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Investigation of the determination of nuclear deformation using high-energy heavy-ion scattering
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Background: Nuclear deformation provides a crucial characteristic of nuclear structure. Conventionally, the
quadrupole deformation length of a nucleus, δ2, has often been determined based on a macroscopic model
through a deformed nuclear potential with the deformation length δ

(pot)
2 , which is determined to reproduce the

nuclear scattering data. This approach assumes δ2 = δ
(pot)
2 although there is no theoretical foundation.

Purpose: We clarify the relationship between δ2 and δ
(pot)
2 for high-energy heavy-ion scattering systematically

to evaluate the validity of the conventional approach to determine the nuclear deformation.
Method: The deformation lengths for the 12C inelastic scattering by 12C, 16O, 40Ca, and 208Pb targets at E/A =
50–400 MeV are examined. First, we perform microscopic coupled-channel (CC) calculations to relate δ2 of
the deformed density into the inelastic scattering cross section. Second, we use the deformed potential model to
determine δ

(pot)
2 so as to reproduce the microscopic CC result. We then compare δ

(pot)
2 with δ2.

Results: We find that δ
(pot)
2 is about 20–40% smaller than presumed δ2, showing strong energy and target

dependence. Further analysis, which considers higher-order deformation effects beyond the derivative model,
reveals that δ

(pot)
2 is still about 15–35% smaller than δ2.

Conclusion: Our results suggest that one needs to be careful when the deformed potential model for the
high-energy heavy-ion scattering is used to extract the nuclear deformation. The conventional approach may
underestimate the deformation length δ2 systematically.

DOI: 10.1103/PhysRevC.110.024604

I. INTRODUCTION

The determination of nuclear deformation is one of the
key issues in nuclear physics. As it significantly influences
the nuclear structure and reaction dynamics [1,2], the nu-
clear deformation has extensively been investigated from
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various points of views [3–17]. The nuclear surface of an
axially symmetric deformed nucleus is often represented as
R(θ ′) = R0[1 + ∑

λ βλYλ0(θ ′)], where R0 and βλ denote the
radius parameter and the deformation parameter with multi-
polarity λ, respectively. Determining the deformation length
δλ = R0βλ is important as it provides a crucial indicator of
nuclear deformation. The deformation length is also an es-
sential input to the collective model, which offers a simple
and powerful description of atomic nuclei, allowing us to
predict the electromagnetic properties as well as the inelastic
scattering cross sections with the help of the distorted wave
Born approximation (DWBA).
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In the present work, we focus on the most basic nu-
clear deformation, quadrupole deformation. The quadrupole
deformation length δ2 of a nucleus has often been deduced
from inelastic scattering cross sections using the conven-
tional approach such as coupled-channel (CC) formalism and
DWBA. These conventional approaches are based on the
collective model, and are often referred to as the deformed
potential (DP) model [5]. In the DP model, the deformation
length δ

(pot)
2 of the nuclear optical potential is determined to

reproduce the experimental cross sections. In order to extract
δ2 in the DP model, the relation

δ2 = δ
(pot)
2 (1)

is often assumed. However, this assumption has no basis and
is questionable because δ

(pot)
2 includes the information on both

the projectile and target nuclei, and also the nuclear force.
Based on this unestablished assumption (1), δ2 has been ex-
perimentally determined with the DP model [18–22].

Here, we take a microscopic approach for extracting δ2.
Over the past five decades, a microscopic CC calculation for
heavy-ion scattering has been developed significantly [2,23]
and has been widely used to investigate nuclear structure and
reactions [2,5,24–33]. These calculations are based on the
double-folding model, where the nuclear optical potential is
constructed by folding the effective nucleon-nucleon interac-
tion with the projectile and target densities. When a coupling
potential is required, a transition density, which reflects the
deformation effect, is incorporated into the folding procedure.
Henceforward, we call this microscopic framework the de-
formed density (DD) model to distinguish it from the DP
model. The DD model enables us to extract δ2 directly, not
via δ

(pot)
2 . Recently, the microscopic CC calculation with a

complex G-matrix interaction has been successfully applied
to heavy-ion scattering [34–36]. The power of the complex
G-matrix interaction is also shown not only in reproducing
the experimental data but also in predicting interesting nuclear
reaction phenomena [30,32,37,38].

