Ep
(Dδ f )E r

p p〈ν1 pν2 · · · pνn〉

− n
∫

d3 p

(2π )3Ep
δ f E r+1

p p〈μ1 pμ2 · · · aμn〉

− raσ

∫
d3 p

(2π )3Ep
δ f E r−1

p p〈σ pμ1 pμ2 · · · pμn〉

− r
n

2n + 1
aσ

∫
d3 p

(2π )3Ep
δ f E r−1

p

(E2
p − m2

)
× p〈μ1 pμ2 · · · �μn〉σ . (D3)

To express Dδ f in terms of δ f , we can use the following form
of the Boltzmann equation:

pμ∂μ f0 + EpDδ f + p〈μ〉∇μδ f = C[ f ], (D4)

in Eq. (D3) where we used the decomposition

∂μ = gα
μ∂α = (−uμuα + �α

μ

)
∂α = −uμD + ∇μ. (D5)

This gives

�μ1···μn
ν1···νn

Dρν1···νn
r

= −n
∫

d3 p

(2π )3Ep
δ f E r+1

p p〈μ1 pμ2 · · · aμn〉

− raσ

∫
d3 p

(2π )3Ep
δ f E r−1

p p〈σ pμ1 pμ2 · · · pμn〉

− r
n

2n + 1

∫
d3 p

(2π )3Ep
δ f E r−1

p

(E2
p−m2

)
p〈μ1 pμ2 · · · aμn〉

+ �μ1···μn
ν1···νn

∫
d3 p

(2π )3Ep
C[ f ]E r−1

p p〈ν1 pν2 · · · pνn〉

− �μ1···μn
ν1···νn

∫
d3 p

(2π )3Ep
(∂λ f0)E r−1

p pλ p〈ν1 pν2 · · · pνn〉

− �μ1···μn
ν1···νn

∫
d3 p

(2π )3Ep
(∇λδ f )E r−1

p p〈λ〉 p〈ν1 pν2 · · · pνn〉.

(D6)

Here, we define ∇μ = �ν
μ∂ν as the projected derivative, corre-

sponding to the spatial gradient in the fluid rest frame. Using
the chain rule, we can pull ∇λ in the last term on the right-hand
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side of Eq. (D6) out of the integral:

�μ1···μn
ν1···νn

Dρν1···νn
r = −n

∫
d3 p

(2π )3Ep
δ f E r+1

p p〈μ1 pμ2 · · · aμn〉 − raσ

∫
d3 p

(2π )3Ep
δ f E r−1

p p〈σ pμ1 pμ2 · · · pμn〉

− r
n

2n + 1

∫
d3 p

(2π )3Ep
δ f E r−1

p

(E2
p − m2)p〈μ1 pμ2 · · · aμn〉 + �μ1···μn

ν1···νn

∫
d3 p

(2π )3Ep
C[ f ]E r−1

p p〈ν1 pν2 · · · pνn〉

− �μ1···μn
ν1···νn

∫
d3 p

(2π )3Ep
(∂λ f0)E r−1

p pλ p〈ν1 pν2 · · · pνn〉 − �μ1···μn
ν1···νn

∇λ

∫
d3 p

(2π )3Ep
δ f E r−1

p p〈λ〉 p〈ν1 pν2 · · · pνn〉

+ �μ1···μn
ν1···νn

∫
d3 p

(2π )3Ep
δ f

(∇λE r−1
p

)
p〈λ〉 p〈ν1 pν2 · · · pνn〉 + �μ1···μn

ν1···νn

∫
d3 p

(2π )3Ep
δ f E r−1

p (∇λ p〈λ〉)p〈ν1 pν2 · · · pνn〉

+ �μ1···μn
ν1···νn

∫
d3 p

(2π )3Ep
δ f E r−1

p p〈λ〉(∇λ p〈ν1 pν2 · · · pνn〉). (D7)

