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Single-energy partial-wave analysis has often been applied as a way to fit data with minimal model de-
pendence. However, remaining unconstrained, partial waves at neighboring energies will vary discontinuously
because the overall amplitude phase cannot be determined through single-channel measurements. This problem
can be mitigated through the use of a constraining penalty function based on an associated energy-dependent
fit. However, the weight given to this constraint results in a biased fit to the data. In this paper, for the first
time, we explore a constraining function which does not influence the fit to data. The constraint comes from
the overall phase found in multichannel fits which, in the present study, are the Bonn-Gatchina and Jülich-Bonn
multichannel analyses. The data are well reproduced and weighting of the penalty function does not influence the
result. The method is applied to K� photoproduction data and all observables can be maximally well reproduced.
While the employed multichannel analyses display very different multipole amplitudes, we show that the major
difference between two sets of multipoles can be related to the different overall phases.
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I. INTRODUCTION

Meson-nucleon scattering and meson photoproduction
have been extensively studied over the last decades in a
comprehensive joint program of experiments and theoreti-
cal studies principally at ELSA, GRAAL, JLab, and MAMI
facilities. Multichannel theory approaches, attempting a si-
multaneous fit to the world datasets of dominant open
channels, have been carried out and updated by the Bonn-
Gatchina [1], Jülich-Bonn [2], Kent State University [3], and
MTZ [4] groups among others. Some single-channel analy-
ses have also remained active, in particular GWU-SAID [5]
and MAID [6]. No longer active but historically important
analyses, focusing on pion-induced reactions, were carried
out by the Karlsruhe-Helsinki group [7] as a single-channel
analysis and by the Carnegie-Mellon-Berkeley group [8] as a
coupled-channel one. Coupled-channel theoretical models are
very powerful as they employ the constraint of multichannel
unitarity, but may be very computationally intensive and can
have very different starting assumptions. This has made com-
parisons more difficult. Single-channel energy-independent
approaches attempt to reduce theoretical input to a minimum,
and aim to extract partial waves or multipoles directly from
the data, using as few assumptions as possible. However, they
all face the well known problem that single-channel single-
energy partial-wave analyses are nonunique in the inelastic
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region as they are unable to determine one parameter due to
the invariance of single-channel observables with respect to
an overall phase change (continuum ambiguity; see Ref. [9]),
hence they give discontinuous results. Thus, some constraints
have to be introduced, and this introduces model dependence
into the analysis. In this paper we analyze the constraints
used to achieve the needed continuity, and propose to use
the minimal constraint which does not change single-channel
observables. This also leads to a way of comparing different
multichannel results.

Before proceeding, we first briefly rephrase the existing
problem with single-channel single-energy analyses due to the
overall phase ambiguity. Since the observables can be written
in terms of bilinears (such as the real or imaginary part of bib∗

j ,
with i, j running from 1 to 4 for pseudo-scalar photoproduc-
tion), resulting in real valued functions, the multiplication of
all amplitudes by a common phase has no effect on observ-
ables. Hence, only absolute values and all three relative phase
angles of reaction amplitudes are uniquely determined; the
overall phase always remains unknown. This has a profound
effect on our results: any of our solutions, whether they be re-
action amplitudes or partial waves, are manifestly nonunique.
In fact, we have an infinite number of equivalent solutions
with different overall phase (if our solution is considered to
be a set of four reaction amplitudes with four absolute values
and four phase angles). For more details see Tables II and III.
To proceed, we need some way of fixing the unmeasurable
overall phase, and that is done by introducing constraints in
single-energy partial wave analyses.
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Very often the employed constraints come from some the-
oretical model in the form of theoretical reaction amplitudes.
However, in that case, single-energy analyses become strongly
model dependent, as constraining functions directly influence
the fit to observables. One of the first constraining methods
was used by the Karlsruhe-Helsinki partial wave analysis [7]
in the form of fixed-t analyticity. The method consisted in
introducing a penalty function as a constraint which required
that, simultaneously with fitting the data, reaction amplitudes
had to be very close to those obtained by a Pietarinen expan-
sion in the t variable of a single-channel, and this constraint
imposed analyticity of amplitudes in the s variable. In that
way, continuity in phase was automatically achieved, but a
much stronger constraint to the form of constraining ampli-
tudes was also imposed. Obviously, this constraining method
influenced the single-channel observables. A very similar way
of constraining single-channel, single-energy partial wave
analysis has been used by Zagreb group [10,11] where an-
alyticity in t variable has been replaced by analyticity in
s variable. The method was successful but the main prob-
lem with the constraining function influencing observables
remained.