In this study, we aim to elucidate the relationship between
δ2 and δ

(pot)
2 using the DD and DP models in a wide range

of incident energies and target nuclei. The earlier studies
investigated this relationship mainly for the lower-energy re-
gion (E/A < 100 MeV), and showed that the use of the DP
model significantly underestimates the nuclear deformation
length [5,39]. Extending these analyses to the high-energy
region is challenging due to the lack of experimental data
on high-energy heavy-ion scattering. As mentioned, recent
development of the folding model approaches allows us to
make a reliable prediction of high-energy heavy-ion scatter-
ing. Therefore, it is worthwhile to proceed with a theoretical
analysis in the high-energy region. It should be noted that
we can discuss deformation effects more straightforwardly
as the reaction mechanism becomes simpler at higher in-
cident energies. In the present study, we consider the 12C
inelastic scattering by 12C, 16O, 40Ca, and 208Pb targets at
E/A = 50–400 MeV.

This paper is organized as follows. In Sec. II, we explain
how to relate δ2 with δ

(pot)
2 using the DD and DP models. This

section is further divided into three subsections. In Sec. II A,
we present the theoretical framework to obtain the micro-

scopic potential, which is used in both the DD and DP models.
The DD and DP models are detailed in Secs. II B and II C,
respectively. In Sec. III, we first show the validity of the
present models for the elastic scattering. Next, we calculate
the angular-integrated inelastic scattering cross sections using
the DD model. The cross sections are used as reference cal-
culations to extract δ

(pot)
2 in the DP model. Then, δ2 and δ

(pot)
2

are compared systematically. Lastly, the conclusion is given
in Sec. IV.

II. FORMALISM

We calculate the inelastic scattering cross sections for the
2+

1 state of 12C, denoted as σ (2+
1 ), using the CC formalism.

In the CC calculation, both diagonal and coupling potentials
are required. They are obtained with two models: the de-
formed density (DD) model and the deformed potential (DP)
model. In the DD model, we first assume a deformed den-
sity characterized by δ2. Then, we can construct the diagonal
and coupling potentials microscopically through the folding
procedure. Once these potentials are determined, the σ (2+

1 )
can be calculated in the standard CC framework. The result of
the DD model is used as a reference calculation in this paper.
On the other hand, in the DP model, we derive the coupling
potential by assuming a deformed potential characterized by
δ

(pot)
2 . The value of δ

(pot)
2 is determined so as to reproduce

the σ (2+
1 ) calculated with the DD model. Finally, we sys-

tematically compare δ
(pot)
2 with δ2 in high-energy heavy-ion

scattering and elucidate the relationship between them.

A. Microscopic potentials

We briefly summarize the construction of the microscopic
potential used in this paper. The detailed formulation is de-
scribed in Refs. [26,29,38,40].

We consider the scattering of a deformed projectile (P)
and a spherical target (T). The diagonal and coupling poten-
tials between P and T are obtained by folding the effective
nucleon-nucleon interaction vNN with the projectile and target
densities:

U (λ)
I ′I (R) =

∫
ρ

(λ)
I ′I (r1)ρT(r2)vNN (s, ρ)

× [Yλ(r̂1) ⊗ Yλ(R̂)]00dr1dr2dR̂, (2)

where R is the coordinate between P and T, r1 (r2) is the
coordinate of the interacting nucleon from the center of mass
of P (T), and s = R − r1 + r2. The subscripts I and I ′ are the
initial and final spins of P, respectively, λ denotes the multi-
polarity, and YLM (r̂) = iLYLM (r̂). The density-dependent part
ρ in vNN is taken based on the frozen density approximation
[37,41]. The validity of this approximation is discussed in
Refs. [41–43]. We define the transition density as

ρI ′m′,Im(r) =
√

4π
∑
λμ

(Imλμ|I ′m′) ρ
(λ)
I ′I (r)Y ∗

λμ(r̂), (3)

where ρ
(λ)
I ′I is the radial part of the transition density with rank

λ, (Imλμ|I ′m′) is the Clebsch-Gordan coefficient, and m, m′,
and μ denote the z components of I , I ′, and λ, respectively.
In Eq. (2), T is assumed to be inert, that is, ρT(r2) is the
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ground state density ρ
(λ=0)
00 (r2) in the definition (3). Equa-

tion (2) is the so-called direct part, and the exchange part is
similarly obtained in the folding procedure as prescribed in
Refs. [5,29,38]. The Coulomb potential is also constructed
in the folding model, where the Coulomb nucleon-nucleon
interaction is folded with the proton densities.