Now, note that the second-last term on the right-hand side can be simplified as

�μ1···μn
ν1···νn

∫
d3 p

(2π )3Ep
δ f E r−1

p

(∇λ p〈λ〉)p〈ν1 pν2 · · · pνn〉 = �μ1···μn
ν1···νn

∫
d3 p

(2π )3Ep
δ f E r−1

p ∇λ

(
pλ − Epuλ

)
p〈ν1 pν2 · · · pνn〉

= −θ

∫
d3 p

(2π )3Ep
δ f E r

p p〈μ1 pμ2 · · · pμn〉, (D8)

since ∇λ pλ = 0 and uλ∇λEp = uλ�α
λ∂αEp = 0. Here, we define θ = ∂μuμ = ∇μuμ, which represents the expansion rate of the

fluid.
To briefly summarize, so far we have

�μ1···μn
ν1···νn

Dρν1···νn
r = −n

∫
d3 p

(2π )3Ep
δ f E r+1

p p〈μ1 pμ2 · · · aμn〉 − raσ

∫
d3 p

(2π )3Ep
δ f E r−1

p p〈σ pμ1 pμ2 · · · pμn〉

− r
n

2n + 1

∫
d3 p

(2π )3Ep
δ f E r−1

p

(E2
p − m2

)
p〈μ1 pμ2 · · · aμn〉 +

∫
d3 p

(2π )3Ep
C[ f ]E r−1

p p〈μ1 pμ2 · · · pμn〉

−
∫

d3 p

(2π )3Ep
(∂λ f0)E r−1

p pλ p〈μ1 pμ2 · · · pμn〉 − �μ1···μn
ν1···νn

∇λ

∫
d3 p

(2π )3Ep
δ f E r−1

p p〈λ〉 p〈ν1 pν2 · · · pνn〉

+ �μ1···μn
ν1···νn

∫
d3 p

(2π )3Ep
δ f E r−1

p p〈λ〉(∇λ p〈ν1 pν2 · · · pνn〉) − θ

∫
d3 p

(2π )3Ep
E r

pδ f p〈μ1 pμ2 · · · pμn〉

+
∫

d3 p

(2π )3Ep
δ f

(∇λE r−1
p

)
p〈λ〉 p〈μ1 pμ2 · · · pμn〉. (D9)

We continue to simplify the last three terms by calculating the gradients. Observe that

∇λE r−1
p = (r − 1)E r−2

p (∇λEp)

= −(r − 1)E r−2
p ∇λ(uα pα )

= −(r − 1)E r−2
p pα∇λuα

= −(r − 1)E r−2
p (p〈α〉 + Epuα )∇λuα

= −(r − 1)E r−2
p p〈α〉∇λuα, (D10)

using the normalization condition uαuα = −1. Plugging this into Eq. (D9) gives

�μ1···μn
ν1···νn

Dρν1···νn
r = −n

∫
d3 p

(2π )3Ep
δ f E r+1

p p〈μ1 pμ2 · · · aμn〉 − raσ

∫
d3 p

(2π )3Ep
δ f E r−1

p p〈σ pμ1 pμ2 · · · pμn〉

− r
n

2n + 1

∫
d3 p

(2π )3Ep
δ f E r−1

p

(E2
p − m2

)
p〈μ1 pμ2 · · · aμn〉 +

∫
d3 p

(2π )3Ep
C[ f ]E r−1

p p〈μ1 pμ2 · · · pμn〉

−
∫

d3 p

(2π )3Ep
(∂λ f0)E r−1

p pλ p〈μ1 pμ2 · · · pμn〉 − �μ1···μn
ν1···νn

∇λ

∫
d3 p

(2π )3Ep
δ f E r−1

p p〈λ〉 p〈ν1 pν2 · · · pνn〉
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+ �μ1···μn
ν1···νn

∫
d3 p

(2π )3Ep
δ f E r−1

p p〈λ〉(∇λ p〈ν1 pν2 · · · pνn〉) − θ

∫
d3 p

(2π )3Ep
E r

pδ f p〈μ1 pμ2 · · · pμn〉

− (r − 1)
∫

d3 p

(2π )3Ep
δ f E r−2

p (∇λuα )p〈α〉 p〈λ〉 p〈μ1 pμ2 · · · pμn〉. (D11)

Now, using Eq. (C11) proven in Appendix C, the third-to-last term on the right-hand side can be written as

�μ1···μn
ν1···νn

∫
d3 p

(2π )3Ep
δ f E r−1

p p〈λ〉(∇λ p〈ν1 pν2 · · · pνn〉) = −n
∫

d3 p

(2π )3Ep
E r

pδ f p〈λ〉 p〈μ1 pμ2 · · · ∇λuμn〉. (D12)