Obviously, the main problem of these approaches was that
as constraining functions they were using full amplitudes
which influence the observables. The first attempt to use only
a phase (which has no influence on observables) to achieve
continuity of single-channel, single-energy partial wave anal-
ysis was introduced by Grushin [12] and used by the Bonn
group [13]. The method consisted in fixing the phase of one of
the multipoles to zero, usually the E0+ multipole. In practice
this was achieved by imposing Im(E0+) = 0, Re(E0+) > 0.
Unfortunately, this method yields a very restrictive form of the
chosen multipole. So, until recently, there existed no general
way to constrain a single-channel, single-energy partial wave
analysis without either influencing the fit to observables or
fixing the values of some multipoles.

A starting point for the present method was discussed in
Ref. [14] for the complete set of observables created as nu-
meric data with infinite precision in η photoproduction. There
it was shown how multipoles explicitly depend on the overall
phase, and that their continuity can be achieved if the overall
phase is fixed to some predetermined value with no influence
on any single-channel observable.

In this paper, we apply this finding to experimental data
(with uncertainties), in the database for K� photoproduc-
tion. Our constraining function was chosen to be the overall
transversity amplitude phase, and the constraining procedure
was chosen to be the penalty function technique. In the Ap-
pendix, it is shown that fixing the overall phase is equivalent
to fixing the phase of one of the reaction amplitudes, so as
a constraining function we take the transversity amplitude b1

phases from two coupled-channel models, Bonn-Gatchina [1]
and Jülich-Bonn [2]. We show that these phases are signifi-
cantly different, and thus generate two very different sets of
multipoles. However, by comparing the agreement of calcu-
lated observable values with the corresponding experimental
ones, for both phase choices, we find that both sets do sim-
ilarly well in reproducing the world K� photoproduction
database.

II. FORMALISM

The simplest way to fix the phase and obtain a unique
single-energy partial-wave analysis (SE PWA) is to use the
penalty function technique to introduce an additional phase
constraint. As it is irrelevant which amplitude phase we fix,
we have chosen the phase of amplitude b1. We name it �1,
and we fix it to the chosen value �

pen
1 :

χ2(W ) =
Ndata∑

i=1

wi
(
Oexp

i (W,�i) − Ofit
i [Mfit (W ),�i]

)2 + P1,

P1 = λph

Ndata∑

i=1

∣∣�fit
1 (W,�i ) − �

pen
1 (W,�i )

∣∣, (1)

where O(W,�) and M(W ) are the generic names for all
observables and multipoles, and wi is a statistical weight.
In practice, we avoid the difficulties associated with fitting
a multivalued phase, instead using normalized amplitudes in
defining the penalty function:

χ2(W ) =
Ndata∑

i=1

wi
(
Oexp

i (W,�i) − Ofit
i [Mfit (W ),�i]

)2 + P1,

P1 = λph

Ndata∑

i=1

∣∣∣∣∣
bfit

1 (W,�i)∣∣bfit
1 (W,�i)

∣∣ − bpen
1 (W,�i)∣∣bpen
1 (W,�i)

∣∣

∣∣∣∣∣. (2)

This replaces the fit to a phase with a fit to its sine and cosine,
a better-behaved penalty function.

