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Effect of Coriolis force on electrical conductivity tensor for the rotating hadron resonance gas
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We have investigated the influence of the Coriolis force on the electrical conductivity of hadronic matter
formed in relativistic nuclear collisions, employing the hadron resonance gas model. A rotating matter in the
peripheral heavy-ion collisions can be expected from the initial stage of quark matter to late-stage hadronic
matter. Present work is focused on rotating hadronic matter, whose medium constituents—hadron resonances—
can face a nonzero Coriolis force, which can influence the hadronic flow or conductivity. We estimate this
conductivity tensor by using the relativistic Boltzmann transport equation. In the absence of Coriolis force,
an isotropic conductivity tensor for hadronic matter is expected. However, our study finds that the presence
of Coriolis force can generate an anisotropic conductivity tensor with three main conductivity components—
parallel, perpendicular, and Hall—similarly to the effect of Lorentz force at a finite magnetic field. Our study has
indicated that a noticeable anisotropy of conductivity tensor can be found within the phenomenological range of
angular velocity � = 0.001–0.02 GeV and hadronic scattering radius a = 0.2–2 fm.
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I. INTRODUCTION

In off-central heavy-ion collision (HIC) experiments, a
large orbital angular momentum (OAM) can be produced,
and this initial OAM depends on factors such as system size,
collision geometry, and collision energy, ranging from 103h̄
to 107h̄ [1–3]. After the collision, the spectators carry some
of the angular momenta, and the rest is transferred to the
produced quark-gluon matter. The initial OAM transferred to
the medium is stored in the initial fluid velocity profile of
the quark matter and at a later stage in the hadronic matter
in the form of local vorticity. This OAM can induce vari-
ous effects within the medium, like spin polarization, chiral
vortical effect, etc. The vorticity leads to the alignment of
hadrons along its direction, influenced by spin-orbit coupling.
When considering all space-time points on the freeze-out
hypersurface, local polarization accumulates, resulting in a
global polarization aligned with the reaction plane or the
angular momentum of the colliding nuclei. The global polar-
ization of � and �̄ particles has been measured by the STAR
Collaboration in Au+Au collisions across a range of colli-
sion energies (

√
sNN = 7.7–200 GeV), revealing a decreasing

trend with collision energies [1]. Moreover, in the recent study
with improved statistics at

√
sNN = 200 GeV, a polarization
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dependence on the event-by-event charge asymmetry was
observed, indicating a potential contribution to the global
polarization from the axial current induced by the initial mag-
netic field [4]. Additionally, spin alignment has also been
observed in vector mesons, with recent measurements con-
ducted at Relativistic Heavy Ion Collider and Large Hadron
Collider further contributing to our understanding of spin
phenomena in heavy-ion collisions [5–7].

Now, from the theoretical direction, the effect of large
OAM on the medium constituents has been studied even
before the experimental work of STAR Collaboration [1]
in the Refs. [2,3,8–14]. The experimental finding of global
polarization of � and �̄ particles in 2017 [1] also stimu-
lated many theoretical investigations of vorticity and spin
polarization effects in HIC [15–25]. The study of vorticity
and the polarization of the particles produced by HICs has
been done by multitude of theoretical approaches. Refer-
ences [26–42], with the help of covariant Wigner functions
and quantum kinetic equations, have described the chiral ef-
fects and the spin polarization of final-state particles. On the
other hand, the authors of Refs. [3,8–10,15,43–45] used the
theory of relativistic statistical mechanics for a plasma in
global equilibrium under rotation to describe the polarization
of particles emitted from the kinetic freeze-out hypersurface.
In contrast, in Refs. [2,11–14,46], the spin-orbit interaction in
QCD has been used to describe the transfer of initial OAM
density into the spin angular momentum, ultimately resulting
in the spin polarization of particles. Moreover, the authors of
Refs. [17–19,47–54] have developed a kinetic framework to
establish the equations of spin hydrodynamics by including
the spin tensor. In addition, several transport and hydrodynam-
ical models [16,20–25,55–59] have also been used to estimate
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spin polarization and vorticity results in HIC quantitatively.
Thermodynamics of the hadronic medium under rotation have
recently been explored by Refs. [60–62]. The phase structure
of rigidly rotating plasma has been explored in Refs. [63,64].
The lattice quantum chromodynamics calculations in the pres-
ence of rotations can be found in the Refs. [65,66].

There is a similarity between magnetic field and rotation.
The picture of Lorentz force in the presence of magnetic fields
is quite similar to the picture of the Coriolis force in the
presence of rotation. In Refs. [67–69], the equivalence be-
tween the Coriolis force and Lorentz force has been explored.
In the presence of magnetic fields, the transport coefficients
of the systems become anisotropic [70–83]. Accordingly, one
should expect the anisotropic structure of the transport coeffi-
cients in a rotating frame due to the effect of the Coriolis force.
In this paper, we will show how the electrical conductivity of
the rotating hadronic matter formed in HIC can be modified in
the presence of Coriolis force. In the papers [84,85], the au-
thors have described how a rotating medium’s shear viscosity
and electrical conductivity become anisotropic in the presence
of Coriolis force. Here we have extended the formalism of
Ref. [85] from nonrelativistic to the relativistic case, which is
applicable to calculate the electrical conductivity of the rotat-
ing hadronic matter. To fulfill this purpose, we employed the
covariant Boltzmann transport equation (BTE) under the ro-
tational background. In this framework, the space-dependent
metric makes the connection coefficients nonzero, which in
turn manifest themselves as the pseudo force terms in the
covariant Boltzmann equation. To simplify the analysis, we
ignored the quadratic and higher power of angular velocity �

present in the covariant BTE. This simplification leads to the
elimination of centrifugal effects and makes a seamless com-
parison possible with the magnetic field scenario. We modeled
our rotating hadronic medium by resorting to the popular
hadron resonance gas (HRG) model. This model is founded on
principles derived from statistical mechanics of multihadron
species. Using S-matrix calculation, it has been shown that
in the presence of narrow resonances, the thermodynamics
of the interacting gas of hadrons can be approximated by
the ideal gas of hadrons and its resonances [86,87]. The
HRG model has been extensively used to study thermody-
namics [88,89] and conserved charge fluctuations [90–94],
as well as transport coefficients [95–105], which are quite
accepted for heavy-ion collision phenomenology. Recently,
Refs. [71,72,78,79] have demonstrated the role of Lorentz
force in creating anisotropic transportation of HRG system.
However, the role of the Coriolis force in creating a similar
kind of anisotropic transportation for the HRG system has not
been studied yet, and here, we are first time going for this kind
of investigation.

The article is arranged as follows: In Sec. II, we develop the
necessary formalism needed for calculating electrical conduc-
tivity tensor in the presence of rotation. The master formula
for hadronic matter with the HRG and QGP with massless
approximation is provided in Secs. II A and II B from which
the results are generated. In Sec. III, we present the numerical
results with the plots of the variation of conductivity for QGP

and hadronic matter both in the presence and absence of
rotation. The article is summarised in Sec. IV.