Equation (D11) now becomes

�μ1···μn
ν1···νn

Dρν1···νn
r = −n

∫
d3 p

(2π )3Ep
δ f E r+1

p p〈μ1 pμ2 · · · aμn〉 − raσ

∫
d3 p

(2π )3Ep
δ f E r−1

p p〈σ pμ1 pμ2 · · · pμn〉

− r
n

2n + 1

∫
d3 p

(2π )3Ep
δ f E r−1

p

(E2
p − m2

)
p〈μ1 pμ2 · · · aμn〉 +

∫
d3 p

(2π )3Ep
C[ f ]E r−1

p p〈μ1 pμ2 · · · pμn〉

−
∫

d3 p

(2π )3Ep
(∂λ f0)E r−1

p pλ p〈μ1 pμ2 · · · pμn〉 − �μ1···μn
ν1···νn

∇λ

∫
d3 p

(2π )3Ep
δ f E r−1

p p〈λ〉 p〈ν1 pν2 · · · pνn〉

− n
∫

d3 p

(2π )3Ep
E r

pδ f p〈λ〉 p〈μ1 pμ2 · · · ∇λuμn〉 − θ

∫
d3 p

(2π )3Ep
E r

pδ f p〈μ1 pμ2 · · · pμn〉

− (r − 1)
∫

d3 p

(2π )3Ep
δ f E r−2

p (∇λuα )p〈α〉 p〈λ〉 p〈μ1 pμ2 · · · pμn〉. (D13)

Applying Eq. (B21) again to the sixth term on the right-hand side, we get

−�μ1···μn
ν1···νn

∇λ

∫
d3 p

(2π )3Ep
δ f E r−1

p p〈λ〉 p〈ν1 pν2 · · · pνn〉 = −�μ1···μn
ν1···νn

∇λ

∫
d3 p

(2π )3Ep
δ f E r−1

p p〈λ pν1 pν2 · · · pνn〉

− n

2n + 1
�μ1···μn

ν1···νn
∇λ

∫
d3 p

(2π )3Ep
δ f E r−1

p

(E2
p − m2

)
p〈ν1 pν2 · · ·�νn〉λ.

(D14)

Plugging this back into Eq. (D13) gives us

�μ1···μn
ν1···νn

Dρν1···νn
r =

∫
d3 p

(2π )3Ep
C[ f ]E r−1

p p〈μ1 pμ2 · · · pμn〉 −
∫

d3 p

(2π )3Ep
(∂λ f0)E r−1

p pλ p〈μ1 pμ2 · · · pμn〉

− n
∫

d3 p

(2π )3Ep
δ f E r+1

p p〈μ1 pμ2 · · · aμn〉 − r
n

2n + 1

∫
d3 p

(2π )3Ep
δ f E r−1

p

(E2
p − m2

)
p〈μ1 pμ2 · · · aμn〉

− raσ

∫
d3 p

(2π )3Ep
δ f E r−1

p p〈σ pμ1 pμ2 · · · pμn〉 − �μ1···μn
ν1···νn

∇λ

∫
d3 p

(2π )3Ep
δ f E r−1

p p〈λ pν1 pν2 · · · pνn〉

− n

2n + 1
�μ1···μn

ν1···νn
∇λ

∫
d3 p

(2π )3Ep
δ f E r−1

p

(E2
p−m2

)
p〈ν1 pν2 · · · �νn〉λ−n

∫
d3 p

(2π )3Ep
E r

pδ f p〈λ〉 p〈μ1 pμ2 · · · ∇λuμn〉

− θ

∫
d3 p

(2π )3Ep
E r

pδ f p〈μ1 pμ2 · · · pμn〉 − (r − 1)
∫

d3 p

(2π )3Ep
δ f E r−2

p (∇λuα )p〈α〉 p〈λ〉 p〈μ1 pμ2 · · · pμn〉. (D15)