In the actual calculation, we adopt the complex G-
matrix interaction MPa [44] for the effective nucleon-nucleon
interaction in Eq. (2). The MPa interaction is derived
from the realistic nucleon-nucleon interaction [45,46] in the
G-matrix calculation. The MPa interaction satisfies the sat-
uration property in the infinite nuclear matter by applying
the three-nucleon force. Since the complex G matrix is
constructed for infinite nuclear matter, the strength of its
imaginary part is often adjusted for the finite nucleus be-
cause their level densities are quite different. Therefore, we
apply the incident-energy-dependent renormalization factor,
NW = 0.5 + (E [MeV]/A)/(1000 [MeV]) [47], to the imagi-
nary part. We note that no additional parameter is introduced.
Consequently, once the transition densities are determined, the
elastic and inelastic scattering cross sections can be uniquely
calculated from the double-folding potentials. Relativistic
kinematics is used.

B. Deformed density model

For the reference calculations of inelastic scattering cross
sections, we employ the deformed density (DD) model. To
make the discussion clearer, we consider the deformed Fermi-
type (DF) density in the first-order approximation [5]:

ρ
(λ=0)
in (r′) =

√
4πρDF(r′), (4)

ρ
(λ=2)
in (r′) = −δ2

dρDF(r′)
dr′ (5)

with

ρDF(r′) = ρ0

1 + exp
( r′−R0

a

) , (6)

where ρ0 is the normalization constant, R0 and a are the radius
and the diffuseness parameters, respectively. According to
Ref. [48], the intrinsic density ρ

(λ)
in can be transformed into

ρ
(λ)
I ′I in Eq. (2) as

ρ
(λ)
I ′I (r) = iλ√

4π
ρ

(λ)
in (r)(I ′0λ0|I0). (7)

Using the transition densities defined above, we calculate the
inelastic scattering cross section, which is used as a reference
for the following analysis.

C. Deformed potential model

Another way of calculating inelastic scattering cross sec-
tions is based on the deformed potential (DP) model, which
has been conventionally used in the analysis of experiments.
The deformed potential UDP(R, θ ′) can be expanded as

UDP(R, θ ′) =
∑

λ

U (λ)
DP (R)Yλ0(θ ′), (8)

where U (λ)
DP is the radial part of the deformed potential, θ ′

is the direction of the target nucleus in the intrinsic frame.
For simplicity, we consider the first-order approximation of
UDP as

U (λ=0)
DP (R) =

√
4πU (R), (9)

U (λ=2)
DP (R) = −δ

(pot)
2

dU (R)

dR
, (10)

where δ
(pot)
2 is the potential deformation length, and U is the

optical potential, for which the Woods-Saxon form is often
taken. In the present analysis, we apply the microscopic opti-
cal potential obtained in Eq. (2) to U , i.e.,

U (R) = U (λ=0)
00 (R). (11)

This procedure ensures a fair comparison between the DD
and DP models by maintaining the common potential for the
entrance channels in both models. For simplicity, the values of
δ

(pot)
2 for the real and imaginary parts are taken to be identical.

Furthermore, the Coulomb coupling potential is taken to be
the same as in the DD model.

III. RESULTS

We compare δ2 with δ
(pot)
2 for the 12C inelastic scattering by

the 12C, 16O, 40Ca, and 208Pb targets at E/A = 50–400 MeV.
We search for the optimal δ

(pot)
2 so as to reproduce the inelas-

tic scattering cross sections for the 2+
1 state of 12C, σ (2+

1 ),
obtained in the DD model with δ2. For the deformed nucleus
12C, R0 = 2.1545 fm, a = 0.425 fm, and |δ2| = 1.564 fm are
employed as used in Ref. [5], which reproduce the experimen-
tal B(E2) value [49]. We take δ2 < 0 as 12C has an oblate
shape. The ground-state densities of 16O, 40Ca, and 208Pb
are obtained from the Hartree-Fock calculations available in
Ref. [50]. The nuclear excitation of doubly-magic nuclei is
neglected as its effect is expected to be small. For the 12C +
12C system, the symmetrization of identical particles is made
but only a single (target or projectile) excitation is considered.