II. FORMALISM

To begin with, let us briefly recapitulate the nonrelativistic
kinetic model used to calculate the shear viscosity and electri-
cal conductivity of the rotating nuclear matter in Refs. [84,85].
The nonrelativistic kinetic model consists of implementing the
rotating coordinate transformation to break the particle veloc-
ity into two parts: (1) velocity �vr seen from a frame rotating
with angular velocity �� and (2) a rigid rotor velocity �� × �r.
Then, for the time evolution of the distribution function, the
BTE is written down in the rotating frame (coordinates) with
apparent or pseudo forces entering as the force terms. The
transport properties are studied by expanding the solution
to the BTE around the local equilibrium distribution in the
rotating frame. In generalizing this model to the relativistic
scenario, we will keep the same physical picture as that of
its nonrelativistic counterpart. To carry out the relativistic
extension in practice, we will obtain the equation of motion
(EOM) and covariant BTE in a rotating frame with the help of
rotating frame metric tensor gμν (not same as the flat metric
ημν ) and connection coefficients �α

μλ (vanishes in an inertial
frame). As our relativistic kinetic model of rotating nuclear
matter, let us consider a rotating system of hadrons moving
with the momenta �pr (subscript r denotes hadron species; it
should not be confused with radial coordinate).

The micro- and macroscopic expressions of current density
for these collections of hadron resonances under an applied

electric field �̃E ≡ Ẽ ê are

Ji =
∑

r

Ji
r =

∑
r

grqr

∫
d3 �pr

(2π )3

pi
r

Er
δ fr, (pr0 ≡ Er ), (1)

Ji =
∑

r

Ji
r =

∑
r

σ i j
r Ẽ j ≡ σ i j Ẽ j, (2)

where r is the label characterizing the different hadrons and
resonances with charge qr , energy Er , momentum pr , and
degeneracy gr . The δ fr quantifies the deviation of the sys-
tem from local equilibrium. Ji = ∑

r
Ji

r and σ i j = ∑
r

σ
i j
r are

respectively the current density and conductivity tensor due to
all the hadronic species comprised of baryons and mesons.
The microscopic expression of current density in the HRG
phase provided in Eq. (1) can be compared with the macro-
scopic expression Ji = σ i j Ẽ j to obtain the conductivity tensor
σ i j . The deviation function δ fr written in Eq. (1) corresponds
to the difference between the total distribution function and
equilibrium distribution function for the rth hadronic species,
i.e., δ fr = fr − f 0

r . We will assume that the system is slightly
out of equilibrium so that δ fr can be treated as a perturbation.
The perturbation δ fr can be determined by using the BTE in a
rotating frame. Before writing the BTE in the rotating frame,
we will briefly address the rotating frame transformation and
equation of motion of a hadron in a rotating frame. To ana-
lyze the hadronic medium rotating with an angular velocity
�� ≡ �ω̂, we will make an explicit coordinate transforma-
tion from the inertial coordinates: (t, x, y, z) to the corotating
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coordinates (t ′, x′, y′, z′) as follows [63,64,106,107]:

t ′ = t
x′ = x cos�t + y sin�t
y′ = −x sin�t + y cos�t
z′ = z

⎫⎪⎪⎬
⎪⎪⎭, (3)

where we assumed the angular velocity to be in the z direction,
i.e., ω̂ = k̂. The squared differential length element ds2 and
the corotating frame metric gμν can be obtained from the
Eq. (3) as [108–110]:

ds2 = gμνdx′μdx′ν = dt ′2 (1 − �2x′2 − �2y′2 )

+ 2�y′dt ′dx′ − 2�x′dt ′dy′ − dx′2 − dy′2 − dz′2 ,

gμν =

⎛
⎜⎜⎝

1 − �2x′2 − �2y′2 �y′ −�x′ 0
�y′ −1 0 0

−�x′ 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠. (4)

The connection coefficients �α
μλ in corotating coordinates can

be expressed in terms of the derivative of the metric ten-
sor [111–113],

�α
μλ = 1

2
gαν

(
∂gνμ

∂xλ
+ ∂gλν

∂xμ
− ∂gμλ

∂xν

)
, (5)

where we dropped the overhead primes from the rotating
frame variables. Since all the subsequent calculations will
be performed from the rotating frame, we will drop the
rotating frame quantities’ overhead primes to simplify our
notation. On explicit calculation with the help of Eq. (5),
one finds that out of 64 components of �α

μλ only six
are nonzero [110]: �1

00 = −�2x, �2
00 = −�2y, �1

20 = �1
02 =

−�,�2
10 = �2

01 = �. One can write down the EOM of a
hadron in the rotating frame with the help of connection
coefficients �α

μλ as [111,112,114],

d pα

dτ
+ 1

m
pμ pλ�α

μλ = Fα, (6)

where pα , Fα , and τ are the four-momentum, four-force, and
proper time, respectively. To see the similarity between the
EOM provided by Eq. (6) with the classical nonrelativistic
EOM in the rotating frame [115,116], we rewrite Eq. (6) with
the substitution of connection coefficients,

d �p
dt

= γvm( �� × �r) × �� + 2γvm(�v × ��), (7)

where we employed γv = dt
dτ

, pα = (γvm, γvm�v) = (γvm, �p),
and Fα = 0. In comparison with the classical nonrelativistic
EOM [115,116], we noticed that the first and second terms
of the right-hand side of Eq. (7) correspond to centrifugal
and Coriolis force with the extra multiplicative Lorentz factor
γv . Moreover, comparing the Coriolis force expression �FCor =
2γvm(�v × ��) established in Eq. (7) with the expression of
Lorentz force �FLor = q(�v × �B), a direct equivalence can be
obtained between the �� in the rotating frame and magnetic
field �B in the inertial frame. In the rotating frame with the
metric tensor gμν the Lorentz factor γv can be expressed

as [113,117]:

γv = 1√
g00

(
1 + g0ivi

g00

)2 − v2
, (8)

where we used the definitions vi ≡ dxi

dt , v2 ≡ ( g0ig0 j

g00
−

gi j )viv j . Similarly, one can easily show by using the relation

pμ pμ = pμ pνgμν = m2 and p0 = p0−g0i pi

g00
that [117–122],

p0 = E =
√

m2g00 + (g0ig0 j − g00gi j )pi pj . (9)

Now, we will write down the BTE in the corotating frame
variables by equating the variation of distribution function
fr (xμ, �pr ) along the hadron’s world line with the collision
kernel C[ fr] [118,123,124]:

mr
dfr (xμ, �pr )

dτ
= C[ fr]

⇒ mr
dxμ

dτ

∂ fr

∂xμ
+ mr

d pi
r

dτ

∂ fr

∂ pi
r

= C[ fr]