Using the definition of the moments, we get

�μ1···μn
ν1···νn

Dρν1···νn
r =

∫
d3 p

(2π )3Ep
C[ f ]E r−1

p p〈μ1 pμ2 · · · pμn〉 −
∫

d3 p

(2π )3Ep
(∂λ f0)E r−1

p pλ p〈μ1 pμ2 · · · pμn〉

− θρμ1···μn
r − �μ1···μn

ν1···νn
∇λρ

λν1···νn
r−1 − n

2n + 1

(∇〈μ1 ρ
μ2···μn〉

r+1 − m2∇〈μ1 ρ
μ2···μn〉

r−1

)
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− raαρ
αμ1···μn
r−1 + r

n

2n + 1
m2ρ

〈μ1···μn−1
r−1 a μn〉 − n(r + 2n + 1)

2n + 1
ρ

〈μ1···μn−1
r+1 a μn〉

− n
∫

d3 p

(2π )3Ep
E r

pδ f p〈λ〉 p〈μ1 pμ2 · · · ∇λuμn〉 − (r − 1)
∫

d3 p

(2π )3Ep
δ f E r−2

p (∇λuα )p〈α〉 p〈λ〉 p〈μ1 pμ2 · · · pμn〉.

(D16)

Now, we can further expand the term −n
∫ d3 p

(2π )3Ep
E r

pδ f p〈λ〉 p〈μ1 pμ2 · · · ∇λuμn〉 as the follows:

− n
∫

d3 p

(2π )3Ep
E r

pδ f p〈λ〉 p〈μ1 pμ2 · · · ∇λuμn〉

= −
∫

d3 p

(2π )3Ep
E r

pδ f

(
n∑

i=1

(∇λuμi )p〈λ〉 p〈μ1··· pμi−1 pμi+1··· pμn〉
)

+ 2

2n − 1

∫
d3 p

(2π )3Ep
E r

pδ f

⎛⎝ n∑
i 	= j

�μiμ j (∇λuα )p〈λ〉 p〈α pμ1··· pμi−1 pμi+1··· pμ j−1 pμ j+1··· pμn〉

⎞⎠, (D17)

where we used

p〈μ1··· pμn−1 aμn〉 = 1

n

n∑
i=1

a〈μi〉 p〈μ1··· pμi−1 pμi+1··· pμn〉 − 2

n(2n − 1)

n∑
i 	= j

�μiμ j a〈λ〉 p〈λ pμ1··· pμi−1 pμi+1··· pμ j−1 pμ j+1··· pμn〉, (D18)

in which a〈μ〉 is an arbitrary transverse vector. This identity comes frmo Eq. (A6). Using Eq. (B21) to combine the angular
brackets, we can further expand Eq. (D17) as

− n
∫

d3 p

(2π )3Ep
E r

pδ f p〈λ〉 p〈μ1 pμ2 · · · ∇λuμn〉

= −
∫

d3 p

(2π )3Ep
E r

pδ f
n∑

i=1

(∇λuμi )p〈λ pμ1··· pμi−1 pμi+1··· pμn〉

− n − 1

2n − 1

∫
d3 p

(2π )3Ep
E r

pδ f
n∑

i=1

(∇λuμi )
(E2

p − m2
)
p〈μ1··· pμi−1 pμi+1···�μn〉λ

+ 2

2n − 1

∫
d3 p

(2π )3Ep
E r

pδ f
n∑

i 	= j

�μiμ j (∇λuα )p〈λ pα pμ1··· pμi−1 pμi+1··· pμ j−1 pμ j+1··· pμn〉

+ 2(n − 1)

(2n − 1)2

∫
d3 p

(2π )3Ep
E r

pδ f
n∑

i 	= j

�μiμ j (∇λuα )
(E2

p − m2
)
p〈α pμ1··· pμi−1 pμi+1··· pμ j−1 pμ j+1···�μn〉λ, (D19)

which can be written in terms of the moments:

− n
∫

d3 p

(2π )3Ep
E r

pδ f p〈λ〉 p〈μ1 pμ2 · · · ∇λuμn〉

= −
n∑

i=1

(∇λuμi )ρλμ1···μi−1μi+1···μn
r + 2

2n − 1

n∑
i 	= j

�μiμ j (∇λuα )ρλαμ1···μi−1μi+1···μ j−1μ j+1···μn
r

− n − 1

2n − 1

n∑
i=1

ρ
〈μ1···μi−1μi+1···μn−1
r+2 ∇μn〉uμi + 2(n − 1)