III. ILLUSTRATION OF SINGLE-CHANNEL PWA
APPLIED TO K� PHOTOPRODUCTION DATA

Single-energy analysis has often been used to search for
systematic deviations from an underlying energy-dependent
fit, searching for missing structure. However, this method
can bias the single-energy results as a large penalty function
can generate single-energy values arbitrarily close the the
energy-dependent input. The idea to use theoretical constrain-
ing amplitudes has already been tried in past [7,10,11], but
using using the T matrix as a constraining function influenced
the fit to these observables. Below, we describe a fit to data
constrained only by the overall phase taken from a multichan-
nel analysis, which cannot be directly measured and so has no
effect on the quality of fit to data.

A. The γ p → K+� database

The γ p → K+� database, used in this study, is identi-
cal to one fitted in Ref. [11]. In Table I our database is
summarized. It has been taken, in numerical form, from the
Bonn-Gatchina and George-Washington-University (SAID)
web pages [15,16] and interpolated to produce a grid of
common energy/angle points. For general details related to
the two-dimensional interpolation and its implementation,
see Refs. [10,11]. However, the interpolating/extrapolating
stability in the present study is significantly improved with
respect to Refs. [10,11]. Observe that, in angular range,
not all measured observables overlap, and for some data
groups extrapolations are needed. However, this extrapolation
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TABLE I. Experimental data from CLAS and GRAAL used in our PWA. Note that the observables Cx and Cz are measured in a rotated
coordinate frame [17]. They are related to the standard observables Cx′ and Cz′ in the center-of-mass (c.m.) frame by an angular rotation:
Cx = Cz′ sin(θ ) + Cx′ cos(θ ) and Cz = Cz′ cos(θ ) − Cx′ sin(θ ); see Ref. [18].

Obs. N Ec.m. (MeV) NE θc.m. (deg) Nθ References

dσ/d� ≡ σ0 3615 1625–2295 268 28–152 5–19 CLAS(2007) [17], CLAS(2010) [19]
� 400 1649–2179 34 35–143 6–16 GRAAL(2007) [20], CLAS(2016) [21]
T 408 1645–2179 34 31–142 6–16 GRAAL(2007) [20],CLAS(2016) [21]
P 1597 1625–2295 78 28–143 6–18 CLAS(2010) [19], GRAAL(2007) [20]
Ox′ 415 1645–2179 34 31–143 6–16 GRAAL(2007) [20], CLAS(2016) [21]
Oz′ 415 1645–2179 34 31–143 6–16 GRAAL(2007) [20], CLAS(2016) [21]
Cx 138 1678–2296 14 31–139 9 CLAS(2007) [17]
Cz 138 1678–2296 14 31–139 9 CLAS(2007) [17]

at extreme forward and backward angles can become rather
ambiguous if it is completely determined by the fitting soft-
ware. Therefore, we have introduced additional kinematical
constraints to the measured data at the angular limits:

� = P = T = Ox′ = Oz′ = Cx = 0 and

Cz = 1 at cos θ = ±1 (3)

For the differential cross section dσ/d�, the Bonn-Gatchina
theoretical values were used as a constraint at these ex-
treme angles. This stabilizes the extrapolations at forward and
backward angles significantly, and enables us to increase the
angular range from experimentally measured −0.7 < cos θ <

0.8 to a broader −0.9 < cos θ < 0.9, improving the reliability
of a partial wave reconstruction.

However, note that, in spite of the fact that we have
eight measured observables, this set is still not complete (see
Ref. [22]). Namely, observables Ox′ , Oz′ , Cx, and Cz are deter-
mining the same two relative angles φ14 and φ23 (see Table II),
while the third relative angle remains undefined. This set,
when fitted, produces results with large scatter, leading us to
consider use of an expanded set of observables. To obtain a
complete set of observables, we have added two BT observ-
ables (see again Ref. [22]). As they are not measured, we have
taken them as pseudodata from a theoretical model. We ac-
knowledge that this introduces additional theory dependence,
but at this exploratory stage it appears necessary. Thus, we

introduce pseudodata E and F generated either by the Bonn-
Gatchina or the Jülich-Bonn model. We first generate numeric
data from the respective models, then randomize them by
10%, and attribute to them a 10% error. In this way we obtain
quasi-realistic data set for two additional observables. The
obtained set of ten observables is beyond that required for
a complete experiment. We could drop a pair of connected
observables (either Ox′ and Oz′ or Cx and Cz), but we have
opted to fit the overdefined set of ten observables, to maxi-
mize the link to experiment. Further tests in the direction of
self-consistency of the observables Ox′ , Oz′ , Cx, and Cz can be
done.

