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A study of the nucleon mean-field potential in nuclear matter (NM) is done within an extended Hartree-Fock
(HF) formalism, using the CDM3Y6 density dependent version of the M3Y interaction which is associated with
the nuclear incompressibility K � 252 MeV. The momentum dependence of nucleon optical potential (OP) in
NM at the saturation density ρ0 is shown to be due mainly to its exchange term up to k ≈ 2 fm−1, so that the
Pauli nonlocality is expected to be the main origin of the nucleon effective mass at low momenta. Because
nucleons in neutron-rich NM at ρ ≈ ρ0 are either weakly bound or unbound by the in-medium nucleon-nucleon
interaction, the determination of the effective mass of nucleon scattered on targets with neutron excess at low
energies should be of interest for the mean-field studies of neutron star matter. For this purpose, the folding
model is used to calculate the nonlocal nucleon OP for the optical model analysis of elastic nucleon scattering
on 40,48Ca, 90Zr, and 208Pb targets at energies E < 50 MeV, to probe the model reliability and validate the
Wentzel-Kramers-Brillouin (WKB) local approximation to obtain the local folded nucleon OP. The nucleon
effective mass m∗ is then carefully deduced from the momentum dependence of the local folded nucleon OP
which results from the Pauli nonlocality of the exchange term. The obtained m∗ values agree well with the
nucleon effective mass given by the extended HF calculation of the single-particle potential in asymmetric NM.
The neutron-proton effective mass splitting determined at ρ ≈ ρ0 from the central strength of the real folded
nucleon OP for 48Ca, 90Zr, and 208Pb targets has been found to depend linearly on the neutron-proton asymmetry
parameter as m∗

n−p ≈ (0.167 ± 0.018)δ, in a good agreement with the recent empirical constraints.

DOI: 10.1103/PhysRevC.110.024607

I. INTRODUCTION

Over a wide range of the single-particle energies, the nu-
cleon motion in medium is overwhelmingly governed by the
nuclear mean field, known as the shell-model potential for
bound states and optical potential (OP) for scattering states.
The single-particle potential is also a key quantity in the mean-
field studies of the equation of state (EOS) of nuclear matter
(NM) as well as the structure of finite nuclei [1,2]. The nu-
cleon OP was widely studied in the Brueckner-Hartree-Fock
(BHF) calculations of NM using free nucleon-nucleon (NN)
interaction [2–5], and in the mean-field calculations of NM
on the Hartree-Fock (HF) level using different choices of the
effective NN interaction [6–11]. The mean-field description of
the nucleon OP in the NM limit provide an important physics
input for the microscopic models of the nucleon OP of finite
nuclei, in particular, different versions of the folding model
[11–15].

The microscopic studies of NM have repeatedly shown
the impact by the Pauli blocking and increasing strength of
higher-order NN correlations at high densities [2]. These
in-medium effects are considered as the physics origin of
the density dependence introduced into various effective
NN interactions used in the nuclear structure and reaction
studies. In the present work, we employ the CDM3Y6 density
dependent version [16] of the M3Y interaction [17] which
was used successfully in the HF studies of NM [6,7,18–20],
and in the folding model calculation of the nucleon and

nucleus-nucleus OP at low and medium energies
[11,13,14,16,21–24]. The CDM3Yn density dependence
(n = 1–6) of the original M3Y interaction [17] was first
parametrized in Ref. [16] to reproduce the saturation
of symmetric NM on the HF level. The CDM3Y3 and
CDM3Y6 versions were later modified to take into account
the rearrangement term (RT) of the single-particle potential
in NM into the folding calculation of the nucleon-nucleus
and nucleus-nucleus OP [11,24], based on the Hugenholtz
and van Hove (HvH) theorem [25,26] which is exact for all
interacting Fermi systems independently of the interaction
between fermions.

When the antisymmetrization of the nucleon-nucleus sys-
tem is taken explicitly into account, the exchange term of the
folded nucleon-nucleus potential becomes nonlocal in coor-
dinate space [12,15], and a nonlocal folding model of the
nucleon OP using the CDM3Yn interaction was suggested
in Ref. [27], with the RT properly taken into account. The
calculable R-matrix method [28,29] is used to solve the OM
equation with the nonlocal kernel of the folded nucleon OP.
This method was well tested in the OM analysis of elastic
nucleon scattering at energies up to 40 MeV [30], using the
phenomenological nonlocal nucleon OP [31–34].

The momentum dependence of the nucleon OP at the NM
saturation density ρ0 is due mainly to the exchange term up
to k ≈ 2 fm−1, and the antisymmetrization of the nucleon-
nucleus system is, therefore, the main origin of the momentum
dependence of the nucleon OP at low momenta. As a result,
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it becomes possible to determine the nucleon effective mass
from the momentum dependence of the folded nucleon OP of
finite nuclei, based on the Wentzel-Kramers-Brillouin (WKB)
local approximation, in the OM analysis of low-energy elastic
nucleon scattering on target nuclei with neutron excess. The
present work is our first attempt to determine the radial and
isospin dependence of the nucleon effective mass near the
saturation density (ρ � ρ0) from the radial strengths of the
real folded nucleon OP. The obtained results for m∗ allowed us
to determine the neutron-proton effective mass splitting m∗

n−p

at ρ ≈ ρ0 for 48Ca, 90Zr, and 208Pb targets, which is comple-
mentary to the m∗

n−p values obtained in different mean-field
calculations of asymmetric NM.