(2n − 1)2

n∑
i 	= j

�μiμ j ρ
〈αμ1···μi−1μi+1···μ j−1μ j+1···μn−1

r+2 ∇μn〉uα

+ m2(n − 1)

2n − 1

n∑
i=1

ρ〈μ1···μi−1μi+1···μn−1
r ∇μn〉uμi − 2m2(n − 1)

(2n − 1)2

n∑
i 	= j

�μiμ j ρ
〈αμ1···μi−1μi+1···μ j−1μ j+1···μn−1
r ∇μn〉uα

= −
n∑

i=1

∇λu〈μiρμ1···μi−1μi+1···μn〉λ
r − n − 1

2n − 1

n∑
i=1

ρ
〈μ1···μi−1μi+1···μn−1
r+2 σμnμi〉 + m2(n − 1)

2n − 1

n∑
i=1

ρ〈μ1···μi−1μi+1···μn−1
r σμnμi〉, (D20)

024907-23



DASEN YE, SANGYONG JEON, AND CHARLES GALE PHYSICAL REVIEW C 110, 024907 (2024)

where

σμν = ∇〈μuν〉 (D21)

is the symmetric Navier-Stokes shear tensor. Since the angular bracket represents the traceless and symmetric combination of
the Lorentz indices, all permutations of the Lorentz indices inside the bracket give the same term. Thus,

−n
∫

d3 p

(2π )3Ep
E r

pδ f p〈λ〉 p〈μ1 pμ2 · · · ∇λuμn〉 = −nρλ〈μ1···μn−1
r ∇λuμn〉−n(n−1)

2n−1
ρ

〈μ1···μn−2
r+2 σμn−1μn〉 + m2(n−1)n

2n−1
ρ〈μ1···μn−2

r σμn−1μn〉.

(D22)

Here, we can replace ∇λuμn using

∇λuμ = σμν + ωμν + θ

3
�μν, (D23)

where

ωμν = 1
2 (∇μuν − ∇νuμ) (D24)

is the antisymmetric vorticity tensor. Doing so gives us

−n
∫

d3 p

(2π )3Ep
E r

pδ f p〈λ〉 p〈μ1 pμ2 · · · ∇λuμn〉 = −nρλ〈μ1···μn−1
r σ

μn〉
λ − nρλ〈μ1···μn−1

r ω
μn〉
λ − n

3
θρμ1···μn

r

− n(n − 1)

2n − 1
ρ

〈μ1···μn−2
r+2 σμn−1μn〉 + m2(n − 1)n

2n − 1
ρ〈μ1···μn−2

r σμn−1μn〉. (D25)

Now let us go back to the general moment equation Eq. (D16) and take a look at the term −(r −
1)

∫ d3 p
(2π )3Ep

δ f E r−2
p (∇λuα )p〈α〉 p〈λ〉 p〈μ1 pμ2 · · · pμn〉. Using Eq. (D23), this term can be written as

− (r − 1)
∫

d3 p

(2π )3Ep
δ f E r−2

p (∇λuα )p〈α〉 p〈λ〉 p〈μ1 pμ2 · · · pμn〉

= −(r − 1)σλα

∫
d3 p

(2π )3Ep
δ f E r−2

p p〈α〉 p〈λ〉 p〈μ1 pμ2 · · · pμn〉 − (r − 1)

3
θ

∫
d3 p

(2π )3Ep
δ f E r−2

p

(E2
p − m2

)
p〈μ1 pμ2 · · · pμn〉

= −(r − 1)σλα

∫
d3 p

(2π )3Ep
δ f E r−2

p p〈α〉 p〈λ〉 p〈μ1 pμ2 · · · pμn〉 − (r − 1)

3
θρμ1···μn

r + (r − 1)m2

3
θρ

μ1···μn
r−2 . (D26)

Note that the term with ωλα vanishes due to its antisymmetric property. We then proceed to expand the first term on the right-hand
side using Eq. (B22)

− (r − 1)σλα

∫
d3 p

(2π )3Ep
δ f E r−2

p p〈α〉 p〈λ〉 p〈μ1 pμ2 · · · pμn〉

= −(r − 1)σλαρ
αλμ1···μn
r−2 − 2(r − 1)

2n + 3

n∑
i=1

σμi
α ραμ1···μi−1μi+1···μn

r + 4(r − 1)