⇒ pμ
r

∂ fr

∂xμ
− �i

μλ pμ
r pλ

r

∂ fr

∂ pi
r

+ mrF i
r

∂ fr

∂ pi
r

= C[ fr], (10)

where we used the EOM provided in Eq. (6) to get the last
step. Equation (10) can be easily written in a fully covariant
manner as [118,123–125]:

pμ
r

∂ fr

∂xμ
− �α

μλ pμ
r pλ

r

∂ fr

∂ pα
r

+ mrFα
r

∂ fr

∂ pα
r

= C[ fr], (11)

where we treat fr to be function of independent variables
xα and pα

r , i.e., fr = fr (xα, pα ). The four force Fα is the
electromagnetic force, i.e., Fα

r = qrFαβ prβ/mr , where Fαβ is
the Faraday tensor. In the above, we provided the covariant
form of BTE, paying special attention to rotating coordinate
transformation. Nevertheless, the arguments leading to the
final form of BTE given in Eqs. (10) and (11) can be easily
generalized for general coordinate transformation and gravity,
with only notable changes appearing in the explicit expression
metric tensor and connection coefficients [118,123–125]. The
solution of Eq. (11) can be obtained by assuming the system to
be slightly out of equilibrium so that we can write fr = f 0

r +
δ fr with f 0

r = 1/[e(pα
r uβ gαβ−μ)/T − ξ ] = 1/[e(pα

r uα−μ)/T − ξ ],
where ξ = −1 for baryons and ξ = +1 for mesons. The fluid
velocity uμ occurring in the equilibrium distributions f 0

r can
be written as uμ = γu(1, �u), where

γu = 1√
g00

(
1 + g0iui

g00

)2 − u2
,

(
u2 ≡

(
g0ig0 j

g00
− gi j

)
uiu j

)
.

(12)

To simplify the analysis, we will approximate the col-
lision term C[ fr] by the expression given by relaxation
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time approximation, i.e., C[ fr] = −(uα pα ) fr− f 0
r

τc
. Substituting

fr = f 0
r + δ fr in Eq. (11) we have

pμ
r

∂ f 0
r

∂xμ
− �α

μλ pμ
r pλ

r

∂

∂ pα
r

(
f 0
r + δ fr

)

+ qrFαβ prβ
∂

∂ pα
r

(
f 0
r + δ fr

) = C[ fr] = −(uα pα )
δ fr

τc
,

(13)

where we neglected space-time gradient of δ fr in the first term
of Eq. (13) since it give rise to second-order gradient effects.
The Faraday tensor Fμν can be decomposed into electric Ẽμ

and magnetic part Bμν with the help of fluid velocity uμ and
projector �μν = gμν − uμuν . We can write Fμν = Ẽμuν −
Ẽ νuμ + Bμν , where Ẽμ ≡ Fμνuν and Bμν ≡ �μ

α Fαβ�ν
β . In

the present article, we will focus only on the effect of the
electric field; therefore, we will ignore the magnetic part Bμν

and rewrite Eq. (13) as

[
pμ

r

∂ f 0
r

∂xμ
− �α

μλ pμ
r pλ

r

∂ f 0
r

∂ pα
r

+ qr prβ (Ẽαuβ − Ẽβuα )
∂ f 0

r

∂ pα
r

]
− �α

μλ pμ
r pλ

r

∂δ fr

∂ pα
r

= −(uα pα )
δ fr

τc

⇒ − f 0
r

(
1 + ξ f 0

r

)[ pμ
r pα

r

T
(∂μuα − �σ

μαuσ ) + pμ
r (uα pα

r )∂μ

1

T
− pμ

r ∂μ

μ

T
− qrẼν pν

r

T

]

− �σ
μλ pμ pλ ∂δ fr

∂ pσ
r

= −(uα pα )
δ fr

τc
. (14)

The first three terms in the square bracket of Eq. (14) give rise to viscous stresses and diffusion; they are related to the shear
viscosity, bulk viscosity, and thermal conductivity of the hadronic medium. Since the present article is planned to calculate
electrical conductivity, we will focus on the dissipative flow arising from the electric field. For the calculation of electrical
conductivity Eq. (14) can be rewritten as

qr f 0
r

(
1 + ξ f 0

r

)
T

Ẽμ pμ − �σ
μλ pμ pλ ∂δ fr

∂ pσ
r

= −(uα pα )
δ fr

τc
. (15)

The explicit form of p0 in the rotating frame can be written with the use of Eq. (4) in Eq. (9) as

p0 = E =
√

m2(1 − �2ρ2) + (1 − �2x2)(p1)2 + (1 − �2y2)(p2)2 + (1 − �2ρ2)(p3)2 − 2�2xy p1 p2, (ρ ≡ x2 + y2). (16)

Similarly, the contravariant time component of the momentum vector p0 is given by

p0 = p0 + �r · ( �p × ��)

g00
. (17)

The invariant momentum space measure dP is given by

dP ≡ √
g

d3 p

p0
, where g ≡ −det((gμν )). (18)

In the rotating frame, det((gμν )) = −1 and dP = d3 p
p0

= d3 p
E , which justifies the invariant momentum measure in our original

definition in Eq. (1). At this juncture, it should be pointed out that, in principle, one can solve Eq. (15) to obtain the electrical
conductivity of rotating HRG without resorting to any further approximation. Nevertheless, the result becomes algebraically
convoluted because of the space-dependent metric gμν , which significantly differs from the flat metric ημν . As the beginning
level of calculation for our relativistic kinetic model of rotating matter, we will rely on two different approximations. These
two approximations will simplify our result and make a seamless comparison with the magnetic field scenario possible. The
first phase of approximation assumes that globally rotating nuclear matter is produced in HIC by ignoring radial expansion.

This implies the fluid velocity uμ = γu(1, �u)
ui=0−−→ ( 1√

g00
, 0), in the globally comoving frame. Similarly, the local equilibrium

distribution and electric field can be written as f 0
r = 1/[e(prαuα−μ)/T − ξ ]

ui=0−−→ 1/[e(pr0/
√

g00−μ)/T − ξ ] and Ẽν = Fνμuμ ui=0−−→
Fν0/

√
g00 = −Ẽ i/

√
g00. Equation (15) in the comoving frame becomes

− f 0(1 + ξ f 0)

T

q√
g00

�̃E · �p + 2p0( �p × ��) · ∂δ f

∂ �p + (p0)2(( �� × �r) × ��) · ∂δ f

∂ �p = − p0√
g00

δ f

τc

⇒ − f 0(1 + ξ f 0)

T

q �̃E · �p
p0

+ 2p0√g00( �p × ��)

p0
· ∂δ f

∂ �p + (p0)2√g00

p0
(( �� × �r) × ��) · ∂δ f

∂ �p = −δ f

τc
, (19)

where we have suppressed the index r in writing Eq. (19), which will be retained during the calculation of total conductivity.
The second phase of approximations will be implemented in solving Eq. (19) with the help of the ansatz δ f = −�p · �X ( ∂ f 0

∂E ) =
�p · �X f 0(1+ξ f 0 )

T , where �X is still to be determined. This approximation includes the following: �x, �y, and �
T are small, so one
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can ignore the second- or higher-order terms containing products of any two of them. Neglecting the quadratic terms in �x
and/or �y in Eq. (16) we have p0 =

