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Evolution of the ρ meson’s spin alignment in a pion gas
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We study the evolution of the spin alignment of neutral ρ mesons in a pion gas using spin kinetic or Boltzmann
equations. The ρππ coupling is given by the chiral effective theory. The collision terms at the leading and
next-to-leading order in spin Boltzmann equations are derived. The evolution of the spin density matrix of the
neutral ρ meson is simulated with different initial conditions. The numerical results show that the interaction
of pions and neutral ρ mesons creates very small spin alignment in the central rapidity region if there is no ρ

meson in the system at the initial time. Such a small spin alignment in the central rapidity region will decay
rapidly toward zero in later time. If there are ρ mesons with a sizable spin alignment at the initial time the spin
alignment will also decrease rapidly. We studied the effect on ρ00 from the elliptic flow of pions in the blast wave
model. With vanishing spin alignment at the initial time, the deviation of ρ00 from 1/3 is positive but very small.
The effect of tensor polarizations of ρ mesons on γ correlator observables for CME has also been investigated.
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I. INTRODUCTION

The orbital angular momentum and spin are intrinsically
connected with each other, as demonstrated in the Barnett
effect [1] and Einstein–de Haas effect [2] in materials. In
peripheral collisions of heavy ions, a part of the orbital angular
momentum (OAM) in the initial state can be distributed into
the strong interaction matter via spin-orbit couplings in the
form of the hadron’s spin polarization with respect to the
direction of OAM (reaction plane), which is called the global
polarization [3–7]. The spin polarization of hyperons can be
measured through their weak decays in which the parity sym-
metry is broken [8]. The global polarization of � hyperons
(including antiparticles) has been measured by the STAR
collaboration in Au+Au collisions at 3–200 GeV [9,10], by
the HADES collaboration in Au+Au and Ag+Ag collisions
at 2.42–2.55 GeV [11], and by the ALICE collaboration in
Pb+Pb collisions at 5.02 TeV [12]. The global polarization
of � and � hyperons (including antiparticles) has also been
measured by the STAR collaboration in Au+Au collisions at
200 GeV [13]. These experimental measurements have been
explained by various theoretical models (mainly hydrodynam-
ical and transport models) [14–27]. We refer the readers to
some recent review articles in this field [28–34].

Most vector mesons decay through strong interaction that
preserves the parity symmetry, so the spin polarization of vec-
tor mesons cannot be measured in the same way as hyperons.
The spin density matrix ρλ1λ2 for the spin-1 vector meson is
a 3×3 complex matrix with unit trace, trρ = 1, where λ1 and
λ2 = 0,±1 denote the spin states along the spin quantization
direction. The 00-element ρ00 for the vector meson can be
measured by the angular distribution of its decay product or
daughter particle [4,35–37], so ρ00 − 1/3 is an observable

that can describe the spin alignment of the vector meson. If
ρ00 = 1/3, the angular distribution of the daughter particle
is isotropic and the vector meson has no spin alignment. If
ρ00 > 1/3, the polarization vector of the meson is aligned
more in the spin quantization direction. If ρ00 < 1/3, the po-
larization vector of the meson is aligned more in the transverse
direction perpendicular to the spin quantization direction. The
global spin alignment of φ and K0∗ mesons has recently been
measured by the STAR collaboration [38]. It is found that ρ

φ

00

is significantly larger than 1/3 at lower energies, while ρK0∗
00 is

consistent with 1/3.
There are many sources to the spin alignment of vector

mesons [36,39–47]. In Ref. [48], some of us proposed that a
large deviation of ρ00 from 1/3 for φ mesons may possibly
come from the φ field, a strong force field with vacuum
quantum number induced by the current of pseudo-Goldstone
bosons. Such a proposal is based on a nonrelativistic quark co-
alescence model for the spin density matrix of vector mesons
[36,48], which is only valid for static vector mesons. In
Ref. [49], the relativistic version of the quark coalescence
model has been constructed based on the spin Boltzmann
equation with collisions. The model is successful in describ-
ing the experimental data for ρ00 for φ mesons [50]. Recently
some of us made a prediction for the rapidity dependence of
the spin alignment with the same set of parameters [51], which
was later confirmed by the preliminary data of STAR [52]. We
refer the readers to some recent review articles about the spin
alignment of vector mesons [53–55].

In this paper, we try to study the evolution of the spin
alignment of the ρ0 meson in a pion gas. As is well known, the
lifetime of the ρ0 meson is very short and mainly decays in-
side the medium. As the result, the interaction between ρ0 and
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π± mesons in the hadron phase of heavy-ion collisions has
significant impact on the spin alignment of the ρ meson. This
is very different from the φ meson which is mainly formed
by the hadronization of quarks. This study is relevant to the
search for the chiral magnetic effect (CME) [56–58] since the
decay of ρ0 to π± provides a significant contribution to the
background in the γ correlator [59–64] and the spin alignment
of ρ0 may have an effect on CME observables [65,66].

The paper is organized as follows. In Sec. II, an effective
Lagrangian is given for the ρππ coupling [67]. In Sec. III,
from the Kadanoff-Baym (KB) equation for Green’s functions
for pseudoscalar and vector mesons in the closed-time-path
(CTP) formalism [68], we derive the spin Boltzmann equa-
tions for vector mesons with collisions [49]. In Sec. IV, we
derive the collision terms at the leading order (LO) and next-
to-leading order (NLO) with the medium effect. In Sec. V, we
discuss the effect from the ρ meson’s tensor polarization on
the γ correlator for CME. The numerical results are given in
Sec. VI. In the final section, Sec. VII, we make the conclusion
and discussion.