(2n + 3)(2n − 1)

n∑
i 	= j

�μiμ j σλαρ
αλμ1···μi−1μi+1···μ j−1μ j+1···μn
r

+ 2m2(r − 1)

2n + 3

n∑
i=1

σμi
α ρ

αμ1···μi−1μi+1···μn

r−2 − 4m2(r − 1)

(2n + 3)(2n − 1)

n∑
i 	= j

�μiμ j σλαρ
αλμ1···μi−1μi+1···μ j−1μ j+1···μn

r−2

− (r − 1)(n − 1)n

(2n + 1)(2n − 1)
ρ

〈μ1···μn−2
r+2 σμn−1μn〉 + 2m2(r − 1)(n − 1)n

(2n + 1)(2n − 1)
ρ〈μ1···μn−2

r σμn−1μn〉 − m4(r − 1)(n − 1)n

(2n + 1)(2n − 1)
ρ

〈μ1···μn−2
r−2 σμn−1μn〉.

(D27)

Note that each pair of summations give the traceless and symmetric combination of σμi
α and ρ

αμ1···μi−1μi+1···μn
r . Thus this reduces

to

− (r − 1)σλα

∫
d3 p

(2π )3Ep
δ f E r−2

p p〈α〉 p〈λ〉 p〈μ1 pμ2 · · · pμn〉

= −(r − 1)σλαρ
αλμ1···μn
r−2 − 2(r − 1)

2n + 3

n∑
i=1

σ 〈μi
α ρμ1···μi−1μi+1···μn〉α

r + 2m2(r − 1)

2n + 3

n∑
i=1

σ 〈μi
α ρ

μ1···μi−1μi+1···μn〉α
r−2

− (r − 1)(n − 1)n

(2n + 1)(2n − 1)
ρ

〈μ1···μn−2
r+2 σμn−1μn〉 + 2m2(r − 1)(n − 1)n

(2n + 1)(2n − 1)
ρ〈μ1···μn−2

r σμn−1μn〉 − m4(r − 1)(n − 1)n

(2n + 1)(2n − 1)
ρ

〈μ1···μn−2
r−2 σμn−1μn〉.

(D28)
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Since all permutations of the Lorentz indices inside the angular brackets give the same term, this can be simplified to

− (r − 1)σλα

∫
d3 p

(2π )3Ep
δ f E r−2

p p〈α〉 p〈λ〉 p〈μ1 pμ2 · · · pμn〉

= −(r − 1)σλαρ
αλμ1···μn
r−2 − 2(r − 1)n

2n + 3
ρα〈μ1···μn−1

r σμn〉
α + 2m2(r − 1)n

2n + 3
ρ

α〈μ1···μn−1
r−2 σμn〉

α

− (r − 1)(n − 1)n

(2n + 1)(2n − 1)
ρ

〈μ1···μn−2
r+2 σμn−1μn〉 + 2m2(r − 1)(n − 1)n

(2n + 1)(2n − 1)
ρ〈μ1···μn−2

r σμn−1μn〉 − m4(r − 1)(n − 1)n

(2n + 1)(2n − 1)
ρ

〈μ1···μn−2
r−2 σμn−1μn〉.

(D29)

Plugging all the above results back into Eq. (D16) and expressing everything in terms of the moments, we arrive at the final form
of the general moment equation:

�μ1···μn
ν1···νn

Dρν1···νn
r =

∫
d3 p

(2π )3Ep
C[ f ]E r−1

p p〈μ1 pμ2 · · · pμn〉 −
∫

d3 p

(2π )3Ep
(∂λ f0)E r−1

p pλ p〈μ1 pμ2 · · · pμn〉

− n(2n + r + 1)

2n + 1
ρ

〈μ1···μn−1
r+1 aμn〉 + rm2 n

2n + 1
ρ

〈μ1···μn−1
r−1 aμn〉 − raλρ

λμ1···μn
r−1 − �μ1···μn

ν1···νn
∇λρ

λν1···νn
r−1

− n

2n + 1
∇〈μ1ρ

μ2···μn〉
r+1 + m2 n

2n + 1
∇〈μ1ρ

μ2···μn〉
r−1 − n + r + 2

3
θρμ1···μn

r

− (r − 1)σλαρ
αλμ1···μn
r−2 + (r − 1)m2

3
θρ

μ1···μn
r−2 − n(2n + 2r + 1)