√
m2 + �p2. Employing the above approximation, the Coriolis force term in Eq. (19) can be

written as

2p0√g00( �p × ��)

p0
· ∂δ f

∂ �p = 2

p0
√

g00
[p0 + �r · ( �p × ��)]( �p × ��) · ∂δ f

∂ �p

⇒ 2p0√g00( �p × ��)

p0
· ∂δ f

∂ �p ≈ 2( �p × ��) · ∂δ f

∂ �p , (g00 = 1 − �(x2 + y2) ≈ 1). (20)

Similarly, it can be easily checked that the centrifugal force

term (p0 )2√g00

p0
(( �� × �r) × ��) · ∂δ f

∂ �p completely drops out, leav-
ing the following equation to be solved:

∂ f 0

∂E
�p

p0
· (q �̃E ) + 2mγv (�v × ��) · ∂δ f

∂ �p = −δ f

τc
. (21)

One has to solve Eq. (21) for δ f to determine HRG current
density Ji from Eq. (1). So everything boils down to the deter-
mination of �X in the ansatz: δ f = −�p · �X ( ∂ f 0

∂E ). Our system of
rotating HRG is no longer isotropic because of the presence of
the angular velocity vector �� = �ω̂. We have two unit vectors
ω̂ and ê in our hand, which can be used to construct another
unit vector ê × ω̂ perpendicular to both ω̂ and ê. In general,
the current density in rotating HRG can have components
along ω̂, ê, and ê × ω̂. Since the vector �X determines the
form of the current density through Eq. (1), we can guess the
following decomposition of �X = αê + βω̂ + γ (ê × ω̂) with
the unknowns α, β, and γ . The mathematical steps for the
calculation of α, β, and γ and the subsequent determination
of current density runs exactly similar to the nonrelativistic
calculation done in Ref. [85]. Therefore, the main results will
be written here, and a detailed calculation will be carried out
in the Appendix A 1. The total conductivity for the rotating
HRG derived in Appendix A 1 is given by

σ i j = σ 0δi j + σ 1εi jkωk + σ 2ωiω j,

with σ n =
∑

r

grq2
r

3T

∫
d3 p

(2π )3

τc
(

τc
τ�

)n

1 + (
τc
τ�

)2 × p2

E2
f 0
r

(
1 + ξ f 0

r

)
.

(22)

For the angular velocity in the z direction, i.e., �� = �k̂, the
conductivity matrix has the following form,

[σ ] =
⎛
⎝ σ 0 σ 1 0

−σ 1 σ 0 0
0 0 σ 0 + σ 2

⎞
⎠. (23)

A. Electrical conductivity for HRG

A quick glance at the matrix in Eq. (23) led us to define
the following conductivity components: parallel conductivity
(parallel to angular velocity ��) σ || ≡ σ 0 + σ 2, perpendicular
conductivity (perpendicular to angular velocity ��) σ⊥ ≡ σ 0,
and cross- or Hall-like conductivity σ× ≡ σ 1. Moreover, one
can identify σ|| with the conductivity in the absence of �, i.e.,
σ || ≡ σ .

In Eq. (22), we have derived the conductivity tensor for
the rotating hadron gas. We can rewrite this equation with
two separate summations for the baryons and mesons, respec-
tively, along with their spin degeneracy factors. The parallel
conductivity of the rotating HRG (or the HRG conductivity in
the absence of �) at μ = 0 is given by

σ
||
HRG ≡ σHRG =

∑
B

gBq2
B

3T

∫
d3 p

(2π )3
τc × p2

E2
f 0(1 − f 0)

+
∑

M

gMq2
M

3T

∫
d3 p

(2π )3
τc × p2

E2
f 0(1 + f 0),

(24)

where gH is spin degeneracy of hadrons with charges qH ,
masses mH , and energy E =

√
p2 + m2

H . For H = mesons and
baryons, equilibrium distribution function will be f0 = 1

eE/T −1

and f0 = 1
eE/T +1 , respectively. Hadrons with a neutral electric

charge will not participate in electrical conductivity.
The relaxation time of any hadron can be written as

τc = 1/(nHRGvH
avπa2), (25)

where hard-sphere cross section πa2 is considered for hadron,
having average velocity

vH
av =

∫
d3 p

(2π )3

p

E
f0

/ ∫
d3 p

(2π )3
f0. (26)

Each hadron will face the entire density of the system,

nHRG =
∑

B

gB

∫ ∞

0

d3 p

(2π )3

1

eE/T + 1

+
∑

M

gM

∫ ∞

0

d3 p

(2π )3

1

eE/T − 1
, (27)

where gB and gM are baryon and meson spin degeneracy
factors, respectively.

The perpendicular electrical conductivity of the rotating
HRG can be written as

σ⊥
HRG =

∑
B

gBq2
B

3T

∫
d3 p

(2π )3

τc

1 + (
τc
τ�

)2 × p2

E2
f 0(1 − f 0)

+
∑

M

gMq2
M

3T

∫
d3 p

(2π )3

τc

1 + (
τc
τ�

)2 × p2

E2
f 0(1 + f 0).

(28)
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Similarly, the Hall electrical conductivity can be expressed as

σ×
HRG =

∑
B

gBq2
B

3T

∫
d3 p

(2π )3

τc
(

τc
τ�

)
1 + (

τc
τ�

)2 × p2

E2
f 0(1 − f 0) +

∑
M

gMq2
M

3T

∫
d3 p

(2π )3

τc
(

τc
τ�

)
1 + (

τc
τ�

)2 × p2

E2
f 0(1 + f 0). (29)

B. Electrical conductivity for mass-less QGP

We can construct the conductivity tensor for the massless rotating QGP by substituting p = E in Eq. (22) and summing over
all the light quarks with their corresponding degeneracies as

σ n
QGP =

∑
f =u,d,s

g f q2
f

6π2T

τc
(

τc
τ�

)n

1 + (
τc
τ�

)2

∫
dEE2 f 0(1 − f 0)

=
∑

f =u,d,s

g f q2
f

6π2T

τc
(

τc
τ�

)n

1 + (
τc
τ�

)2 T
∂

∂μ

∫
dEE2 f 0

=
∑

f =u,d,s

g f q2
f

6π2T

τc
(

τc
τ�

)n

1 + (
τc
τ�

)2 T
∂

∂μ
T 3�(3) f3(A)

[
where f j (A) = 1

�( j)

∫ ∞

0

x j−1dx

A−1ex + 1
, (A ≡ eμ/T )

]

=
∑

f =u,d,s

g f q2
f

6π2T

τc
(

τc
τ�

)n

1 + (
τc
τ�

)2 T
∂

∂μ
T 3�(3) f3(A)

=
∑

f =u,d,s

g f q2
f

3π2

τc
(

τc
τ�

)n

1 + (
τc
τ�

)2 T 2 f2(A). (30)

The electrical conductivity for massless QGP in the ab-
sence of rotation (or parallel conductivity of rotating QGP)
is defined as,