B. Exploring the overall phase

As stressed in the Introduction, single-channel, single-
energy analyses cannot be made theory independent, as the
overall phase in inelastic channels cannot be measured from
data. As described in papers on the continuum ambiguity, a
way to determine this phase is to use multichannel unitarity:

Im Tab =
all channels∑

c=1

T ∗
ac ρc Tcb, (4)

where a, b, c are channel indices, Tab is the T matrix of the
reaction a → b, and ρc is the phase space for the channel
c. This equation is just the mathematical expression of

FIG. 1. The comparison of BG2017 and JuBo2022 b1 phases.
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FIG. 2. The multipoles for the L = 0, 1, and 2 partial waves. Red discrete symbols correspond to the single-channel PWA, and the full
black line gives the BG2017 energy-dependent solution for comparison.
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FIG. 3. The obtained total χ 2 per degree of freedom. Black color
denotes BG2017 values, and red color denotes our model.

conservation of probability for multichannel reactions. This
equation restores the connection between overall phases of
analyzed channels.

It is clear that multichannel unitarity constraints can only
be obtained from coupled-channel fits which have enforced
this in the model used. We have chosen to fix the overall phase
of the b1 transversity amplitude to the values obtained in the
Bonn-Gatchina and Jülich-Bonn models, and have compared
results. A comparison of phases is given in Fig. 1. Clearly
the phases coming from the Bonn-Gatchina and Jülich-Bonn
models do not agree, so we should expect that multipoles will
show sizable differences. This is confirmed as we compare
results from the two multichannel fits in the next section.

Here we observe that this invariance of observables with re-
spect to energy- and angle-dependent phase rotation is a form
of invariance of all observables under a general unitary trans-
formation of all reaction amplitudes simultaneously (phase
rotation being a unitary transformation). This is not to be
confused with short-range unitary transformations which gen-
erate phase-shift equivalent potentials of Refs. [23–26], which
were extensively discussed in connection to the nonunique-
ness of off-mass shell extrapolations of nuclear reactions. This
type of unitary transformation, being short ranged, does not
influence phase shifts, hence does not influence long-range
amplitude phase. The transformation studied in the present
work explains the link between phase rotations and the dif-
ferent multipole sets found in multichannel analyses.

C. Fitting an overcomplete set of observables with BG2017
phase and BG2017 pseudodata

Below are results for dominant multipoles obtained by
fitting the full set of data, consisting of eight experimen-
tally measured observables and two pseudo-observables, over
the energy range 1625 � W � 2179.83 MeV. The agree-
ment between energy-dependent BG2017 multipoles and our
single-energy values is very good in most waves.

Having seen the level of agreement between multipoles,
given by BG2017 and by our single-channel single-energy
approach, we compare the two solutions at the level of total

χ2 per degree of freedom. The black and red lines connect
total χ2 values from the BG2017 and single-energy fits re-
spectively. The χ2 is a sum of contributions from the set of
observables at each interpolation energy. The single-energy
values oscillate around the formally expected value of unity.
The energy-dependent BG2017 values show more scatter and
higher values, as should be expected, given that a different
(extended and multichannel) database was used.

D. Fitting an overcomplete set of observables with JB2017
phase and JB2017 pseudodata

Having applied the single-energy method to BG2017, we
next check to see if consistent results follow with the use of
a very different multichannel technique in constraining the
overall phase. Below are the results for dominant multipoles
coming from a fit to the complete set of data consisting of
eight measured observables and two pseudo-observables, ob-
tained from the Jülich-Bonn fit (JB2017) in the energy range
1625 � W � 2179.83 MeV. Again, the comparison between
energy-dependent and single-energy multipoles is reasonable,
with the closest agreement away from threshold.