The sign convention for the metric tensor is gμν =
gμν = diag(1,−1,−1,−1), where we use Greek letters to
denote four-dimension indices of vectors or tensors. The
four-momentum is defined as p = pμ = (p0, p) and pμ =
(p0,−p), where p0 is the particle’s energy. For an on-shell
particle, we have p0 = Ep =

√
p2 + m2.

II. EFFECTIVE LAGRANGIAN

We consider the chiral effective theory with SU(2) flavor
symmetry. The ρ meson is introduced via the hidden gauge
field. The effective Lagrangian for a system of ρ0, π+, and
π− mesons reads

L = Lρ + Lπ + Lint, (1)

where Lρ , Lπ , and Lint are the Lagrangians for free ρ0, free
π±, and their interaction, respectively. They are given by

Lρ = −1

4
FμνFμν + 1

2h̄2 m2
ρAμAμ,

Lπ = h̄2∂μφ†∂μφ − m2
πφ†φ,

Lint = igV h̄1/2Aμ(φ†h̄∂μφ − φh̄∂μφ†), (2)

where Aμ is the real vector field for ρ0, Fμν = ∂μAν − ∂νAμ

is the field strength tensor, mρ = 770 MeV and mπ = 139
MeV are masses of the ρ meson and pion, respectively, φ (φ†)
denotes the complex scalar field for π+ (π−), and gV ≈ 5.9 is
the coupling constant for the ρππ vertex. The Lagrangian (1)
is our starting point to derive the collision terms.

III. WIGNER FUNCTIONS AND SPIN
BOLTZMANN EQUATION

In this section we will introduce Wigner functions and spin
kinetic or Boltzmann equations for vector mesons. The spin
kinetic or Boltzmann equations can be derived from the KB
equation in the CTP formalism [68–75]. The spin kinetic or
Boltzmann equations with collision terms are a recent focus
and have been derived for spin-1/2 massive fermions [76,77]

and for vector mesons [49,50,78] in the CTP formalism. They
can also be derived in other methods for spin-1/2 massive
fermions [79–86] and for vector mesons [78]. The building
blocks of kinetic or Boltzmann equations are Wigner func-
tions in phase space that are defined from two-point Green’s
functions [72,76,77,79,82,83,87–96], see, e.g., Refs. [97,98]
for recent reviews.

The real vector and complex scalar fields can be quantized
as

Aμ(x) = h̄
∑

λ=0,±1

∫
d3 p

(2π h̄)32Eρ
p

[εμ(λ, p)aV (λ, p)e−ip·x/h̄

+ εμ∗(λ, p)a†
V (λ, p)eip·x/h̄], (3)

φ(x) =
∫

d3k

(2π h̄)32Eπ
k

[a(k)e−ik·x/h̄ + b†(k)eik·x/h̄], (4)

where Eρ
p =

√
p2 + m2

ρ and Eπ
k = √

k2 + m2
π are the energies

of ρ and π , respectively, λ denotes the spin state with respect
to the spin quantization direction, and εμ(λ, p) is the polariza-
tion vector

εμ(λ, p) =
(

p · ελ

mρ

, ελ + p · ελ

mρ

(
Eρ

p + mρ

)p

)
(5)

with ελ being the polarization three-vector of the vector meson
in its rest frame and given by

ε0 =(0, 1, 0),

ε+1 = − 1√
2

(i, 0, 1),

ε−1 = 1√
2

(−i, 0, 1). (6)

Here, ε0 is the spin quantization direction and is chosen to be
+y direction. The polarization vector εμ(λ, p) has following
properties:

pμεμ(λ, p) = 0,

ε(λ, p) · ε∗(λ′, p) = −δλλ′ ,

∑
λ

εμ(λ, p)εν∗(λ, p) = −
(

gμν − pμ pν

m2
ρ

)
. (7)

Then we can define the two-point Green’s functions on the
CTP for the vector and pseudoscalar meson:

Gμν
CT P(x1, x2) = 1

h̄2 〈TCAμ(x1)Aν (x2)〉, (8)

SCT P(x1, x2) = 〈TCφ(x1)φ†(x2)〉. (9)

The two-point Green’s functions G≶
μν for the vector meson at

the leading order are given as [49]

G<
μν (x, p) = 2π h̄

∑
λ1,λ2

δ
(
p2 − m2

ρ

){
θ (p0)εμ(λ1, p)ε∗

ν (λ2, p)

× fλ1λ2 (x, p) + θ (−p0)ε∗
μ(λ1,−p)εν (λ2,−p)

× [
δλ2λ1 + fλ2λ1 (x,−p)

]}
, (10)
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G>
μν (x, p) = 2π h̄

∑
λ1,λ2

δ
(
p2 − m2

ρ

){
θ (p0)εμ(λ1, p)ε∗

ν (λ2, p)

× [
δλ1λ2 + fλ1λ2 (x, p)

] + θ (−p0)ε∗
μ(λ1,−p)

× εν (λ2,−p) fλ2λ1 (x,−p)
}
, (11)

where fλ1λ2 (x, p) is the matrix valued spin dependent distribu-
tion (MVSD) for the ρ meson,

fλ1λ2 (x, p) ≡
∫

d4u

2(2π h̄)3
δ(p · u)e−iu·x/h̄

×
〈
a†

ρ

(
λ2, p − u

2

)
aρ

(
λ1, p + u

2

)〉
. (12)

One can see that fλ1λ2 (x, p) is a Hermitian matrix,
f ∗
λ1λ2

(x, p) = fλ2λ1 (x, p). The two-point Green’s functions for
π± at the leading order are

S<(x, k) = 2π h̄δ
(
k2 − m2

π

){θ (k0) fπ+ (x, k)

+ θ (−k0)[1 + fπ− (x,−k)]}, (13)

S>(x, k) = 2π h̄δ
(
k2 − m2

π

){θ (k0)[1 + fπ+ (x, k)]

+ θ (−k0) fπ− (x,−k)}, (14)

where fπ± (x, p) is the distribution for π±. For notational
convenience, we use G and p to denote the Green’s function
and momentum for the ρ meson, respectively, while we use S
and k to denote the Green’s function and momentum for π±,
respectively.