The knowledge about the nucleon effective mass is of
wide importance for different nuclear physics and nuclear
astrophysics studies [35–39], in particular, the direct link
of the nucleon effective mass to the density dependence
of nuclear symmetry energy [5,40,41], the liquid-gas phase
transition in the neutron-rich NM, and the temperature pro-
file of hot protoneutron stars [42] and neutrino emission
therefrom [43].

II. SINGLE-PARTICLE POTENTIAL IN
NUCLEAR MATTER

An effective density-dependent NN interaction is the es-
sential input for the mean-field calculation of NM, and we
recall briefly the CDM3Yn density dependent versions of the
M3Y interaction used in our model. Originally, parameters
of the CDM3Yn density dependence were parametrized [16]
to reproduce the NM saturation properties on the HF level.
These parameter sets were extended later to include a real-
istic isovector part [11,14,20] as well as the rearrangement
term of the single-particle potential [11]. The HF results
for the energy per nucleon E/A of NM obtained with the
CDM3Yn interaction are compared in Fig. 1 with results of
the ab initio variational calculation using the Argonne V18
interaction [44]. One can see a nice agreement of the HF
results with those of the ab initio calculation over a wide
range of densities. We note that the functional CDM3Yn
density dependence of the original M3Y interaction [17] was
parametrized [16] to reproduce on the HF level the satura-
tion of symmetric NM at ρ0, as well as to give a realistic
(real) nucleus-nucleus OP within the double-folding model
that properly describes the nuclear rainbow pattern observed
in elastic α-nucleus and light heavy-ion refractive scattering.
The rainbow scattering data were proven to be sensitive to the
real OP at small distances where the dinuclear overlap density
is reaching up to twice the saturation density ρ0 [21], so that
the use of the CDM3Yn interaction is well validated for the
low-energy domain of nuclear EOS (see Fig. 1).

According to Landau theory for an infinite system of inter-
acting fermions [45], the single-particle energy is determined
[11] as derivative of the energy per nucleon ε ≡ E/A of NM
with respect to the nucleon momentum distribution nτ (k):

Eτ (ρ, k) = ∂ε

∂nτ (k)
= h̄2k2

2mτ

+ Uτ (ρ, k), where τ = n, p.

(1)

FIG. 1. Energy per nucleon of the symmetric NM (a) and pure
neutron matter (b) given by the HF calculation using the density-
and isospin dependent CDM3Yn interaction. K is the nuclear in-
compressibility obtained at the saturation density ρ0 ≈ 0.16 fm−3.
The circles are results of the ab initio variational calculation by
Akmal, Pandharipande, and Ravenhall (APR) [44]. The arrow marks
twice the saturation density, indicating the validity of the CDM3Yn
interaction for the low-energy domain of nuclear EOS.

Eτ (ρ, k) is, thus, the change of the NM energy at density
ρ caused by the removal or addition of a nucleon with the
momentum k. The single-particle potential Uτ (ρ, k) consists
of both the HF and rearrangement terms,

Uτ (ρ, k) = U (HF)
τ (ρ, k) + U (RT)

τ (ρ, k), (2)

with the explicit expressions of Uτ (k) given in Ref. [11].
At the Fermi momentum (k → kFτ ), Eτ (kFτ ) determined
from Eqs. (1)–(2) is exactly the Fermi energy given by the
Hugenholtz–van Hove (HvH) theorem [25], which is satisfied
on the HF level only when the effective NN interaction is
density independent, with the RT equal to zero [11,46]. In
the mean-field calculation (1)–(2), the RT originates naturally
from the density dependence of the in-medium NN interaction
that implicitly accounts for the higher-order NN correlations
as well as three-body force [1,4,5].

For the spin-saturated NM, the (spin-independent) direct
(D) and exchange (EX) parts of the CDM3Yn interaction
[14,16] are used in the HF calculation of NM:

vD(EX)(ρ, s) = F0(ρ)vD(EX)
00 (s) + F1(ρ)vD(EX)

01 (s)(τ1 · τ2).
(3)

The radial dependence of the isoscalar (IS) and isovector (IV)
terms v

D(EX)
00(01) (s) is kept unchanged as that used for the original
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M3Y interaction [17]. The IS density dependence F0(ρ) was
determined [16] to reproduce the saturation of NM on the HF
level. The IV density dependence F1(ρ) was determined [11]
based on the isospin dependence of the nucleon OP given
by the BHF calculation of NM by Jeukenne, Lejeune, and
Mahaux (JLM) [47], and fine tuned by the folding model de-
scription of the charge exchange reaction to the isobar analog
states in medium-mass nuclei [23].