2n + 3
ρλ〈μ1···μn−1

r σ
μn〉
λ

− nρλ〈μ1···μn−1
r ω

μn〉
λ − (2n + r)(n − 1)n

(2n − 1)(2n + 1)
ρ

〈μ1···μn−2
r+2 σμn−1μn〉 + 2m2 (r − 1)n

2n + 3
ρ

λ〈μ1···μn−1
r−2 σ

μn〉
λ

− m4 (r − 1)(n − 1)n

(2n + 1)(2n − 1)
ρ

〈μ1···μn−2
r−2 σμn−1μn〉 + m2 (2n + 2r − 1)(n − 1)n

(2n + 1)(2n − 1)
ρ〈μ1···μn−2

r σμn−1μn〉. (D30)

APPENDIX E: F INTEGRALS AND φ, ϕ, ψ COEFFICIENTS

To evaluate the F integrals, we first need to know the
conservation laws. The stress-energy tensor is

T μν =
∫

d3 p

(2π )3Ep
f0 pμ pν + πμν + ��μν. (E1)

The energy-momentum conservation law is

0 = ∂μT μν

=
∫

d3 p

(2π )3Ep
(∂μ f0)pμ pν + ∂μπμν + (∇ν�)

+ �(uνθ + aν ), (E2)

where we used

∂μ�μν = ∂μ(uμuν )

= uνθ + aν, (E3)

and we specify f0 = e−βEp .
In the time direction uν∂μT μν = 0 yields

0 = −πμνσμν − θ� + I3,0Dβ − β

3
θ I3,1, (E4)

where we defined

In,k =
∫

d3 p

(2π )3Ep
f0En−2k

p

(E2
p − m2

)k
, (E5)

which can be evaluated in the local rest frame where Ep →
Ep and (E2

p − m2) → p2. This integral is always finite when

m 	= 0 and k � 0. In the m → 0 limit, the integral behaves as
log(mβ ) for n = −2, and In,k ∼ T n+2.

Using integration by part, it can be shown that

βIn,k = β

∫
d3 p

(2π )3Ep
En−2k

p p2ke−βEp

= −
∫

d3 p

(2π )3Ep
En−2k+1

p p2k−1∂pe−βEp

= (2k + 1)In−1,k−1 + (n − 2k)In−1,k, (E6)

as long as all integrals are finite. In particular

βI3,1 = 3I2,0 + I2,1

= 3(ε + P). (E7)

In the spatial direction �ρ
ν ∂μT μν = 0 yields

0 = �ρ
ν ∂μπμν + (∇ρ�) + aρ� − I3,1

∇ρβ

3
+ βaρ

3
I3,1.

(E8)

Solving for the time derivatives Dβ and aρ = Duρ , we
obtain

Dβ = χβ|0θ + χπ�
β|1 (πγρσγρ + �θ ), (E9)

where

χβ|0 = β

3

I3,1

I3,0
and χπ�

β|1 = 1

I3,0
. (E10)
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From Eq. (5), we get

aρ = 1

� + (ε + P)

[−∇ρP − (∇ρ�) − �ρ
ν ∂μπμν

]
≈ 1

ε + P

[−∇ρP − (∇ρ�) − �ρ
ν ∂μπμν

]
− �

(ε + P)2
(−∇ρP), (E11)

where we used

∇β

3
I3,1 = −∇P. (E12)

The zeroth-order acceleration is

aρ

|0 = − ∇ρP

ε + P
= ∇ρβ

I3,1

3(ε + P)
= ∇ρβ

β
, (E13)

and the first-order one satisfies

Qρ
σ aσ

|1 = 1

ε + P

(−∇ρ� − �ρ
ν ∇μπμν

) − 1

(ε + P)2 �(−∇ρP),

(E14)

where

Qρ
σ = gρ

σ + 1

ε + P
πρ

σ . (E15)

Now, observe that the only nonzero F integrals are the spin
0, 1, and 2 integrals. The scalar integral is

Fr =
∫

d3 p

(2π )3Ep
E r

p pλ(∂λ f0)