σQGP ≡ σ
||
QGP = σ 0

QGP + σ 2
QGP = 1

3π2

⎛
⎝ ∑

f =u,d,s

g f q2
f

⎞
⎠τcT 2L2

= 8e2

3π2
τcT 2L2, (31)

where g f = spin degeneracy × color degeneracy × particle-
antiparticle degeneracy= 2 × 3 × 2 = 12 for any quark flavor
f = u, d, s with charges qu = + 2

3 e, qd = − 1
3 e, qs = − 1

3 e. In
natural unit e2 = 4π/137. Being electric charge neutral, glu-
ons will not participate in electrical conductivity. At μ = 0,
Fermi integral function fn will convert to Ln:

Lj = 1

�( j)

∫ ∞

0

x j−1dx

ex + 1
= f j (1), (32)

where we have chosen ξ = −1, since quarks are fermions.
Now quarks will face the entire QGP density

nQGP = gq

∫ ∞

0

d3 p

(2π )3

1

ep/T + 1
+ gg

∫ ∞

0

d3 p

(2π )3

1

ep/T − 1

=
[

gq

(
1 − 1

23−1

)
+ gg

]
ζ (3)

π2
T 3,

=
[

3gq

4
+ gg

]
ζ (3)

π2
T 3, (33)

where gq = 2 × 3 × 2 × 3 = 36 and gg = 2 × 8 = 16 are
quark and gluon degeneracy factors respectively and Reimann
zeta function ζ (3) = 1.202.

One can write perpendicular electrical conductivity
σ⊥ ≡ σ 0 for rotating QGP from Eq. (30) as

σ⊥
QGP = 1

3π2

⎛
⎝ ∑

f =u,d,s

g f q2
f

⎞
⎠ τc

1 + (
τc
τ�

)2 T 2L2

= 8e2

3π2

τc

1 + (
τc
τ�

)2 T 2L2. (34)

Similarly, from Eq. (30) the Hall electrical conductivity σ× ≡
σ 1 can be expressed as

σ×
QGP = 1

3π2

⎛
⎝ ∑

f =u,d,s

g f q2
f

⎞
⎠ τc

(
τc
τ�

)
1 + (

τc
τ�

)2 T 2L2

= 8e2

3π2

τc
(

τc
τ�

)
1 + (

τc
τ�

)2 T 2L2. (35)

III. RESULTS AND DISCUSSION

For numerical evaluation of electrical conductivities for a
rotating QGP, we have employed the formulas put down in
Sec. II B. Similarly, for quantitative estimation of electrical
conductivities for the rotating hadron gas, we use the ideal
hadron resonance gas model established in Sec. II A, which
encompasses all the noninteracting hadrons and their reso-
nance particles up to a mass of 2.6 GeV as listed in Ref. [126].
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FIG. 1. Electrical conductivity σ normalized by τcT 2 as a func-
tion of T for massless QGP and HRG.

In Fig. 1, we have portrayed the normalized electrical
conductivity σ/τcT 2 with respect to temperature T . We take
the help of Eq. (31) to get the expression of σQGP for mass-
less QGP, which can be seen to be directly proportional to
τcT 2. Accordingly, we have obtained a horizontal line cor-
responding to σ/τcT 2 = 0.02. For the hadronic temperature
regime, we have presented the variation of scaled conductivity
σ/τcT 2 by resorting to the HRG model Eq. (24) at zero baryon
chemical potential. For simplicity, we have assumed constant
τc for all the hadrons to obtain the pattern of scaled σHRG

in Fig. 1. The plot (red solid line) displays a sharp rise at
low temperatures and eventually flattens as the temperature
increases. The conductivity for the hadron gas obtained from
the HRG model stays below the massless QGP (blue dashed
line). The pattern is quite similar to the normalized thermody-
namical quantities like pressure, energy density, etc., whose
HRG estimations always remain below their massless QGP or
Stefan-Boltzmann (SB) limits.

In Fig. 2, we have compared the numerical magnitudes of
normalized number density n

T 3 for massless QGP (red solid
line) and hadron gas (blue dashed line). We use Eq. (33)
and Eq. (27) for massless QGP and hadron gas for the de-
termination of the magnitude of n

T 3 . For QGP, owing to the
relation n ∝ T 3, we get a horizontal line at n

T 3 ≈ 5.23. In
contrast, in the hadron gas, our model calculation produces a
monotonically increasing n or n/T 3 with respect to T . Again,
we observe that, like conductivity, the number density value
for hadron gas estimated from the HRG model stays below
the massless QGP limit.

In Fig. 3, we have displayed the variation of the average
velocity of different hadrons in the hadron gas with respect
to their masses up to 2.6 GeV at two different temperatures:
T = 0.1 GeV and T = 0.2 GeV. We have obtained the nu-
merical values of vav from Eq. (26) at zero baryonic chemical
potential. The result shows a decrease in average velocity
vav of all the hadrons with respect to their masses. The
lighter hadrons have high velocities compared to the heavier
ones. An increase in temperature makes hadrons move with
an increased velocity as the thermal energy increases with

FIG. 2. Normalized number density n/(T 3) vs T for massless
QGP and HRG.

temperature. Moreover, we have also created a band to depict
the range of velocity of all hadrons between T = 0.1 GeV and
T = 0.2 GeV.

In Fig. 4, we have illustrated the change of relaxation or
collision time of different hadrons with respect to their masses
for two different temperature values: T = 0.1 GeV and T =
0.2 GeV. For the evaluation of collision time, we have relied
on the expression of the hard-sphere scattering model of the
collision set down in Eq. (25). For each T value, we take
two different scattering lengths a to display the variation of
τc with respect to both T and a. For a fixed a the relaxation
time τc(T ) decreases because of the increase of vav(T ) and
n(T ) by following the Eq. (25). Similarly, for a given T , the
relaxation time increases with a since τc ∝ 1

a2 . Here we have
chosen a = 0.2 fm and a = 2 fm, whose reason will be clear
in Fig. 5.

FIG. 3. Average velocity (vav) as a function of hadron mass (m)
for all hadrons at two different temperatures: T = 0.1 GeV and
T = 0.2 GeV.
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FIG. 4. Relaxation Time τc vs (m) for various hadrons at two dif-
ferent temperatures: T = 0.1 GeV and T = 0.2 GeV. Two different
values of a (0.2 and 2 fm) are considered for each temperature.

Next, we have aimed to compile earlier estimated data
of σ/T within the hadronic temperature domain, where few
selective estimated results [127–129] are shown in Fig. 5. The
order of magnitude for σ/T , obtained by Cassing et al. [127]
(diamonds), Marty et al. [128] (stars), and Fraile et al. [129]
(solid circles), are within the range 0.001 to 0.1. A long list of
references [127–141] can be found for microscopic estimation
of σ/T , whose order of magnitude will be located within
0.001 to 0.1 for hadronic temperature domain and 0.002 to 0.3
within quark temperature domain. Now, it can be seen that all
the data obtained from earlier works within the hadronic tem-
perature domain can be covered by altering a from 0.2 to 2 fm.
For this reason, the same range of a has been considered in
previous Fig. 4. We have also added a nonrelativistic version

FIG. 5. Electrical conductivity σ/T vs T for HRG with
temperature-dependent τc(T ) at a = 0.2 and 2 fm and its comparison
with the models of Cassing et al. [127], Marty et al. [128], Frail
et al. [129]. Along with the relativistic estimations (solid lines), a
nonrelativistic estimations (dotted lines) are also added to show the
numerical contribution of relativistic correction.