Using the exact expression of the RT given by the HvH
theorem, a compact method was suggested [11] to account
for the RT on the HF level by adding a correction term
to the CDM3Yn density dependence, F0(1)(ρ) → F0(1)(ρ) +
�F0(1)(ρ), used in the HF-type calculation of the single-
particle potential,

Uτ (ρ, k) =
∑
k′σ ′τ ′

〈kστ, k′σ ′τ ′|vD|kστ, k′σ ′τ ′〉

+ 〈kστ, k′σ ′τ ′|vEX|k′στ, kσ ′τ ′〉, (4)

where |kστ 〉 are the ordinary plane waves. Treating explicitly
the isospin dependence, the single-particle potential (4) is
expressed [11] in terms of the IS and IV parts as

Uτ (ρ, k) = U (HF)
0 (ρ, k) + U (RT)

0 (ρ, k) ± [
U (HF)

1 (ρ, k)

+U (RT)
1 (ρ, k)

]
= [F0(ρ) + �F0(ρ)]U (M3Y)

0 (ρ, k) ± [F1(ρ)

±�F1(ρ)]U (M3Y)
1 (ρ, k), (5)

where the “−” sign pertains to proton and the “+” sign to
neutron. U (M3Y)

0 and U (M3Y)
1 are, respectively, the IS and IV

parts of the single-particle potential given by the density inde-
pendent M3Y interaction:

U (M3Y)
0(1) (ρ, k) =

[
JD

0(1) +
∫

ĵ1(kF r) j0(kr)vEX
00(01)(r)d3r

]
,

where JD
0(1) =

∫
vD

00(01)(r)d3r,

ĵ1(x) = 3 j1(x)/x = 3(sin x − x cos x)/x3. (6)

Because the original M3Y interaction is momentum inde-
pendent, the momentum dependence of the single-particle
potential (5) is due to the exchange term of U (M3Y)

0(1) (ρ, k), with
the nucleon momentum k determined self-consistently as

k =
√

2mτ

h̄2 [Eτ (ρ, k) − Uτ (ρ, k)]. (7)

The extended HF approach (4)–(7) provides a consistent
description of both the single-particle potential for bound nu-
cleons, Uτ (ρ, k) with k < kFτ , and nucleon optical potential,
Uτ (ρ, k) with k > kFτ . Such an approach is the well-known
continuous approximation for the single-particle potential
[1,48], where the nucleon OP in NM is determined as the
mean-field potential felt by nucleon being scattered on NM
at energy E > 0. The momentum of scattered nucleon is de-
termined by the same relation (7) but with Eτ replaced by
the nucleon incident energy E . In this way, the energy and
momentum dependence of the nucleon OP are treated on the
same footing as illustrated in Fig. 2. Therefore, an important

FIG. 2. Single-particle potential in symmetric NM (7) deter-
mined at ρ ≈ ρ0 with and without the RT using the CDM3Y6
interaction, in comparison with the empirical data for the nucleon OP
taken from Refs. [49] (circles), [50] (squares), and [51] (triangles).

constraint for the present approach is that at E > 0 the en-
ergy dependence of the potential (5) should agree reasonably
with the observed energy dependence of the nucleon OP. The
single-particle potential (5) evaluated for symmetric NM at
the saturation density ρ0 using the CDM3Y6 interaction is
compared with the empirical data [49–51] for the nucleon OP
at E > 0 in Fig. 2. One can see that the inclusion of the RT
significantly improves the agreement with the empirical data
at energies E < 50 MeV. Moreover, the momentum depen-
dence of the nucleon OP in this low-energy region is found
nearly linear and due mainly to the Pauli exchange term in
Eq. (4).

It should be noted here that the Pauli exchange term in
Eq. (4) gives a good agreement of the energy (or momen-
tum) dependence of the nucleon OP with the empirical data
at low energies only. At higher energies (E > 50 MeV or
k > 2 fm−1) the agreement becomes worse, and the nucleon
OP (5) is more attractive compared to the empirical data
(see, e.g., Fig. 3 in Ref. [24]). Such a behavior of the nu-
cleon OP given by the HF calculation is well expected in
light of the effective G-matrix interaction derived from the
solution of Brueckner-Bethe-Goldstone equation [12], where
both the direct and exchange parts of the G matrix interaction
are energy dependent. This is also the reason why a slight
linear energy dependence was added to the CDM3Y6 inter-
action, in terms of g(E ) factor [16], for the double-folding
calculation of nucleus-nucleus OP at medium energies. Con-
sequently, the nucleon effective mass m∗ at high momenta
originates not only from the Pauli nonlocality, but also from
the higher-order NN correlations in nuclear medium. The
present work is focused, however, on the determination of m∗
at low energies (E < 50 MeV) and corresponding momenta
k < 2 fm−1 from the momentum dependence of the nucleon
OP, which is due entirely to the Pauli nonlocality as shown
above.
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FIG. 3. OM description of elastic n + 208Pb scattering data mea-
sured at 26, 30, and 40 MeV [58–60] given by the nonlocal and local
folded neutron OP’s obtained with the complex CDM3Y6 interaction
[27].