We start from the KB equation to derive the spin Boltz-
mann equation for the vector meson [49]

p · ∂xG<,μν (x, p) − 1
4

[
pμ∂x

ηG<,ην (x, p) + pν∂x
ηG<,μη(x, p)

]
= 1

4 [�<,μ
α (x, p)G>,αν (x, p) − �>,μ

α (x, p)G<,αν (x, p)]

+ 1
4 [G>,μ

α (x, p)�<,αν (x, p) − G<,μ
α (x, p)�>,αν (x, p)].

(15)

In the above equation, the Poisson bracket terms are not
considered. Multiplying ε∗

μ(λ1, p)εν (λ2, p) to both sides of
Eq. (15) and choosing the p0 > 0 part, we obtain

p · ∂x fλ1λ2 (x, p)

= − 1
4δλ2λ

′
2
ε∗
μ(λ1, p)εα (λ′

1, p)
{[

δλ′
1λ

′
2
+ fλ′

1λ
′
2
(x, p)

]
× �<,μ

α (x, p) − fλ′
1λ

′
2
(x, p)�>,μ

α (x, p)
}

− 1
4δλ1λ

′
1
εν (λ2, p)ε∗

α (λ′
2, p)

{[
δλ′

1λ
′
2
+ fλ′

1λ
′
2
(x, p)

]
× �<,αν (x, p) − fλ′

1λ
′
2
(x, p)�>,αν (x, p)

}
. (16)

The above equation is the spin Boltzmann equation for the
vector meson in terms of MVSDs. The MVSDs of spin-1/2
fermions are defined in Refs. [77,92] and those for vector
mesons are defined in Refs. [49,50]. The spin density matrix
is just the normalized MVSD

ρλ1λ2 = fλ1λ2∑
λ fλλ

= fλ1λ2

Tr f
, (17)

where Tr( f ) ≡ ∑
λ fλλ. The spin density matrix can be

decomposed into the scalar, vector (Pi), and tensor (Ti j)

components as

ρλ1λ2 = (
1
3 + 1

2 Pi�i + Ti j�i j
)
λ1λ2

, (18)

where i, j = 1, 2, 3, �i and �i j are 3×3 matrices defined as

�1 = 1√
2

⎛
⎝0 1 0

1 0 1
0 1 0

⎞
⎠, �2 = 1√

2

⎛
⎝0 −i 0

i 0 −i
0 i 0

⎞
⎠,

�3 =
⎛
⎝1 0 0

0 0 0
0 0 −1

⎞
⎠,

�i j = 1

2
(�i� j + � j�i ) − 2

3
δi j . (19)

Note that �i satisfy the commutation rule for the angular
momentum, [�i, � j] = iεi jk�k . The coefficients Pi give the
polarization vector and can be extracted by Pi = Tr(ρ�i )
using the property Tr(�i� jk ) = 0. The coefficients Ti j give
the polarization tensor, those components with i 	= j can be
extracted by Ti j = Tr(ρ�i j ). But it is not possible to extract
T11, T22, and T33 in the same way since Tr(�ii� j j ) 	= 0. The
spin alignment is given by ρ00 = 1/3 − T33. The expressions
of Pi and Ti j are given in Refs. [55,99].

We make a few remarks about the spin kinetic or Boltz-
mann equation (16). The collision terms in the right-hand side
of Eq. (16) are the result of the on-shell approximation. In
such an approximation, the principal parts of retarded and
advanced self-energies and two-point Green’s functions are
neglected so that the collision terms only depend on the “<”
and “>” components. Hence the contributions to the spin
density matrix of vector mesons come from collisions of
on-shell particles including the vector meson’s annihilation
and production processes. A more rigorous treatment of dif-
ferent retarded and advanced self-energies for transverse and
longitudinal modes in equilibrium includes the off-shell con-
tribution [42,45,100,101], which belongs to a different kind of
contribution from the one we consider in this paper.

In the next section we will derive the self-energy �μν and
then collision terms incorporating the interaction part of the
Lagrangian.

IV. COLLISION TERMS

For clarification, we decompose the collision terms, the
right-hand side (r.h.s.) of Eq. (16), into Ccoal/diss and Cscat for
the coalescence-dissociation and scattering processes, respec-
tively, where Ccoal/diss have contributions at LO and NLO,
Ccoal/diss = C(0)

coal/diss + C(1)
coal/diss, while Cscat is of NLO. Note

that we only consider contributions up to NLO in this paper.
Then Eq. (16) can be written as

p

Eρ
p

· ∂x fλ1λ2 (x, p) = Ccoal/diss + Cscat, (20)

where the spin indices λ1, λ2 and phase space variables x, p
have been suppressed in collision terms. In this work, for sim-
plicity, we adopt the gradient expansion in space and neglect
spatial gradients of fλ1λ2 at the leading order. This corresponds
to the assumption that the system is homogeneous in space. So
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μ

p

q

igV (p + q)μ

FIG. 1. The Feynman rule for the ρππ vertex, where the solid
line represents ρ0’s on-shell state and dashed lines represent π±’s
on-shell states.

Eq. (20) becomes

∂t fλ1λ2 (x, p) = Ccoal/diss + Cscat. (21)

We will evaluate Ccoal/diss and Cscat one by one.