FIG. 6. Perpendicular and Hall electrical conductivity σ⊥/(σ ),
σ×/(σ ) vs � for HRG at τc = 5 fm and T = 0.150 GeV.

of HRG estimations (dotted lines) along with our relativistic
estimations (solid lines). Since the present framework may
be considered as a relativistic extension of earlier Ref. [85],
which was done in a nonrelativistic framework, so to see their
difference, we have quickly gone through an HRG model in
a nonrelativistic framework. Its quick formalism part is added
in Appendix A 2.

To Fig. 5, we have gone through the estimations of σ/T in
the absence of rotation. In presence of rotation the isotropic
nature of σ/T converts into anistropic nature of σ/T , hav-
ing multi components- σ ||, σ⊥, and σ×. Interestingly, σ ||
in the presence of rotation is the same as σ , which is the
isotropic conductivity in the absence of �. The expression
of σ (T ) given in Eq. (24) has two components: thermody-
namical phase space and relaxation time τc(T ). The former
component has a nontunable temperature profile, while the
latter component can be tunable by tuning the magnitude of
scattering cross section through a. We have used hard-sphere
scattering cross-section relation for the expression of τc(T ),
given in Eq. (25). The temperature dependance of τc is mainly
determined by n(T ) and vav(T ) which are displayed in the
earlier Figs. 2 and 3. After calibrating our results without
rotation with earlier estimations, we will now proceed to apply
them to rotating hadronic matter.

In Fig. 6, we have depicted the variation of perpendicu-
lar and Hall conductivities σ⊥,× normalized by the parallel
conductivity σ || = σ as a function of � for a fixed T =
0.150 GeV. We have employed Eqs. (28), (29), and (24) for
the numerical estimation of σ⊥, σ×, and σ respectively for
rotating HRG. In relation to Eq. (25) and Fig. 4, it is apparent
that the relaxation time is a function of a, T , and m, i.e.,
τc = τc(a, m, T ). So, for a specific hadron in the system at
a given temperature, it depends on the effective hard-sphere
scattering length. In the beginning, let us consider a constant
τc for estimating σ ||,⊥,× instead of the actual τc(a, m, T ). By
doing this, we can visualize only the thermodynamical phase
space part of σ ||,⊥,×(T,�). In this plot, we choose a value of
τc = 5 fm (25 GeV−1), which falls in the band of τc obtained
in Fig. 4 for a = 2 fm. In HICs, the average value of the local
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FIG. 7. Perpendicular and Hall electrical conductivity
(σ⊥/σ, σ×/σ ) vs � for HRG at T = 0.150 GeV.

vorticity can be taken as a measure of the global vorticity
or angular velocity of the system. The average vorticity for
HIC has been calculated from various models [22,55,56,142].
Inspired by these studies, we choose the scale of the � axis
from 0 to 0.04 GeV. σ⊥ (or σ 0), the perpendicular conduc-
tivity of the rotating HRG corresponds to the current in the
direction of the applied electric field in the XY plane. In the
limit of � −→ 0, σ⊥ reduces to conductivity σ . In our plot,
this feature can be seen where σ⊥

σ
−→ 1 as one approach to

� −→ 0. Similarly, we can see the matrix in Eq. (23) that
σ 1 ≡ σ× drives the electric current in the XY plane of the
rotating hadron gas; it drives current in the X direction if
the electric field is in the Y direction and vice versa. In the
limit � −→ 0, σ× vanishes. The Hall conductivity σ× shows
interesting characteristics, it first increases with � to hit a
peak where τ� ≡ 1

2�
approaches τc and then decreases with

further increase in �. From Fig. 6 one can notice that, for
slowly rotating HRG, i.e., at low �, the σ⊥ dominates over
σ× whereas, for a fastly rotating HRG, i.e., at high � we
see that σ⊥ < σ×. Noticeably, the magnitude of σ⊥,×/σ in
the figure lies below one, i.e., σ⊥,×/σ � 1. This property
can be understood by recognizing three different timescales
associated with the rotating hadronic gas: τc ≡ τ ||

c , τ⊥
c , and

τ×
c . The effective relaxation times τ⊥

c and τ×
c occurs in the

mathematical expression of σ⊥ and σ× are given as follows:

τ⊥
c = τc

1 + (
τc
τ�

)2 , τ×
c = τc

(
τc
τ�

)
1 + (

τc
τ�

)2 .

A glance at the above timescales suggests that τ⊥
c < τc and

τ×
c < τc which determines the ordering σ⊥ < σ and σ× < σ .

We have delineated the variation of normalized conductiv-
ity σ⊥,×

σ
in relation to the angular velocity � of the hadronic

medium at T = 0.150 GeV in Fig. 7. In contrast to Fig. 6,
where we have interpreted the alternation of σ⊥,×

σ
graphically

for a fixed value of τc = 5 fm, we take here the individual
τc of the rotating hadrons by using Eq. (25). For fixed T =
0.150 GeV and take two different values a = (0.2 fm, 2 fm)

FIG. 8. Parallel, perpendicular, and Hall electrical conductivity
(σ/T , σ⊥/T , σ×/T ) as functions of temperature (T ) for HRG with
τc(T ) and τ� = 6 fm.

we have calculated τc = τc(a, m, T ) for different hadron reso-
nances with mass m. The different values of a chosen here are
the tuned scattering lengths obtained by the calibration done
in Fig. 5. For the value of a = 2 fm, we see that for a rotating
HRG with � in the range 0.001 to 0.02 GeV, the σ⊥ is almost
equal to σ and σ× is negligible. This suggests an almost
isotropic HRG with the scattering length a = 2 fm. Never-
theless, for a = 0.2 fm, we observe that in the range � =
0.01–0.02 GeV there is a significant magnitude of σ× which
is around 10% to 15% of σ . Also, in the same range of �, one
can notice a significant suppression of the σ⊥ with respect
to σ , which is around 90%. This suggests a highly anisotropic
HRG with a hugely suppressed perpendicular conductivity σ⊥
along with a large magnitude of Hall conductivity σ×. In
Fig. 8, we have displayed the temperature dependence of the
scaled conductivities σ/T for the rotating HRG at an angular
speed � = 0.016 GeV (τ� ≈ 6 fm). Similarly to the previ-
ous figure, we take two different values of a (0.2 fm, 2 fm)
for the determination of τc(a, M, T ) from Eq. (25). The plot
represents a strong variation of both perpendicular σ⊥ and
Hall σ× conductivities in relation to temperature T . For a
rotating HRG with a = 2 fm, the σ⊥ almost merges with σ for
temperature T � 0.12 GeV. This implies an almost isotropic
rotating HRG with σ⊥ ≈ σ . Nevertheless, one can define a
region of temperature T = 0.05–0.14 GeV where the system
still has a significant magnitude of σ× with σ/σ× ∼ 10 or
less. On the other hand, in a rotating HRG with a = 0.2 fm,
there is a remarkable suppression of σ⊥ with respect to σ in
the T range 0.10–0.20 GeV. The magnitude of the suppression
is around 90% at T = 0.12 GeV. These observations suggest
strongly anisotropic rotating HRG with a = 0.2 fm. There is
also a significant magnitude of Hall conductivity σ× for T
more than 0.14 GeV, i.e., σ/σ× � 10 for T � 0.14 GeV.