III. FOLDING MODEL OF THE NUCLEON
OPTICAL POTENTIAL

A. Nonlocal folded nucleon OP

The folding model of the nucleon OP [12,13,15] is known
to generate the first-order term of the microscopic nucleon
OP defined in Feshbach’s formalism of nuclear reactions [52].
The success of the folding approach in the OM description of
elastic nucleon-nucleus scattering at low and medium energies
confirms that the folded nucleon OP is the dominant part
of the microscopic nucleon OP. In a consistent mean-field
consideration, the central OP for elastic nucleon scattering on
a target nucleus A is evaluated using the same Eq. (4), but
with plane waves |k′σ ′τ ′〉 replaced by the single-particle wave
functions | j〉 of target nucleons:

U (k) =
∑
j∈A

[〈k, j|vD|k, j〉 + 〈k, j|vEX| j, k〉]. (8)

The antisymmetrization of the nucleon-nucleus system is
done in the HF manner, taking into account explicitly the
nucleon knock-on exchange. As a result, the exchange term
of the folded nucleon OP (8) becomes nonlocal in coordinate
space [12], and the OM equation for elastic nucleon scattering
at energy E becomes an integro-differential equation,[

− h̄2

2μ
∇2 + UD(R) + VC(R) + Vs.o.(R)(L · σ )

]

(R)

+
∫

K (ρ, R, r)
(r)d3r = E 
(R), (9)

where Vs.o.(R) is the spin-orbit potential and VC(R) is the
Coulomb potential used for elastic proton scattering only. The
scattering wave function 
(R) is obtained from the solution
of the OM equation (9) at each nucleon-nucleus distance R.
Based on the CDM3Yn interaction (3) with the RT included,
the mean-field part of the nucleon OP consists of the local
direct potential UD(R) and the exchange integral involving
a nonlocal density-dependent kernel K (ρ, R, r). Making ex-
plicit the isospin degrees of freedom, the mean-field part of the
nucleon OP can be expressed (in the Lane manner) in terms
of the IS and IV components as

UD(R) = U D
IS (R) ± U D

IV(R),

K (ρ, R, r) = KIS(ρ, R, r) ± KIV(ρ, R, r),
(10)

where the “−” sign pertains to proton OP and the “+” sign to
neutron OP. The IS and IV parts of the direct folded potential
and nonlocal exchange kernel (10) are given through the IS
and IV nucleon density matrices, respectively, as

U D
IS(IV)(R) =

∫
[ρn(r) ± ρp(r)]vD

00(01)(ρ, s)d3r,

KIS(IV)(ρ, R, r) = [ρn(R, r) ± ρp(R, r)]vEX
00(01)(ρ, s),

(11)

where s = |R − r|. The nucleon density matrix is determined
from the single-particle wave functions | j〉 = ϕ

(τ )
nl j of target

nucleons as

ρτ (R, r) =
∑
nl j

ϕ
(τ )∗
nl j (R)ϕ(τ )

nl j (r), with ρτ (r) ≡ ρτ (r, r). (12)

The direct potential UD(R) is readily obtained by folding
the nucleon densities with the direct part vD

00(01)(ρ, s) of the
density dependent CDM3Yn interaction (3), including the
contribution of the RT, as

U D
IS(IV)(R) =

∫
[ρn(r) ± ρp(r)][F0(1)(ρ(r)) ± �F0(1)(ρ(r))]

× vD
00(01)(s)d3r, (13)

where the ± signs are used in the same way as in Eqs. (5)
and (10), and the contribution of the RT to the IV part of
the direct potential U D

IV via �F1(ρ) is the same for both
the proton and neutron OP. The exact treatment of the
nonlocal exchange term is cumbersome and involves the ex-
plicit angular-momentum dependence of the exchange kernel.
Using the multipole decomposition of the radial Yukawa func-
tion of the exchange part of the CDM3Yn interaction (3),

vEX
00(01)(s) =

∑
λμ

4π

2λ + 1
X (λ)

00(01)(R, r)Y ∗
λμ(R̂)Yλμ(r̂), (14)

we obtain, after integrating out the angular dependence, the
radial equation for each partial wave

− h̄2

2μ

[
d2

dR2
− L(L + 1)

R2

]
χLJ (R) + [UD(R) + VC(R)

+ ALJVs.o.(R)]χLJ (R) +
∫ ∞

0
KLJ (ρ, R, r)χLJ (r)dr

= E χLJ (R), (15)

024607-4



PAULI NONLOCALITY AND THE NUCLEON EFFECTIVE … PHYSICAL REVIEW C 110, 024607 (2024)

where χLJ (R)/R is the radial part of nucleon scattering wave
function 
(R), ALJ is the s.o. coupling coefficient determined
as ALJ = L if J = L + 1/2, and ALJ = −L − 1 if J = L −
1/2. The nonlocal density-dependent exchange kernel is then
obtained at each partial wave as

KLJ (ρ, R, r) = [
K IS

LJ (ρ, R, r) ± K IV
LJ (ρ, R, r)

]
, (16)

K IS
LJ (ρ, R, r) = [F0(ρ(r)) + �F0(ρ(r))]

×
∑
nl j,λ

[
u(n)

nl j (R)u(n)
nl j (r) + u(p)

nl j (R)u(p)
nl j (r)

]

× (2 j + 1)X (λ)
00 (R, r)

(
L
0

l
0
λ

0

)2

, (17)

K IV
LJ (ρ, R, r) = [F1(ρ(r)) ± �F1(ρ(r))]

×
∑
nl j,λ

[
u(n)

nl j (R)u(n)
nl j (r) − u(p)

nl j (R)u(p)
nl j (r)

]

×(2 j + 1)X (λ)
01 (R, r)

(
L
0

l
0
λ

0

)2

. (18)

Here u(τ )
nl j (r)/r is the radial part of the single-particle wave

function ϕ
(τ )
nl j (r) of target nucleon. The “−” sign is used with

proton OP and the “+” sign with neutron OP, and the contribu-
tion of the RT to the IV part of the exchange kernel is also the
same for both proton and neutron OPs as found for the IV part
of the direct potential (13). The explicit representation of the
nucleon OP in terms of the IS and IV parts should be helpful
in revealing the contribution of valence neutrons to the total
OP. Furthermore, the charge exchange form factor (FF) of the
(p, n) reaction to the isobar analog state (IAS) is determined,
in the Lane isospin coupling scheme, entirely by the IV part of
nucleon OP [23,53]. Therefore, the present nonlocal folding
model can also be used to calculate the nonlocal charge ex-
change FF of the Fermi transition to IAS in the folding model
study of the (p, n)IAS reaction.