=
∫

d3 p

(2π )3Ep
E r

p f0

(
−E2

pDβ + β
θ

3

(E2
p − m2

))
= −Ir+2,0Dβ + β

3
θ Ir+2,1

= φr|0θ + φπ�
r|1 (πργ σργ + θ�), (E16)

where

φr|0 = β

3

(
Ir+2,1 − Ir+2,0I3,1

I3,0

)
, (E17)

and

φπ�
r|1 = − Ir+2,0

I3,0
(E18)

using Eq. (E9). Note that φ1|0 = 0 and φπ�
1|1 = −1. In the

massless limit, we have

Ir,k =
∫

d3 p

(2π )3 pr−1e−p/T = T r+2

2π2
(r + 1)!. (E19)

For the 14 moments, we need F−1 whose coefficients are

φ−1|0 = −4
T 2

2π2
, (E20)

and

φπ�
−1|1 = − 1

6β2. (E21)

The vector integral is

F σ
r =

∫
d3 p

(2π )3Ep
E r

p pλ(∂λ f0)p〈σ 〉

=
∫

d3 p

(2π )3Ep
E r

p f0(−Ep p〈λ〉∇λβ + Epβp〈λ〉aλ)p〈σ 〉

= ψr|1
(
�ρ

ν ∂μπμν + ∇σ� + aσ�
)
, (E22)

where we used a slight different form of Eq. (E11):

βaρ − ∇ρβ = − 3

I3,1

[
�ρ

ν ∂μπμν + (∇ρ�) + aρ�
]
. (E23)

The coefficient is

ψr|1 = − Ir+3,1

I3,1
. (E24)

Note that ψ0|1 = −1. Here, I3,1 = 3(ε + P)T and I2,1 = 3P
can be used if needed. With r = −1 and m = 0,

ψ−1|1 = − 1
4β. (E25)

The spin-2 integral is relatively simple

F σγ
r =

∫
d3 p

(2π )3Ep
E r

p pλ(∂λ f0)p〈σ pγ 〉

=
∫

d3 p

(2π )3Ep
E r

p f0
(
βp〈λ pα〉∇λuα

)
p〈σ pγ 〉

= ϕr|0σσγ , (E26)

where

ϕr|0 = 2
15βIr+4,2 = 2

15 (5Ir+3,1 + rIr+3,2) (E27)

is obtained with the help of the normalization condition
Eq. (B6) (see also Refs. [31,62]), and Eq. (E6). With r = −1
and m = 0,

ϕ−1|0 = 16

5

T 4

2π2
= 8

15
ε. (E28)

Let us check whether Landau conditions ρ2 = 0 and ρ
μ
1 =

0 are consistent with the F integrals. Setting r = 2 in Eq. (38),
we get

Dρ2 = −ρ2

τR
− F1 + m2 θ

3
ρ0 − 4

3
θρ2

−∇λρ
λ
1 − raλρ

λ
1 − σλαραλ

0 . (E29)

Setting r = 1 in Eq. (49), we get

�μ1
ν1

Dρ
ν1
1 = −ρ

μ1
1

τR
− Fμ1

0 − 4

3
θρ

μ1
1

− aαρ
αμ1
0 − �μ1

ν1
∇λρ

λν1
0 − ω

μ1
λ ρλ

1

+ 1

3
(m2ρ0 − 4ρ2)aμ1

− 1

3
(∇μ1ρ2 − m2∇μ1ρ0) − ρλ

1 σ
μ1
λ . (E30)

Using πμν = ρ
μν
0 , � = −m2ρ0/3 as well as

F1 = −(πρσ σρσ + θ�) (E31)
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and

Fμ
0 = −(

�μ
ν ∇λπ

λν + aλπ
λμ + ∇ρ� + aρ�

)
, (E32)

these evolution equations become

Dρ2 = −ρ2

τR
− 4

3
θρ2 − ∇λρ

λ
1 − raλρ

λ
1 , (E33)

and

�μ1
ν1

Dρ
ν1
1 = −ρ

μ1
1

τR
− 4

3
θρ

μ1
1 − ω

μ1
λ ρλ

1

−4

3
ρ2aμ1 − 1

3
∇μ1ρ2 − ρλ

1 σ
μ1
λ . (E34)

Hence as long as the initial values for ρ2 and ρ
μ
1 all vanish, ρ2

and ρ
μ
1 remain zero.
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