In the end, we can find a succinct qualitative message from
our detailed quantitative investigations. It says that Coriolis
force can have a noticeable impact on creating an anisotropic
conductivity tensor at a finite rotation of the HRG system,
as done by the Lorentz force at a finite magnetic field.
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However, this noticeable impact will quantitatively depend on
the hadronic scattering strengths, quantified by a in our study.
We have shown the noticeable and non-noticeable impact
for a = 0.2 fm and a = 2 fm, respectively. Another debatable
point is that how fast or slow the angular velocity will decay
with time [22,55,56] so that hadronic matter will face it. In
this context, a possibility of noticeable impact for any values
within the range � = 0.001–0.02 GeV can be found.

IV. SUMMARY

In this work, we have made an effort to visualize the ef-
fect of Coriolis force on electrical conductivity in the hadron
resonance gas model. The coefficient of proportionality be-
tween electrical current density and electrical field is known
as electrical conductivity. Using the Boltzmann transport
equation and the relaxation time approximation, we have cal-
culated their microscopic expressions within the framework of
kinetic theory based on their macroscopic formulations. The
Coriolis force in rotating frames leads to similar anisotropy
in the electrical conductivity tensor (σ ) as the Lorentz force
introduced in the presence of a magnetic field. The generated
anisotropy is categorized into three parts: the Hall, perpen-
dicular, and parallel components. The parallel component of
electrical conductivity remains unaffected as it is indepen-
dent of the relaxation time of the medium. However, we
observe the variations in the scaled electrical conductivity
of the perpendicular and Hall components with temperature
in the presence of Coriolis force. In the absence of rotation,
the scaled electrical conductivity (scaled with τcT 2) increases
with temperature but stays below the results obtained for
massless QGP or SB limits similar to the normalized thermo-
dynamical quantities like pressure, energy density, etc. The
average velocity of particles decreases monotonically with
mass, which leads to an increase in particle relaxation time
as a function of their respective masses. We estimate the
relaxation time using the hard-sphere scattering model. We
observed that the earlier estimations of (σ/T ) could be tuned
by varying the scattering lengths a from 0.2 to 2 fm. A mono-
tonic decreasing trend is observed in electrical conductivity
with temperature in the absence of rotation. The presence of
the Coriolis force induces an anisotropic nature in electrical
conductivity. We observed that as the angular velocity (�) of
the rotating hadron gas system increases, the perpendicular
component of electrical conductivity decreases. As the rota-
tion speed (�) approaches zero, the perpendicular component
converges to the overall conductivity σ . On the contrary, the
Hall component vanishes towards small �. The Hall compo-
nent shows interesting behavior; initially, it increases with �,
reaching a peak when the characteristic rotation time (τ�) be-
comes comparable to the relaxation time τc and then decreases
with further increase in �. Therefore, we can conclude that in
a slowly rotating HRG, with low �, σ⊥ dominates over the
Hall conductivity σ×, whereas for a fastly rotating (large �)
HRG σ× > σ⊥. Even more interestingly, we observe that this
flip from σ⊥ dominance to σ× dominance occurs at relatively
smaller angular velocities for systems with smaller scattering
lengths. In the end, we estimate the variation of electrical
conductivity components with temperature at a fixed angular

speed. We observed a strong variation in both perpendicular
and Hall components with temperature. With the chosen angu-
lar speed � = 0.016 GeV (τ� ≈ 6 fm) the σ⊥ almost merges
with σ above for temperature T ≈ 0.12 GeV for a = 2 fm.
This implies an almost isotropic rotating HRG with σ⊥ ≈ σ .
On the other hand, for a = 0.2 fm, suppression of σ⊥ with
respect to σ is notably strong up to T ≈ 0.20 GeV, which
suggests strongly anisotropic rotating HRG with a = 0.2 fm.
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APPENDIX: CONDUCTIVITY IN RELATIVISTIC AND
NON-RELATIVISTIC HADRON GAS USING BOLTZMANN

TRANSPORT EQUATION

1. Calculation of current density

The current density Ji can be readily calculated from
Eq. (1) after the determination of δ f . To calculate δ f let us
substitute the ansatz δ f = −�p · �X ( ∂ f 0

∂E ) in the Eq. (21),

∂ f 0

∂E
�p

p0
· (q �̃E ) + 2 �p ·

[
�� × ∂δ f

∂ �p
]

= −δ f

τc

⇒ ∂ f 0

∂E
�p
E

· (q �̃E ) + 2 �p ·
[

�� × ∂ (−�p · �X ∂ f 0

∂E )

∂ �p

]
= �p · �X

τc

∂ f 0

∂E
,

which, after simplification, becomes

[
q �̃E
E

+ 2( �X × ��)

]
· �p∂ f 0

∂E
= �X

τc
·
(

�p∂ f 0

∂E

)
, (A1)

since �p is arbitrary in Eq. (A1), the following relation is
valid for �X , [

q �̃E
E

+ 2( �X × ��)

]
= �X

τc
. (A2)

Substituting the result, �X × �� = −γ�ê + γ�(ω̂ · ê)ω̂ +
α�(ê × ω̂), in Eq. (A2), we have

(
q �̃E
E

− 2�γ

)
ê + 2γ�(ω̂ · ê)ω̂ + 2α�(ê × ω̂)

= α

τc
ê + β

τc
ω̂ + γ

τc
(ê × ω̂). (A3)

By equating the coefficients of the linearly independent basis
vectors in Eq. (A3), we get

qẼ

E
− γ

τ�

= α

τc
,

γ

τ�

(ω̂ · ê) = β

τc
,

α

τ�

= γ

τc
,

024904-10



EFFECT OF CORIOLIS FORCE ON ELECTRICAL … PHYSICAL REVIEW C 110, 024904 (2024)

where τ� ≡ 1
2�

. Simplifying the above three equations, we get the following values for α, β, and γ :

α = τc
( qẼ

E

)
1 + (

τc
τ�

)2 , γ = τc
(

τc
τ�

)( qẼ
E

)
1 + (

τc
τ�

)2 , β = τc
(

τc
τ�

)2
(ω̂ · ê)

( qẼ
E

)
1 + (

τc
τ�

)2 .