B. Local approximation for the folded nucleon OP

Although the nucleon OP is well established to be nonlocal
in the coordinate space due to the Pauli blocking (as discussed
above) and nonelastic channel coupling, the nucleon OP of
some local form is widely used in numerous OM analyses of
elastic nucleon-nucleus scattering. The obtained elastic scat-
tering wave function (dubbed the distorted wave) is then used
as a key input in different distorted-wave Born approximation
(DWBA) or coupled-channel calculations of direct nuclear
reactions. We briefly discuss here the validity of the local
folding model [13,14] of the nucleon OP, which has been
successfully used to study elastic nucleon scattering.

Applying a local WKB approximation [54,55] for the
change in the scattering wave function in the OM equation (9)
induced by the exchange of spatial coordinates of scattered
nucleon and target nucleon, we obtain


(r) = 
(R + s) � 
(R) exp[ik(E , R) · s], (19)

where the local momentum k(E , R) of scattered nucleon is
energy and radial dependent. Inserting Eq. (19) into Eq. (9),

the nonlocal exchange integral becomes localized and energy
(momentum) dependent. The local exchange term of the folded
nucleon OP can then be evaluated separately using the nonlo-
cal nucleon density matrix:

UEX(E , R, k) = U EX
IS (E , R, k) ± U EX

IV (E , R, k),

U EX
IS(IV)(E , R, k) =

∫
[ρn(R, r) ± ρp(R, r)]

× j0(k(E , R)s)vEX
00(01)(ρ, s)d3r

=
∫

[ρn(R, r) ± ρp(R, r)]

× [F0(1)(ρ(r)) ± �F0(1)(ρ(r))]

× j0(k(E , R)s)vEX
00(01)(s)d3r, (20)

where the ± signs are used in the same way as in Eq. (10).
The local momentum of scattered nucleon is determined self-
consistently from the real folded nucleon OP as

k2(E , R) = 2μ

h̄2 {E − Re[UD(R) + UEX(E , R, k)] − VC(R)}.
(21)

Thus, the momentum and energy dependences of the local
folded nucleon OP of finite nuclei are directly interrelated and
also determined on the same footing as in the NM limit (see
Fig. 2). The method to evaluate the direct (13) and exchange
(20) folded potentials is given in more detail in, e.g., Ref. [13].
Using a realistic local approximation for the nonlocal density
matrix in Eq. (20), the nuclear density ρ(r) obtained in any
structure model or directly deduced from electron scattering
data can be used in the folding model calculation of the local
nucleon OP.

C. Elastic nucleon scattering on 40,48Ca, 90Zr, and 208Pb targets

To validate the use of the local folded nucleon OP to
deduce the nucleon effective mass, we show here results of
the folding model analysis of low-energy elastic nucleon scat-
tering using both the nonlocal and local folded nucleon OPs.
Namely, the nonlocal and local folding models of the nucleon
OP discussed above are used to calculate the nucleon OP
for the OM study of elastic neutron and proton scattering on
40,48Ca, 90Zr, and 208Pb targets. Because the nonlocal folding
calculation (11)–(12) requires the explicit single-particle wave
functions of target nucleons, we have used the single-particle
wave functions given by the HF calculation of finite nuclei
based upon a complete basis of spherical Bessel functions
[56] and finite-range D1S Gogny interaction [57]. To obtain a
complex folded nucleon OP, it is necessary to have a realistic
complex parametrization of the density dependent CDM3Yn
interaction. For this purpose, the imaginary density depen-
dence of the CDM3Y6 interaction was determined using the
same density dependent functional F0(1)(ρ) as that used for the
real interaction (3), with the parameters adjusted to reproduce,
at each energy, the imaginary nucleon OP in NM given by
the JLM parametrization of the BHF results [47] on the HF
level [14]. The complex nonlocal and local folded OP’s were
then used as input for the OM calculation of elastic nucleon
scattering using the calculable R-matrix method [28,29]. In
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FIG. 4. The same as Fig. 3 but for elastic neutron scattering data
measured at 17 and 24 MeV [61–63] for 40,48Ca and 90Zr targets,
respectively.