First, we show the validity of microscopic potentials by
comparing the DD model with available experimental data
for elastic scattering cross sections. Figure 1 illustrates the
angular distributions of the elastic scattering cross sections for
the 12C + 12C system at E/A = 85–200 MeV. The solid curves
represent the microscopic CC calculations and reproduce the
experimental data. 1 Similarly, in Fig. 2, the elastic scattering
cross sections for 12C + 16O at E/A = 94 MeV are also
reproduced well, especially in the forward angles. We see the
reliability of the diagonal potential U (λ=0)

00 used in both the DD
and DP models and proceed with the present analysis.

Next, we calculate the angular-integrated inelastic scat-
tering cross sections σ (2+

1 ) as reference calculations using
the DD model. Figure 3 shows the σ (2+

1 ) for 12C scattering

1The MPa G-matrix interaction used in this paper is slightly mod-
ified from that in Ref. [44] by some improvements for numerical
computations and minor error corrections in the G-matrix code.
Therefore, the present results are different from those in Ref. [43],
especially at E/A = 200 MeV.
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FIG. 1. Angular distributions of elastic scattering for the 12C +
12C system at E/A = 85–200 MeV. The experimental data are taken
from Refs. [35,36,51–53].

by the 12C, 16O, 40Ca, and 208Pb targets at E/A = 50–400
MeV. The filled circles, open triangles, open squares, and
open circles correspond to the reactions by 12C, 16O, 40Ca,
and 208Pb targets, respectively. The σ (2+

1 ) rapidly decreases
as the incident energy increases up to E/A � 200 MeV. We
find that, in the low-energy region (E/A � 100 MeV), the
real part of the coupling potentials plays a decisive role in
determining the σ (2+

1 ) because the imaginary part is relatively
small. The strength of the real part becomes weaker as the
energy increases; it is noteworthy that the real part of the diag-
onal potential shows the repulsive nature at E/A ∼ 200 MeV.
Beyond this energy (E/A � 250 MeV), the σ (2+

1 ) exhibits a
weaker dependence on the incident energy. In the high-energy
region, the imaginary part of the coupling potentials plays a
major role in the σ (2+

1 ) values. We find that the contribution
of the imaginary part to σ (2+

1 ) is almost constant in the energy
range of our analysis (50 � E/A � 400 MeV). It should be
noted that the σ (2+

1 ) for 12C + 12C scattering is relatively
large although the target mass is the smallest. This is because
the symmetrization procedure involving the single excitation
is taken into account for this system. These theoretical results
are used as reference calculations for determining δ

(pot)
2 in the

DP model.

FIG. 2. Angular distributions of elastic scattering for the 12C +
16O system at E/A = 94 MeV. The experimental data are taken from
Ref. [54].

For 12C + 12C inelastic scattering at E/A ∼ 100 MeV,
several experimental data are available. At E/A = 121.1
MeV, our calculation of σtheo(2+

1 ) = 27 mb underestimates
the observed data of σexp(2+

1 ) = 43 ± 3 mb [55,56]. Con-
versely, for the angular distribution dσ (2+

1 )/d	 at E/A =
100 MeV, our result tends to overestimate the experimental
data as was also shown in Refs. [35,36], which employed
a similar reaction model. This discrepancy highlights the
need for further investigations. Measurements of inelastic
cross sections for heavy-ion scattering could provide cru-
cial insights for the quantitative refinement of microscopic
potentials.

FIG. 3. Angular-integrated inelastic scattering cross sections for
the 2+

1 state of the 12C nucleus [σ (2+
1 )] by the 12C (filled circles),

16O (open triangles), 40Ca (open squares), and 208Pb (open circles)
targets at incident energies E/A = 50–400 MeV. These results are
obtained from the DD model and used as reference calculations for
determining δ

(pot)
2 in the DP model.
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FIG. 4. Deformation length of the nuclear potential δ
(pot)
2 derived

from 12C inelastic scattering cross sections at E/A = 50–400 MeV,
divided by δ2 = −1.564 fm. The filled circles, open triangles, open
squares, and open circles represent the results for the scattering by
12C, 16O, 40Ca, and 208Pb targets, respectively.