As before, we also compare the JB2017 energy-dependent
total χ2 values to those obtained in our single-energy fits. The
values of χ2 per degree of freedom show trends very similar to
those we found with BG2017; we again find the single-energy
results oscillating around the expected value of unity.

IV. DEPENDENCE OF FINAL RESULT UPON
CONSTRAINING FUNCTION

We have tested the influence of the weight of the con-
straining (penalty) function λph upon the result, repeating the
fits from Secs. III C and III D with increased penalty function
weighting factor λph [see Eq. (1)]. Specifically, we have in-
creased the employed value λph = 25 to a much larger value
value λph = 1000, and established almost invisible differences
in the final result. We attributed small differences to the nu-
merical nature of the procedure. So, we conclude that the
procedure is independent of λph, and that the used constraining
function does not influence observables. And, we believe, this
is the closest one can get to a theory-independent procedure.
We have used theory assumptions in choosing the constraining
phase, and we used theory assumptions to generate pseudo-
data E and F . The latter theory dependence can be eliminated
by measuring these pseudo-observables. However, the phase
issue can never be eliminated.

V. RESULTS AND DISCUSSION

Summarizing our results, we have made single-channel,
single energy fits to a large database of K� photoproduc-
tion observables (including some pseudodata). The continuum
ambiguity has been resolved using information from two elab-
orate, and quite different, multichannel analyses. We have
shown that using the overall phase from either BG2017 or
JB2017, in a penalty function, has little to no effect on
the single-energy fit to observables. It does, however, pro-
duce multipoles that are in good agreement with the chosen

024614-5



A. ŠVARC AND R. L. WORKMAN PHYSICAL REVIEW C 110, 024614 (2024)

FIG. 4. The multipoles for the L = 0, 1, and 2 partial waves. Red discrete symbols correspond to our single-channel PWA, and the full
black lines give the JB2017 energy-dependent solution for comparison.
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FIG. 5. The obtained χ 2 per degree of freedom. Black color
denotes JB2017 values, and red color denotes our model.

multichannel fit. This gives a new way to constrain single-
channel single-energy fits and also a simple way to compare
the multipoles produced in different energy-dependent fits.

In Figs. 2 and 4, for example, we show the multipoles for
K� photoproduction up to Lmax = 2 for constraints from the
BG2017 and JB2017 models. The single-energy points, with
errors, are given for each of the interpolated energies. In most
cases, they closely follow the smooth BG2017 curves. We
observe that both sets of solutions (exactly as their associated
theoretical models) are visually very different, but equally
well fit the data (see Figs. 3 and 5). So, we can absolutely
attribute this difference to the different overall phase. It should
be emphasized that the single-energy multipoles were not con-
strained to follow BG2017 and JB2017 theoretical amplitudes
but rather the constraint was applied to the phase of the b1

transversity amplitude.
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APPENDIX

It has been known for decades that 2 → 2 scattering ob-
servables can be represented by complex bilinear expressions
and are thus invariant when each amplitude is multiplied by
some energy and angle dependent phase. This is the con-
tinuum ambiguity. Thus, if N amplitudes are involved, they
may be expressed in terms of 2N − 1 real numbers; the last
parameter remains undetermined (as an overall phase).

For pseudoscalar meson photoproduction this number is
N = 4, and all observables are in terms of transversity am-
plitudes given in Table II.

With this definition we see that single-channel observables
dσ/d�, �, T , and P actually exactly give four absolute

TABLE II. The definitions of the 16 polarization observables
of pseudoscalar meson photoproduction are given here in terms of
transversity amplitudes b1, . . . , b4 (sign conventions are consistent
with [27]). Expressions are also given in terms of moduli and relative
phases of the amplitudes. Furthermore, the phase-space factor ρ has
been suppressed in the given expressions (i.e., we have set ρ = 1).
The four different groups of four observables each are indicated
as well.