the present OM calculation, both the nonlocal and local folded
OP’s are supplemented by the local Coulomb and spin-orbit
potentials taken from the global systematics CH89 of the
nucleon OP [50]. The reliability of the folded OP is best
probed in the OM analysis of elastic neutron scattering from
a heavy target at low energies, where the Coulomb interaction
is absent and the mean-field dynamics is well established.
For this purpose, elastic n + 208Pb scattering data measured
accurately at energies of 26, 30.4, and 40 MeV [58–60] turned
out to be a very good test ground. Given parameters of the
real CDM3Yn interaction fine-tuned by the HF description
of NM shown in Fig. 1, no renormalization of the real part
of both the nonlocal and local folded OP was allowed in the
present OM study to test its proximity to the real nucleon OP.
The imaginary folded OP based on the JLM parametrization
delivers a good OM description of elastic proton scattering,
but it gives a stronger absorption of the neutron OP, and an
overall renormalization of the imaginary part of both non-
local and local folded neutron OPs by a factor ≈0.8 was
found necessary for a good OM description of the considered
neutron scattering data. From the OM results obtained for
elastic n + 208Pb scattering shown in Fig. 3 one can see that
both the nonlocal and local folded OP deliver the same good
OM description of data over the whole angular range, which
validates the local approximation (20)–(21) for the exchange
term of the folded neutron OP. We note that, in the absence
of the Coulomb interaction, the (diffractive) oscillation of
elastic neutron scattering cross section at small angles can
be properly reproduced only with the inclusion of the RT
into the folding calculation [27]. A good accuracy of the
local approximation for the folded OP can also be seen in
the OM results obtained for elastic neutron scattering on the
medium-mass 40,48Ca and 90Zr targets shown in Fig. 4. The
elastic p + 208Pb scattering data measured at 30.4, 35, and

FIG. 5. The same as Fig. 3 but for elastic p + 208Pb scattering
data measured at 30, 35, and 45 MeV [64,65].

45 MeV [64,65] are compared in Fig. 5 with the OM results
given by the folded proton OP. Both the nonlocal and local
folded OP were found to give the same good OM description
of elastic p + 208Pb data at the forward and medium angles,
while the data points at backward angles are better reproduced
by the nonlocal folded OP, especially at 45 MeV. We note that
the OM results shown in Figs. 5 and 6 were obtained without
renormalizing the (complex) strength of the folded proton OP.
Like the OM result obtained for elastic p + 208Pb scattering at

FIG. 6. The same as Fig. 3 but for elastic p + 40Ca scattering data
measured at 30, 35, and 45 MeV [66].
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TABLE I. Neutron and proton effective masses (25) at the average nuclear density ρ̄ ≈ ρ0, deduced from the local folded nucleon OP
of 48Ca, 90Zr, and 208Pb targets, at distances 0 � R � 3 fm.

Nucleus 48Ca 90Zr 208Pb

ρ̄ 0.159 ± 0.003 0.160 ± 0.002 0.160 ± 0.001
δ̄ 0.0966 ± 0.0069 0.0691 ± 0.0021 0.1853 ± 0.0060
m∗

n/m 0.7490 ± 0.0015 0.7436 ± 0.0003 0.7553 ± 0.0003
m∗

p/m 0.7329 ± 0.0007 0.7322 ± 0.0001 0.7241 ± 0.0003
m∗

n−p/δ̄ 0.167 ± 0.035 0.165 ± 0.011 0.168 ± 0.009

E = 45 MeV, one can also see a more pronounced difference
given by the nonlocal folded proton OP at medium and large
scattering angles from the results obtained for elastic p + 40Ca
scattering at energies E � 30 MeV shown in Fig. 6, which
indicates the need of taking into account exactly the Pauli non-
locality of the folded proton OP at these medium energies.

IV. NUCLEON EFFECTIVE MASS

As discussed in Sec. II, the momentum dependence of the
single-particle potential in NM at low momenta is determined
mainly by the exchange term which results on a nonlocal
single-nucleon potential in the coordinate space. At positive
energy (E > 0) the single-nucleon potential (4)–(5) can be
treated as the nucleon OP in NM, with the associated nucleon
effective mass m∗

τ determined [1,35] as

m∗
τ (ρ, δ, k)

m
=

[
1 + m

h̄2k

∂Uτ (ρ, δ, k)

∂k

]−1

, with τ = n, p

(22)
where m is the free nucleon mass. In general, the nucleon
effective mass arises from both the momentum- and energy
dependence of the single-particle potential [1], known as the k
and E effective masses, which characterize the spacetime non-
locality. Within the time independent HF formalism [11], the
total nucleon effective mass is determined by the same relation
(22), and it is associated with the spatial nonlocality of the
nucleon mean-field potential. At the Fermi momentum (k →
kFτ ), the nucleon effective mass (22) is obtained naturally
from the Fermi energy (1) by the Hugenholtz–van Hove the-
orem [25]. The knowledge about m∗

τ at the saturation density
ρ0 and different neutron-proton asymmetries δ = (ρn − ρp)/ρ
is essential for the determination of the nuclear symmetry
energy Esym and its slope parameter L, the two key ingredients
of the EOS of neutron rich NM [39,40].