A. Leading order

The Feynman rule for the ρππ vertex is in Fig. 1. In Feyn-
man diagrams, solid lines represent ρ0 meson’s on-shell states
(external lines) or propagators (internal lines) and dashed
lines represent π± meson’s on-shell states (external lines) or
propagators (internal lines). The arrow on the ρ0 meson’s
propagator only labels the momentum direction, since ρ0 is
the charge neutral particle, while the arrow on π± meson’s
propagator labels the momentum direction of π+ or the in-
verse momentum direction of π−.

The self-energies corresponding to LO Feynman diagrams
in Fig. 2 are given as

�<
μν (x, p)

= −g2
V h̄

∫
d4k1

(2π h̄)4

∫
d4k2

(2π h̄)4
(2π h̄)4δ(4)(p − k1 + k2)

× (k1μ + k2μ)(k1ν + k2ν )S<(x, k1)S>(x, k2), (22)

�>
μν (x, p)

= −g2
V h̄

∫
d4k1

(2π h̄)4

∫
d4k2

(2π h̄)4
(2π h̄)4δ(4)(p − k1 + k2)

× (k1μ + k2μ)(k1ν + k2ν )S>(x, k1)S<(x, k2). (23)

In deriving Eq. (16), we have chosen p0 > 0, so k0
1 and

k0
2 must satisfy k0

1 > 0 and k0
2 < 0, which means the on-shell

+−

k2

k1

ν μ

(a)

−+

k2

k1

μν

(b)

FIG. 2. Leading-order Feynman diagrams for (a) �<
μν (x, p) and

(b) �>
μν (x, p), where dashed lines represent propagators of π±

mesons. The external moment p is flowing from left to right.

process ρ0 ↔ π+π− is allowed but π± ↔ ρ0π± is forbidden.
The discussion about the sign of k0

1 and k0
2 can be found in

Ref. [49].
Consequently, the LO self-energies in Eqs. (22) and (23)

can be put into the form

�<
μν (x, p) = − g2

V h̄
∫

d3k1

(2π h̄)32Eπ
k1

∫
d3k2

(2π h̄)32Eπ
k2

(2π h̄)4

× δ(4)(p − k1 − k2)(k1μ − k2μ)(k1ν − k2ν )

× fπ+ (x, k1) fπ− (x, k2), (24)

�>
μν (x, p) = − g2

V h̄
∫

d3k1

(2π h̄)32Eπ
k1

∫
d3k2

(2π h̄)32Eπ
k2

(2π h̄)4

× δ(4)(p − k1 − k2)(k1μ − k2μ)(k1ν − k2ν )

× [1 + fπ+ (x, k1)][1 + fπ− (x, k2)]. (25)

Substituting the above equations into Eq. (16), we obtain

C(0)
coal/diss(ρ

0 ↔ π+π−)

= h̄
g2

V

Eρ
p

∫
d3k

(2π h̄)34Eπ
k Eπ

p−k

2π h̄δ
(
Eρ

p − Eπ
k − Eπ

p−k

)
× [

δλ2λ
′
2
k · ε∗(λ1, p)k · ε(λ′

1, p)

+ δλ1λ
′
1
k · ε(λ2, p)k · ε∗(λ′

2, p)
]

× {
fπ+ (x, k) fπ− (x, p − k)

[
δλ′

1λ
′
2
+ fλ′

1λ
′
2
(x, p)

]
− [1 + fπ+ (x, k)][1 + fπ− (x, p − k)] fλ′

1λ
′
2
(x, p)

}
,

(26)

where we have used Eq. (7).

B. Next-to-leading order

The Feynman diagrams for �<(x, p) at next-to-leading
order (NLO) are shown in Fig. 3. Considering the difference
between �<(x, p) and �>(x, p) is to interchange between the
positive and negative branch, we can evaluate �<(x, p) first
and then replace ≶ with ≷ in �<(x, p) to obtain �>(x, p).
The free pion’s Feynman propagators with time and reverse-
time order are

SF (k) = ih̄

k2 − m2
π

, (27)

SF (k) = −ih̄

k2 − m2
π

. (28)

The medium corrections for SF and SF will be discussed in
the next subsection.

We can see that Figs. 3(a) and 3(b) are different in orien-
tations of pion loops, and Figs. 3(c) and 3(d) are different in
time branches for two middle points with momentum p1. In
Fig. 3 we choose a particular direction for p1 in the vector
meson’s propagator, actually one is free to choose any direc-
tion without changing the final result. Other combinations of
time branches for upper vertices in Figs. 3(a) and 3(b) and
middle vertices in Figs. 3(c) and 3(d) correspond to loop
corrections to propagators and vertices, respectively, which
need renormalization as in quantum field theory in vacuum.

024905-4



EVOLUTION OF THE ρ MESON’S SPIN … PHYSICAL REVIEW C 110, 024905 (2024)

k1

k2

p1

k1 − p k1 − p

+

+

−

−
(a)

k1

k2

p1

p + k1 p + k1

+

+−

−
(b)

p1

k1
p + k2

k2k1 − p

+−

+

−
(c)

p1

p + k1 k2

k2 −k p1

+−

−

+

(d)

FIG. 3. Feynman diagrams for �<
μν (x, p) at the next-to-leading order. The solid lines represent ρ0 meson’s propagators and dashed lines

represent the propagators of π± mesons. The external momentum p is flowing from left to right.

For example, in Fig. 3(a), other combinations of time branches for two upper vertices (from left to right) are ++ and −−, which
correspond to the loop correction to the right and left pion propagators, respectively, as shown in Fig. 4. As another example, in
Fig. 3(c), other combinations of time branches for two upper vertices (from left to right) are ++ and −−, which correspond to
the loop correction to the right and left vertices, respectively, as shown in Fig. 4.