Figure 4 illustrates the energy dependence of δ
(pot)
2 derived

from the σ (2+
1 ) calculated with the DD model. Note that the

values of δ
(pot)
2 are divided by δ2. The filled circles, open

triangles, open squares, and open circles represent the results
for the scattering of 12C by 12C, 16O, 40Ca, and 208Pb targets,
respectively. Our primary finding is that δ

(pot)
2 gets overall un-

derestimation, which is approximately 20–40% smaller than
δ2, and shows strong incident energy and target dependence.
The δ

(pot)
2 values become smaller as the target mass increases.

We confirmed that this behavior is kept even when the fold-
ing potential for the elastic channel [U (λ=0)

00 in Eq. (11)] is
replaced with a phenomenological Woods-Saxon potential
that is determined to reproduce the elastic scattering cross
section calculated with the DD model. This significant devi-
ation casts doubt on the determination of δ2 with δ

(pot)
2 from

the high-energy heavy-ion scattering. A systematic underes-
timation of the quadrupole deformation length is expected in
studies based on the DP model that assumes δ2 = δ

(pot)
2 .

Lastly, we investigate the higher-order effect of δ
(pot)
2 on

the form factor U (λ=2)
DP (R) beyond the derivative form given

in Eq. (10), because the extracted δ
(pot)
2 is relatively large

(|δ(pot)
2 | ∼ 1.1 fm). In considering the folding potential, we

modify the optical potential as

UDP2(R, θ ′) = U
(
R − δ

(pot)
2 Y20(θ ′)

)
, (12)

where U is the arbitrary optical potential [Eq. (11)], and
the subscript “DP2” denotes the deformed potential 2 model,
which is distinguished from the DP (derivative) model. This
method is commonly used, for example, in FRESCO [57]. Fol-
lowing Eq. (16) of Ref. [58], we further define the form factor
in the DP2 model

U (λ=2)
DP2 (R) = 4π

∫ 1

0
UDP2(R, θ ′)Y20(θ ′) d (cos θ ′). (13)

FIG. 5. Same as Fig. 4 but δ
(pot)
2 is extracted from the DP2 model.

In the present analysis, we assume the monopole part as
U (λ=0)

DP2 (R) = √
4πU (R) to maintain the consistency of the

DD and DP models. Note that Eq. (13) reduces to Eq. (10)
when |δ(pot)

2 | is small. Figure 5 shows δ
(pot)
2 extracted using the

DP2 model, where the values of δ
(pot)
2 are divided by δ2 as in

Fig. 4. The overall trend is the same as Fig. 4 but the ratios
are increased by 6–9% from the DP model. This discrepancy
arises only from U (λ=2)

DP2 , whose peak position slightly shifts
inward for larger |δ(pot)

2 | compared to U (λ=2)
DP . This behavior

results in smaller σ (2+
1 ) for the same value of |δ(pot)

2 |, leading
to the extraction of larger |δ(pot)

2 | in the DP2 model. However,
the extracted δ

(pot)
2 remains 15–35% smaller than δ2, indicating

significant underestimation even in the DP2 model.

IV. CONCLUSION

We have investigated the relation between the quadrupole
deformation lengths of the nuclear density and potential (δ2

and δ
(pot)
2 ) for the 12C inelastic scattering by the 12C, 16O,

40Ca, and 208Pb targets at E/A = 50–400 MeV. For this anal-
ysis, we employ two models: the deformed density (DD)
model and the deformed potential (DP) model. In the DD
model, the coupling potential is microscopically constructed
from the transition density based on the deformed density
characterized by δ2. In the DP model, the coupling potential
is derived based on the deformed potential characterized by
δ

(pot)
2 , which is determined to reproduce the inelastic scat-

tering cross section calculated with the DD model. We find
that δ

(pot)
2 shows overall underestimation of δ2 by 20–40%,

having strong incident energy and target dependence. Further
analysis using the DP2 model, which considers higher-order
deformation effects beyond the DP (derivative) model, reveals
that δ

(pot)
2 is still about 15–35% smaller than δ2. These results

clearly indicate that the assumption δ2 = δ
(pot)
2 is too naive

for the determination of the nuclear deformation using the
high-energy heavy-ion scattering in the DP model.
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