The neutron and proton effective masses (22) obtained
from the single-particle potential (4)–(5) in asymmetric NM at
the saturation density ρ0 with k → kFτ are shown in Fig. 7 as
dashed and dotted lines, respectively. Although the m∗

τ values
are still poorly known at high NM densities and/or large δ

values, the empirical nucleon effective mass in symmetric
NM (δ = 0) at the saturation density ρ0 is well established
to be around m∗/m ≈ 0.73 [35]. Our extended HF calculation
of NM using the CDM3Yn interaction gives m∗/m ≈ 0.737
at ρ ≈ ρ0 and δ = 0 (see Fig. 9), in a good agreement with
the empirical data. The isospin dependence of the nucleon
effective mass is governed by the neutron-proton effective

mass splitting

m∗
n−p = (m∗

n − m∗
p)/m, (23)

which is associated directly with the nuclear symmetry energy
and its slope parameter. The knowledge of m∗

n−p is also of
importance for the determination of the neutron/proton ra-
tio during stellar evolution or cooling of protoneutron stars
[36,38,39]. Depending on the isospin dependence of the in-
medium NN interaction, one obtains very different results for
the neutron-proton effective mass splitting. A survey of dif-
ferent mean-field studies in Ref. [39] shows that m∗

n−p values
depend linearly on the neutron-proton asymmetry parameter
δ, and are ranging widely from negative to positive values, up
to m∗

n−p ≈ 0.637 δ. An analysis of the empirical constraints
for the density dependence of nuclear symmetry energy [36]
from both the nuclear physics experiments and astrophysical
observations has led to the empirical constraint m∗

n−p(ρ0, δ) ≈
(0.27 ± 0.25)δ. Our extended HF calculation of asymmet-
ric NM using the CDM3Y6 interaction gives m∗

n−p(ρ0, δ) ≈
(0.20 ± 0.02)δ at the Fermi momentum, which is well inside
the empirical boundary.

FIG. 7. Neutron- and proton effective masses (22) given by the
extended HF calculation of asymmetric NM using the CDM3Y6 in-
teraction (dashed and dotted lines, respectively) at ρ = ρ0, k = kFτ ,
and different neutron-proton asymmetries δ. The symbols are those
obtained from the real folded nucleon OP for finite nuclei at ρ ≈ ρ0,
k � kFτ (see Table I).
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FIG. 8. (a) In-medium momentum (21) of the scattered neutron
and the Fermi momentum kFn extracted from the neutron ground-
state density of 208Pb. (b) The radial dependence of the neutron
effective mass (24) obtained from the real folded OP at energies of 1
to 45 MeV for 208Pb target.

For many years, the nucleon effective mass in finite nuclei
has been a focus of different nonrelativistic and relativistic
nuclear structure studies (see, e.g., Refs. [67–70] ) which
provided accurate estimates of the m∗

τ values for the single-
particle states of bound nucleons (with k � kFτ ). Although
the neutron and proton effective masses and the corresponding
single-particle energies and spectroscopic factors are well de-
scribed by the structure studies, it remains difficult to deduce
therefrom an explicit isospin dependence of m∗

τ or the neutron-
proton effective mass splitting (23). The method often used
so far for this purpose is to deduce the isospin dependence
of the nucleon effective mass from the isospin dependence of
the phenomenological nucleon OP given by the best OM fit
to elastic nucleon scattering data at different energies [37]. In
the present work, we aim to determine the nucleon effective
mass from the semimicroscopic nucleon OP predicted by the
local folding model presented in Sec. III B. Given a good OM
description of elastic nucleon scattering at low energies by
the local folded nucleon OP shown Sec. III C, it is reasonable
to determine the effective mass of nucleon scattered by the

mean field of target from the momentum dependence of the
real folded OP as

m∗
τ (E , R, k)

m
=

{
1 + m

h̄2k

[
∂Vτ (E , R, k)

∂k

]}−1

, (24)

where Vτ (E , R, k) = Re
[
U (τ )

D (R) + U (τ )
EX (E , R, k)

]
. (25)

Here U (τ )
D(EX) are the direct and exchange parts of the local

neutron (or proton) folded OP determined from Eqs. (13) and
(20), respectively. The energy or momentum dependence of
the folded nucleon OP (25) is embedded in the exchange term
only, which was shown in Sec. III B to result from the Pauli
nonlocality of the folded nucleon OP. The in-medium mo-
mentum k of scattered nucleon is determined self-consistently
from the real folded nucleon OP by Eq. (21).

It is obvious from Eq. (21) that the momentum k of
scattered nucleon depends explicitly on the nucleon-nucleus
distance R, and the nucleon effective mass (24) is, therefore,
also radial dependent. The in-medium momentum of scattered
neutron determined from the real folded n + 208Pb OP at en-
ergies of E = 1 ≈ 45 MeV is shown in panel (a) of Fig. 8,
and one can see that at each energy the neutron momentum
k changes gradually from its maximum of about 1.6–2 fm−1

in the center to 0.2–1.5 fm−1 at the surface, lying above the
corresponding Fermi momentum. Over the same radial range,
the neutron effective mass m∗

n/m is changing from about
0.75–0.78 to unity at the surface. Such a radial dependence
of m∗ is similar to that found in the nuclear structure studies
[68–70]. However, the latter is usually enhanced to above
unity at the surface for the bound single-particle states lying
close to the Fermi level.