Now we can obtain collision terms at NLO. The result has three parts corresponding to three processes, ρ0π+ ↔ ρ0π+,
ρ0π− ↔ ρ0π−, and ρ0ρ0 ↔ π+π−:

Cscat (ρ
0π± ↔ ρ0π±) = 4g4

V

Eρ
p

h̄2
∫

d3k1

(2π h̄)32Eπ
k1

∫
d3k2

(2π h̄)32Eπ
k2

∫
d3 p1

(2π h̄)32Eρ
p1

(2π h̄)4δ(4)(p + k2 − p1 − k1)

× [
δλ2λ

′
2
D(1)(s1, λ1)D∗

(1)(s2, λ
′
1) + δλ1λ

′
1
D(1)(s1, λ

′
2)D∗

(1)(s2, λ2)
]

× [
fs1s2 (x, p1) fπ± (x, k1)(1 + fπ± (x, k2))

(
δλ′

1λ
′
2
+ fλ′

1λ
′
2
(x, p)

)
− (

δs1s2 + fs1s2 (x, p1)
)
(1 + fπ± (x, k1)) fπ± (x, k2) fλ′

1λ
′
2
(x, p)

]
, (29)

C(1)
coal/diss(ρ

0ρ0 ↔ π+π−) = 4g4
V

Eρ
p

h̄2
∫

d3k1

(2π h̄)32Eπ
k1

∫
d3k2

(2π h̄)32Eπ
k2

∫
d3 p1

(2π h̄)32Eρ
p1

(2π h̄)4δ(4)(p + p1 − k1 − k2)

× [
δλ2λ

′
2
D(2)(s1, λ

′
1)D∗

(2)(s2, λ1) + δλ1λ
′
1
D(2)(s1, λ2)D∗

(2)(s2, λ
′
2)

]
× [

fπ+ (x, k1) fπ− (x, k2)
(
δs1s2 + fs1s2 (x, p1)

)(
δλ′

1λ
′
2
+ fλ′

1λ
′
2
(x, p)

)
−(1 + fπ+ (x, k1))(1 + fπ− (x, k2)) fs1s2 (x, p1) fλ′

1λ
′
2
(x, p)

]
, (30)

where we have used s1 and s2 to label spin states in propagators of ρ0, used Eq. (7) and the on-shell condition, and defined

D(1)(s, λ) = h̄
[k1 · ε(s, p1)][k2 · ε∗(λ, p)]

(p + k2)2 − m2
π

+ h̄
[k2 · ε(s, p1)][k1 · ε∗(λ, p)]

(p − k1)2 − m2
π

,

D(2)(s, λ) = h̄
[k1 · ε(s, p1)][k2 · ε(λ, p)]

(p − k2)2 − m2
π

+ h̄
[k2 · ε(s, p1)][k1 · ε(λ, p)]

(p − k1)2 − m2
π

. (31)
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FIG. 4. Examples of propagator and vertex corrections.

One can check that the collision terms are Hermitian consis-
tent with fλ1λ2 .

So far we have completed the derivation of the spin Boltz-
mann equation with collision terms at LO and NLO.

C. Regulation of pion propagators

In the collision term Cscat (ρ0π± ↔ ρ0π±), there are pion
propagators which may diverge at the pion mass pole. To
regulate these pion propagators, we introduce self-energy cor-
rections with medium effects as

SF (k) = ih̄

k2 − m2
π − h̄�F (k)

, (32)

SF (k) = −ih̄

k2 − m2
π + h̄�F (k)

, (33)

where �F is the self-energy for pions. The real part of the
self-energy gives the mass correction, while the imaginary
part is associated with the medium effect. In this work, we
only consider the imaginary part of the self-energy since the
mass correction from the real part is much smaller.

The Feynman diagram for the pion self-energy �F at LO
is shown in Fig. 5 which is given by

−i�F (k) = − g2
V h̄

∫
d4k1

(2π h̄)4 SF (k1)GF
αβ (k − k1)

× (k + k1)α (k + k1)β, (34)

FIG. 5. The Feynman diagram for pion self-energy �F at LO.
The solid line represents the ρ0 propagator and the dashed line
represents the pion propagator.

where the Feynman propagators in medium read

SF (k) = ih̄

k2 − m2
π + iε

+ 2π h̄δ
(
k2 − m2

π

)
× [θ (k0) fπ+ (k) + θ (−k0) fπ− (−k)], (35)

GF
αβ (p) = − ih̄

(
gαβ − pα pβ/m2

ρ

)
p2 − m2

ρ + iε
+ (2π h̄)δ

(
p2 − m2

ρ

)
× [

θ (p0)εα (s1, p)ε∗
β (s2, p) fs1s2 (p)

+ θ (−p0)ε∗
α (s1,−p)εβ (s2,−p) fs2s1 (−p)

]
,

(36)

which can be derived by substituting Eqs. (3) and (4) into
Eqs. (8) and (9).