By substituting the expressions of α, β, and γ , we get the explicit form of the δ f as

δ f = −�p · �X ∂ f 0

∂E
= −∂ f 0

∂E
�p · (αê + βω̂ + γ (ê × ω̂))

= − 1

E

∂ f 0

∂E

[
qτcẼ

1 + (
τc
τ�

)2 ê · �p + τc
(

τc
τ�

)2
(ω̂ · ê)qẼ

1 + (
τc
τ�

)2 ω̂ · �p + τc
(

τc
τ�

)
qẼ

1 + (
τc
τ�

)2 (ê × ω̂) · �p
]

= − 1

E

∂ f 0

∂E

(
qτc

1 + (
τc
τ�

)2

)[
�̃E · �p +

( τc

τ�

)2
(ω̂ · �̃E )(ω̂ · �p) +

( τc

τ�

)
( �̃E × ω̂) · �p

]

= − 1

E

∂ f 0

∂E

(
qτc

1 + (
τc
τ�

)2

)[
Ẽ j pj +

( τc

τ�

)2
ω j Ẽ jωq pq +

( τc

τ�

)
εq jkẼ jωk pq

]

= − q

E

∂ f 0

∂E

(
τc

1 + (
τc
τ�

)2

)[
δ jq +

( τc

τ�

)2
ω jωq +

( τc

τ�

)
εq jkωk

]
Ẽ j pq. (A4)

The δ f obtained in Eq. (A4) solves Eq. (21). Now, we will retain the label r and write the current density for the hadronic
species r as

Ji
r = −grq2

r

∫
d3 �p

(2π )3

pi pl

E2

∂ f 0
r

∂E

⎛
⎝ τc

1 + (
τc
τ�

)2

⎞
⎠[

δ jl +
(

τc

τ�

)2

ω jωl +
(

τc

τ�

)
εl jkωk

]
Ẽ j . (A5)

We can substitute the angular average,
∫

d3 �p pi pl = ∫
d3 p( p2

3 )δil , (4π p2d p ≡ d3 p) and the static limit (�u = 0) identity, ∂ f 0
r

∂E =
− f 0

r (1+ξ f 0
r )

T in Eq. (A5) to get

Ji
r = grq2

r

3T

∫
d3 �p

(2π )3

p2

E2

⎛
⎝ τc

1 + (
τc
τ�

)2

⎞
⎠

[
δi j +

(
τc

τ�

)
εi jkωk +

(
τc

τ�

)2

ωiω j

]
Ẽ j f 0

r

(
1 + ξ f 0

r

)
. (A6)

Comparing the macroscopic expression (Ohm’s law) Ji
r = σ

i j
r Ẽ j with the Eq. (A6) we get

σ i j
r = grq2

r

3T

∫
d3 �p

(2π )3

p2

E2

⎛
⎝ τc

1 + (
τc
τ�

)2

⎞
⎠[

δi j +
(

τc

τ�

)
εi jkωk +

(
τc

τ�

)2

ωiω j

]
f 0
r

(
1 + ξ f 0

r

)

⇒ σ i j
r = σ 0

r δi j + σ 1
r εi jkωk + σ 2

r ωiω j,

where we have

σ n
r = grq2

r

3T

∫
d3 p

(2π )3

τc
(

τc
τ�

)n

1 + (
τc
τ�

)2 × p2

E2
f 0
r

(
1 + ξ f 0

r

)
, (A7)

where σ 0
r , σ 1

r , and σ 2
r are scalars that make up the conductivity tensor. The total conductivity tensor is given by, σ i j = ∑

r
σ

i j
r .

The explicit form of total conductivity tensor and scalar conductivity are

σ i j =
∑

r

grq2
r

3T

∫
d3 �p

(2π )3

p2

E2

⎛
⎝ τc

1 + (
τc
τ�

)2

⎞
⎠

[
δi j +

(
τc

τ�

)
εi jkωk +

(
τc

τ�

)2

ωiω j

]
f 0
r

(
1 + ξ f 0

r

)

σ n =
∑

r

grq2
r

3T

∫
d3 p

(2π )3

τc
(

τc
τ�

)n

1 + (
τc
τ�

)2 × p2

E2
f 0
r

(
1 + ξ f 0

r

)
. (A8)
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The total current density in the rotating HRG can also be written as

�J = σ 0 �̃E + σ 1( �̃E × ω̂) + σ 2(ω̂ · �̃E )ω̂. (A9)

2. Formulas for nonrelativistic HRG

Since, present work is relativistic extension of earlier Ref. [85], which was done in nonrelativistic framework, so to see their
difference, we have quickly gone through a HRG model in nonrelativistic framework. One can rewrite Eq. (22) in nonrelativistic
HRG framework as

σ n = gq2

T

∫
d3 p

(2π )3

τc
(

τc
τ�

)n

1 + (
τc
τ�

)2 × v2

3
f 0(1 − f 0), (�v = �p/m, and E = p2/2m)

⇒ σ n = gq2

3T

∫
d3 p

(2π )3

τc
(

τc
τ�

)n

1 + (
τc
τ�

)2 × p2

m2
f 0(1 − f 0). (A10)

Equation (A10) is useful for calculating conductivity for a single-component nonrelativistic fluid. The nonrelativistic HRG
expression can be obtained from Eq. (A10) as

σ n =
∑

r

grq2
r

3T

∫
d3 p

(2π )3

τc
(

τc
τ�

)n

1 + (
τc
τ�

)2 × p2

m2
r

f 0
r

(
1 + ξ f 0

r

)
. (A11)

The formulas for parallel, perpendicular, and Hall conductivity for nonrelativistic HRG are given by

σ
||
NHRG ≡ σNHRG =

∑
B

gBq2
B

3T

∫
d3 p

(2π )3
τc × p2

m2
B

f 0(1 − f 0) +
∑

M

gMq2
M

3T

∫
d3 p

(2π )3
τc × p2

m2
M

f 0(1 + f 0), (A12)

σ⊥
NHRG =

∑
B

gBq2
B

3T

∫
d3 p

(2π )3

τc

1 + (
τc
τ�

)2 × p2

m2
B

f 0(1 − f 0) +
∑

M

gMq2
M

3T

∫
d3 p

(2π )3

τc

1 + (
τc
τ�

)2 × p2

m2
M

f 0(1 + f 0), (A13)

σ×
NHRG =

∑
B

gBq2
B

3T

∫
d3 p

(2π )3

τc
(

τc
τ�

)
1 + (

τc
τ�

)2 × p2

m2
B

f 0(1 − f 0) +
∑

M

gMq2
M

3T

∫
d3 p

(2π )3

τc
(

τc
τ�

)
1 + (

τc
τ�

)2 × p2

m2
M

f 0(1 + f 0). (A14)

The relaxation time of any nonrelativistic hadron can be written as

τc = 1/
(
nNHRGvNH

av πa2
)
, (A15)

where hard-sphere cross section πa2 is considered for hadron, having average velocity

vNH
av =

∫
d3 p

(2π )3

p

m
f0

/ ∫
d3 p

(2π )3
f0. (A16)

Each hadron will face the entire density of the system

nNHRG =
∑

B

gB

∫ ∞

0

d3 p

(2π )3

1

eE/T + 1
+

∑
M

gM

∫ ∞

0

d3 p

(2π )3

1

eE/T − 1
, (E = p2/2m), (A17)

where gB and gM are baryon and meson spin degeneracy factors, respectively.
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