From the radial dependence of the neutron effective mass
and the neutron and total ground-state densities of 208Pb
shown in panel (a) of Fig. 9, it is straightforward to infer the
density dependence of the effective mass of neutron scattered
off 208Pb target at different energies, over the density range
0 � ρ � ρ0. One can see in panel (a) of Fig. 9 that the av-
erage total density in the center of 208Pb target is ρ̄ ≈ ρ0,
and the neutron- and proton effective masses determined at
distances 0 � R � 3 fm [shown in panels (b) of Figs. 9 and
10] can represent, therefore, the corresponding m∗

τ /m values
in asymmetric NM at ρ ≈ ρ0, k � kFτ and neutron-proton
asymmetry δ̄ = (ρ̄n − ρ̄p)/ρ̄ ≈ 0.185. Because of the target
valence neutrons, the deduced δ̄ value in the target center is
smaller than the total difference in neutron- and proton num-
bers (N − Z )/A. Since our local folding model (13) and (20)
predicts the real nucleon OP at E > 0 or k � kFτ , approach-
ing the Fermi momentum from above, we have computed
the real folded nucleon OP for 48Ca, 90Zr, and 208Pb tar-
gets at E = 0.05 MeV (i.e., 50 keV above the Fermi level),
and deduced the neutron and proton effective masses using
Eq. (24). The obtained results are presented in Table I and
shown in Figs. 7 as rhombuses and circles. One can see that
the m∗

τ /m values obtained at ρ̄ ≈ ρ0 and k � kFτ for these
targets follow approximately the trend given by the extended
HF calculation of the single-particle potential in NM. It
is interesting that the neutron-proton effective mass splitting
(23) obtained from the m∗

τ /m values given in Table I also
depends linearly on the asymmetry parameter, m∗

n−p(ρ0, δ) ≈

024607-8
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FIG. 9. (a) Neutron and total ground-state densities of 208Pb
given by the HF calculation [56] using the finite-range D1S Gogny
interaction [57]. (b) The radial shape of the real (local) folded
n + 208Pb OP obtained at energies of 1 to 45 MeV.

(0.167 ± 0.018)δ, which is within the empirical boundary
of m∗

n−p(ρ0, δ) ≈ (0.27 ± 0.25)δ deduced from the terrestrial
nuclear physics experiments and astrophysical observations
[36]. In neutron-rich NM, nucleons at ρ0 are not bound by
the in-medium NN interaction (see, e.g., Fig 1 in Ref. [11]),
and the results obtained above for m∗

τ at E > 0 should be
appropriate for nucleons in the outer core of a neutron star
which are bound by gravitation only. We note further that the
m∗

n−p value estimated from the folded nucleon OP of finite
nuclei is slightly lower than that given by nucleon OP in NM
using the same interaction, m∗

n−p ≈ (0.20 ± 0.02)δ, and the
value m∗

n−p ≈ (0.41 ± 0.15)δ estimated from the phenomeno-
logical nucleon OP [38], based on the extensive OM analysis
of elastic nucleon scattering.

We note finally that the nucleon effective mass is given
entirely by the momentum dependence of the exchange term
of the folded nucleon OP, so that the nucleon effective masses
presented in Table I and shown in Fig. 7 originated solely from
the spacial Pauli nonlocality of nucleon OP at low energies.
We have considered the energy region 0 < E < 50 MeV, and
found that the nucleon effective mass (25) depends weakly
on the energy. For example, m∗

n/m ≈ 0.7553 + 0.0004E and

FIG. 10. The same as Fig. 8 but for the in-medium momentum
and effective mass of a scattered proton.

m∗
p/m ≈ 0.7241 + 0.0005E for 208Pb target, and this result

agrees fairly with the empirical energy dependence of about
0.0007E established for the isoscalar k effective mass of nu-
cleons lying above the Fermi level [35].

V. SUMMARY

The generalized folding model of the nonlocal nucleon OP,
with the exchange potential calculated exactly in the HF man-
ner and rearrangement term properly included, has been used
for the OM analysis of elastic neutron and proton scattering
on 40,48Ca, 90Zr, and 208Pb targets at different energies, where
the WKB local approximation for the exchange term of the
nonlocal folded nucleon OP is validated by a consistently
good OM description of the considered elastic data.

Given the accurate local approximation for the nonlocal
folded nucleon OP, a compact method is proposed to de-
termine the nucleon effective mass at low momenta from
the in-medium momentum dependence of the local folded
nucleon OP, which originates mainly from the Pauli nonlo-
cality. The results obtained for the effective mass of nucleon
being scattered by the target mean-field potential at 0 � E �
45 MeV and kFτ � k � 2 fm−1 seem to follow closely the
isospin dependence of m∗

τ predicted by the extended HF
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calculation of single-particle potential in asymmetric NM,
using the same density dependent CDM3Y6 interaction.

The neutron-proton effective mass splitting (23) given by
the m∗

τ /m values obtained from the real folded nucleon OP of
finite nuclei at low energies was found to depend also linearly
on the asymmetry parameter δ. At positive energies lying
slightly above the Fermi level, the m∗

n−p value determined
at the center of finite nuclei (with the average density ρ̄ ≈
ρ0) is slightly smaller than that obtained from the extended
HF calculation of the single-particle potential of nucleons in
asymmetric NM at ρ0, where the Pauli exchange has been
shown as the main origin of nucleon effective mass.

Because nucleons at density ρ ≈ ρ0 in the outer core of
neutron star are mainly bound by gravitation, not by the

(in-medium) density dependent NN interaction, the m∗
τ values

obtained in this work from the folded nucleon OP of finite
nuclei with neutron excess could be of complementary interest
for the mean-field studies of the EOS of neutron star matter.
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