Substituting Eqs. (35) and (36) into Eq. (34), we obtain the
imaginary part of the self-energy

�(k) ≡ Im�F (k)=2g2
V θ (k0)h̄

∫
d3k1

(2π h̄)32Eπ
k1

∫
d3 p

(2π h̄)32Eρ
p

× (2π h̄)4δ(4)(k + k1 − p) fπ− (k1)

[
m2

π − (k1 · p)2

m2
ρ

]

+ 2g2
V θ (−k0)h̄

∫
d3k1

(2π h̄)32Eπ
k1

∫
d3 p

(2π h̄)32Eρ
p

× (2π h̄)4δ(4)(k − k1 + p) fπ+ (k1)

[
m2

π − (k1 · p)2

m2
ρ

]
,

(37)

where we have assumed that k is near the mass shell, since the
self-energy’s correction to k2 − m2

π in Eq. (32) is negligible
if k is far off-shell. Under such an assumption, processes
such as π+ → π+ρ0 are forbidden, so the self-energy can
be simplified. With the imaginary part of the self-energy in
Eq. (37), the function D(1)(s, λ) in Cscat (ρ0π± ↔ ρ0π±) in
Eq. (31) becomes

Dπ+(1)(s, λ) = h̄
[k1 · ε(s, p1)][k2 · ε∗(λ, p)]

(p + k2)2 − m2
π + ih̄�(p + k2)

+ h̄
[k2 · ε(s, p1)][k1 · ε∗(λ, p)]

(p − k1)2 − m2
π + ih̄�(−p + k1)

,

Dπ−(1)(s, λ) = h̄
[k1 · ε(s, p1)][k2 · ε∗(λ, p)]

(p + k2)2 − m2
π + ih̄�(−p − k2)

+ h̄
[k2 · ε(s, p1)][k1 · ε∗(λ, p)]

(p − k1)2 − m2
π + ih̄�(p − k1)

, (38)
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which are different for ρ0π+ ↔ ρ0π+ and ρ0π− ↔ ρ0π−
processes.

V. RELATION BETWEEN γ CORRELATOR
AND TENSOR POLARIZATION

The γ correlator [59–64] for the CME is defined as

γ112 ≡ 〈cos(φα + φβ − 2�RP )〉, (39)

where φα and φβ are azimuthal angles of particles α and β

in the transverse plane, respectively, and �RP is the azimuthal
angle of the reaction plane. The correlator (39) can also be
written as

γ112 = 〈cos(�φα + �φβ )〉, (40)

where �φα = φα − �RP and �φβ = φβ − �RP are azimuthal
angles with respect to the reaction plane. The difference be-
tween γ correlators for the opposite-sign (OS) and same-sign
(SS) pairs can be regarded as a CME signal

�γ112 ≡ γ OS
112 − γ SS

112. (41)

Now we try to calculate the contribution to �γ112 from pions
in the decay ρ0 → π+π−. It is obvious that in such a decay
process, we only have the contribution from γ OS

112 in �γ112, i.e.,
γ SS

112 = 0, so we obtain

�γ
ρ
112 = Nρ

N+N−
�γ

ρ
112,

�γ
ρ
112 ≡ Cov(cos �φ+, cos �φ−)

− Cov(sin �φ+, sin �φ−), (42)

where N+, N−, and Nρ are particle numbers of π+, π−, and
ρ0, respectively, and Cov(A, B) = 〈AB〉 − 〈A〉〈B〉 is the co-
variance of two quantities in statistics with averages over pairs
of pions as decay daughters from the same ρ0 mesons.

In order to calculate �γ
ρ
112, we assume that the spin quan-

tization direction in the ρ meson’s rest frame (the rest frame
hereafter) is along +y direction. The beam directions and the
reaction plane are set to ±z and the xz plane, respectively.
The momentum of π+ (π−) is denoted as p∗ (−p∗) in the rest
frame, while it is denoted as p+ (p−) in the lab frame. Two
sets of energy momenta are connected by Lorentz transfor-
mation with relative velocity β = pρ/Eρ . The direction and
magnitude of p∗ are labeled by �∗ = (θ∗, φ∗) and given by

|p∗| =
√

m2
ρ/4 − m2

π , respectively. In Eq. (42), cos �φ± and

sin �φ± are given by

cos �φ± = cos φ± = px
±

pT±
,

sin �φ± = sin φ± = py
±

pT±
, (43)

where pT
± =

√
(px±)2 + (py

±)2 are transverse momenta for π±.
Through Lorentz transformation, cos φ± and sin φ± can be
expressed as functions of p∗ and pρ . With the momentum

TABLE I. Linear coefficients in Eq. (46).

ti ρ00 − 1/3 T11 − T22 T12 T31 T23

Ai 0.5215 −0.1738 0 0 0

distribution of the ρ meson f (pρ ), we obtain

�γ
ρ
112 = 1

nρ

∫
d3pρ

(2π h̄)3
f (pρ )

×
[∫

d�∗ dN

d�∗ (cos φ+ cos φ− − sin φ+ sin φ−)

−
∫

d�∗ dN

d�∗ cos φ+
∫

d�∗ dN

d�∗ cos φ−

+
∫

d�∗ dN

d�∗ sin φ+
∫

d�∗ dN

d�∗ sin φ−

]
, (44)

where nρ = (2π h̄)−3
∫

d3pρ f (pρ ) is the particle number den-
sity of the ρ meson, and dN/d�∗ is the angular distribution
of π± (identical for π+ and π−) and given as [55,99]

dN

d�∗ = 3

8π
[(1 − ρ00) + (3ρ00 − 1) sin2 θ∗ sin2 φ∗

− (T11 − T22)(cos2 θ∗ − sin2 θ∗ cos2 φ∗)

− 2T12 sin(2θ∗) cos φ∗ − 2T31 sin(2θ∗) sin φ∗

− 2T23 sin2 θ∗ sin(2φ∗)]. (45)

Inserting the above expression for dN/d�∗ into Eq. (44) we
obtain

�γ
ρ
112 =

5∑
i=1

Aiti +
5∑

i, j=1

Bi jtit j, (46)

where we relabeled tensor polarization as

{ti, i = 1, . . . , 5} = {
ρ00 − 1

3 , T11 − T22, T12, T31, T23
}
, (47)

and Ai and Bi j are coefficients depending on f (pρ ). Equa-
tion (46) shows the effects from the tensor polarization of
the ρ meson on the γ correlator for CME. The effect from
ρ00 on the γ correlator has been studied in Refs. [65,66]. In
this paper we also study effects from other components of the
tensor polarization for the ρ meson.