Observable Group

σ0 = 1
2 (|b1|2 + |b2|2 + |b3|2 + |b4|2) S

�̂ = 1
2 (−|b1|2 − |b2|2 + |b3|2 + |b4|2)

T̂ = 1
2 (|b1|2 − |b2|2 − |b3|2 + |b4|2)

P̂ = 1
2 (−|b1|2 + |b2|2 − |b3|2 + |b4|2)

Ê = Re[−b∗
3b1 − b∗

4b2] = −|b1||b3| cos φ13 − |b2||b4| cos φ24 BT
F̂ = Im[b∗

3b1 − b∗
4b2] = |b1||b3| sin φ13 − |b2||b4| sin φ24

Ĝ = Im[−b∗
3b1 − b∗

4b2] = −|b1||b3| sin φ13 − |b2||b4| sin φ24

Ĥ = Re[b∗
3b1 − b∗

4b2] = |b1||b3| cos φ13 − |b2||b4| cos φ24

Ĉx′ = Im[−b∗
4b1 + b∗

3b2] = −|b1||b4| sin φ14 + |b2||b3| sin φ23 BR
Ĉz′ = Re[−b∗

4b1 − b∗
3b2] = −|b1||b4| cos φ14 − |b2||b3| cos φ23

Ôx′ = Re[−b∗
4b1 + b∗

3b2] = −|b1||b4| cos φ14 + |b2||b3| cos φ23

Ôz′ = Im[b∗
4b1 + b∗

3b2] = |b1||b4| sin φ14 + |b2||b3| sin φ23

L̂x′ = Im[−b∗
2b1 − b∗

4b3] = −|b1||b2| sin φ12 − |b3||b4| sin φ34 T R
L̂z′ = Re[−b∗

2b1 − b∗
4b3] = −|b1||b2| cos φ12 − |b3||b4| cos φ34

T̂x′ = Re[b∗
2b1 − b∗

4b3] = |b1||b2| cos φ12 − |b3||b4| cos φ34

T̂z′ = Im[−b∗
2b1 + b∗

4b3] = −|b1||b2| sin φ12 + |b3||b4| sin φ34

values, and from the rest of the spin observables another
three relative angles are determined. Our experiments give us
absolute values and sines and cosines of all relative angles, so
we need more than seven observables to be measured. We see
that by measuring 12 observables we can certainly determine
all seven quantities (four absolute values and three relative an-
gles) exactly. Applying discrete symmetries it has been shown
that only eight observables suffice. However, the overall phase
can never be determined. In the present study, we avoid the
complete-experiment issue by always considering cases where
more than a sufficient number of observable types is used.

Now we can express transversity amplitudes in terms of
four absolute and three relative angles (measurable quanti-
ties), and separate out the overall phase which cannot be
measured. This can be done in at least four different ways, as
shown in Table III. In each column a different overall phase
is separated (�1, �2, �3, or �4) from the rest of the formula
which can be exactly extracted from single-channel measure-
ments. In an ideal case, all four ways are equivalent, and we
can chose the most convenient one. This set of formulas tells
us exactly that reaction amplitudes are undetermined without
fixing the overall phase of either of the four amplitudes to
some chosen, predetermined value.
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TABLE III. Transversity amplitudes in terms of absolute values and relative angles when overall phase is chosen to be one of the
transversity amplitude angles.

b1 = |b1|ei�1 or b1 = |b1|ei�12 ei�2 or b1 = |b1|ei�13 ei�3 or b1 = |b1|ei�14 ei�4

b2 = |b2|ei�21 ei�1 b2 = |b2|ei�2 b2 = |b2|ei�23 ei�3 b2 = |b2|ei�24 ei�4

b3 = |b3|ei�31 ei�1 b3 = |b3|ei�32 ei�2 b3 = |b3|ei�3 b3 = |b3|ei�34 ei�4

b4 = |b4|ei�41 ei�1 b4 = |b4|ei�42 ei�2 b4 = |b4|ei�43 ei�3 b4 = |b4|ei�4
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