Now we take a simple model to illustrate the effect. We as-
sume that the ρ meson follows the Bose-Einstein distribution
f (p) = 1/[exp(Ep/T ) − 1] with T = 150 MeV. The numeri-
cal results for the coefficients Ai and Bi j are listed in Tables I
and II. We also see that quadratic coefficients are at least one
order of magnitude smaller than linear coefficients, therefore
dominant contributions come from linear terms. While in lin-
ear terms, dominant contributions come from ρ00 − 1/3 and
T11 − T22 terms and all terms proportional to T12, T31, and T23

are vanishing.
From Eq. (42), �γ

ρ
112 is proportional to the factor

Nρ/(N+N−), the probability for π+ and π− being from the
same ρ meson, which is of order 10−3–10−4 in heavy-ion
collisions. According to Table I, the coefficients of ρ00 − 1/3
and T11 − T22 in �γ

ρ
112 are of the order 10−4–10−5.
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TABLE II. Quadratic coefficients in Eq. (46).

Bi j ρ00 − 1/3 T11 − T22 T12 T31 T23

ρ00 − 1/3 0.03885 0.01295 0 0 0
T11 − T22 0.01295 −0.01295 0 0 0
T12 0 0 −6.089×10−4 0 0
T31 0 0 0 −6.089×10−4 0
T23 0 0 0 0 0

VI. NUMERICAL RESULTS

A. Initial condition without elliptic flow

Since we are studying the spin alignment of ρ0 in a pion
gas, we assume the pion density is much larger than the den-
sity of ρ0, fλ1λ2 � fπ± , so the influence of ρ0 mesons on pions
is negligible. We further assume that π± are in global thermal
equilibrium, so they obey the Bose-Einstein distribution

fπ± (x, p) = fπ± (p) = 1

exp[β(Ep ∓ μπ )] − 1
, (48)

where β = 1/T is the inverse temperature, μπ is the chemical
potential for π+. Here, we neglected the spatial dependence
of distributions. We choose μπ=0 and T = 156.5 MeV cor-
responding to the chemical freeze-out temperature. Because
fλ1λ2 � fπ± we can neglect the terms of order f 2

λ1λ2
relative

to fλ1λ2 . Since the temperature is much less than mρ , the
contribution from the process ρ0ρ0 ↔ π+π− is negligible
(two orders of magnitude smaller) relative to C(0)

coal/diss(ρ
0 ↔

π+π−).
In summary, the collision terms that we take into ac-

count are C(0)
coal/diss(ρ

0 ↔ π+π−) and Cscat (ρ0π± ↔ ρ0π±).
For fπ+ = fπ− , we can simply have Cscat (ρ0π+ ↔ ρ0π+) =
Cscat (ρ0π− ↔ ρ0π−).

Considering the spin Boltzmann equation (20) is an
integral-differential equation, we use the Monte Carlo method
to solve it. We build a 50×50×50 lattice in momentum space
for ρ0 with lattice cell size 100×100×100 MeV3, so the
range px, py, and pz is [−2.5, 2.5] GeV, which is big enough
compared with the temperature. The value of ρ00 = f00/Tr( f )
represents the spin alignment of ρ0 mesons.

In the first case, we consider the initial condition without
neutral ρ mesons, i.e., fλ1λ2 (t = 0) = 0. The time step for
simulation is chosen to be 5×10−6 MeV−1 ≈ 10−3 fm/c.
The spin alignments of ρ mesons as functions of pT in the
pseudorapidity range |η| < 1 at different time are shown in
Fig. 6. The spin alignments (pT integrated) in different pseu-
dorapidity ranges are shown in Fig. 7. The precision of ρ00 is
about 10−3 in the Monte Carlo method, so the results less than
10−3 are not reliable. However, we can still see the time and
pseudorapidity dependence of the spin alignment from these
results.

We notice that ρ00 is slightly larger than 1/3 in the central
rapidity region of ρ mesons though the pion distribution is
isotropic. It is because we choose +y to be the spin quan-
tization direction, which is different from x and z. More
specifically, the produced ρ mesons with momenta in ±y
direction have ρ00 > 1/3, while those with momenta near the

FIG. 6. The spin alignment as functions of pT at different time.
The initial distribution of ρ mesons is set to fλ1λ2 (t = 0) = 0.

xz plane have ρ00 < 1/3. The spin alignment in the whole
momentum space must be zero because of the isotropic pion
distribution and angular momentum conservation, as shown
by the green line in Fig. 7. Therefore if we exclude ρ

mesons with momenta near ± z direction, i.e., the forward
and backward rapidity regions, we have ρ00 > 1/3. The larger
central pseudorapidity range we choose, the smaller the spin
alignment we obtain. Since the scattering term contributes
significantly to a thermalization effect, we notice that the spin
alignment decreases rapidly with time.

In the second case, we consider a more general initial con-
dition by assuming an initial value of the spin alignment at the
hadronization time when the ρ meson is formed by recombi-
nation of quarks. We set the initial distribution of the ρ meson
as a thermal distribution with the spin alignment ρ00 = 0.4
(larger than 1/3), then the matrix valued spin distribution is
put into the form

fλ1λ2 = diag(0.9, 1.2, 0.9) × fBE, (49)

FIG. 7. The pT -integrated spin alignment in different pseudora-
pidity ranges for the initial distribution fλ1λ2 (t = 0) = 0.
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FIG. 8. The spin alignment as functions of pT in |η| < 1 at
different time with the initial distribution (49) that corresponds to
ρ00 = 0.4 > 1/3.

where fBE is the Bose-Einstein distribution for the ρ meson
with zero chemical potential. The time step for simulation
is chosen to be 5×10−5 MeV−1 ≈ 0.01 fm/c. In the pseu-
dorapidity range |η| < 1, the numerical results for the spin
alignment as functions of pT at different time are shown
in Fig. 8. The results for the pT -integrated spin alignment
in different pseudorapidity ranges are shown in Fig. 9. We
can see that the spin alignment is almost independent of the
pseudorapidity range, because it is mostly contributed from
initial ρ mesons with nonvanishing spin alignment instead of
from newly generated ρ mesons. More importantly, we see
that ρ00 − 1/3 decreases rapidly from the initial value 0.066
to 0.006 at t = 4 fm/c, meaning that the initial value of the
spin alignment can be easily washed out by the interaction
between ρ mesons and pions.

We can also consider ρ00 = 0.27 (less than 1/3) at the
initial time. Then the matrix valued spin distribution is set to

fλ1λ2 = diag(1.1, 0.8, 1.1) × fBE. (50)

FIG. 9. The pT -integrated spin alignment in different pseudora-
pidity ranges with the initial distribution (49).

FIG. 10. The spin alignment as functions of pT at differ-
ent time with the initial distribution (50) that corresponds to
ρ00 = 0.27 < 1/3.

The results are shown in Figs. 10 and 11. We see that the spin
alignment relaxes to 1/3 rapidly.

B. Initial condition with elliptic flow

In order to see the v2 influence on the spin alignment of ρ0,
we use the blast wave model [102–105] to describe the space-
time evolution of the fireball in heavy-ion collisions. The idea
is as follows. We assume Eq. (21) describes the time evolution
of fλ1λ2 (x, p) in the fluid element’s comoving frame located at
x. The fluid four-velocity uμ(x) is described by the blast wave
model for the boost invariant expansion of the fireball along z
direction. The emission function of the blast wave model has
the form [105]

S(r, φs, p) = θ (R − r)F (u, p), (51)

where R is the fireball’s radius, r and φs are the radial po-
sition and the azimuthal angle inside the fireball, p is the
particle’s momentum, F (u, p) is some kind of the momentum

FIG. 11. The pT -integrated spin alignment in different pseudora-
pidity ranges with the initial distribution (50).
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FIG. 12. The spin alignment of the neutral ρ meson at z = 0 for
|η| < 1 in the blast wave model with the elliptic flow.

distribution function depending on the fluid velocity that can
be parametrized as

uμ(r, φs) = (cosh ρ(r, φs), sinh ρ(r, φs) cos φs,

sinh ρ(r, φs) sin φs, 0), (52)

where the radial flow rapidity ρ is given by

ρ(r, φs) = r

R
[ρ0 + ρ2 cos(2φs)]. (53)

Here, ρ0 and ρ2 are two parameters, and ρ2 gives the el-
liptic flow. Note that without loss of generality we have
set space-time rapidity to zero in uμ(r, φs) corresponding
to z = 0.

The parameters are chosen as R = 13 fm, ρ0 = 0.89, ρ2 =
0.06 [105]. We assume fλ1λ2 = 0 at the initial time. Then
with Eq. (51) and these parameters we can calculate the spin
alignment at z = 0 as follows:

ρ00 =
∫
|η|<1 d3 p

∫ R
0 rdrdφs f00(u, p)∫

|η|<1 d3 p
∫ R

0 rdrdφstr f (u, p)
, (54)

where we set F (u, p) to fλ1λ2 (u, p). It is obvious that ρ00 in
Eq. (54) encodes the effect of the elliptic flow. The results for
ρ00 are shown in Fig. 12 indicating that its deviation from 1/3
is positive but in the order of 10−4.

VII. CONCLUSIONS AND DISCUSSIONS

Using the two-point Green’s functions and Kadanoff-Baym
equation in the closed-time path formalism for vector mesons
developed in the previous work [49], we derived spin kinetic
or Boltzmann equations for neutral ρ mesons in a pion gas.
The ρππ coupling is described by the chiral effective theory.
The collision terms in the pion gas at the leading and next-to-
leading order are obtained. We simulated the evolution of the
matrix valued spin distribution (spin density matrix) of neutral
ρ mesons by the Monte Carlo method. In the simulation, we
have assumed the Bose-Einstein distribution for pions with
T = 156.5 MeV and vanishing chemical potential. The nu-
merical results show that the interaction of pions and neutral
ρ mesons creates very small spin alignment for ρ mesons
in the central rapidity region if there is no ρ meson in the
system at the initial time. But there is no spin alignment in the
full rapidity range since pions’ momenta are isotropic. Such a
small spin alignment in the central rapidity region will decay
rapidly toward zero in later time. If there are ρ mesons with
a sizable spin alignment at the initial time the spin alignment
will also decrease rapidly. We also considered the effect on ρ00

from the elliptic flow of pions in the blast wave model. With
vanishing spin alignment at the initial time, the deviation of
ρ00 from 1/3 is positive but very small.

We have shown that tensor polarizations of ρ mesons
have contributions to γ correlator observables for CME. The
dominant contributions are linearly proportional to ρ00 − 1/3
and T11 − T22 with coefficients in the order 10−4–10−5. Thus
the result and method presented in this paper are helpful in
analysis of CME signals.

The work can be improved or extended by loosening some
approximations or restrictions. For example, we can consider
fluctuations in the temperature and the distribution of pions in
collision terms, or we can consider other vector mesons in a
hadrons gas. These can be done in the future.
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