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Bayesian uncertainty quantification on nuclear level-density data
and their impact on (p, γ ) reactions of astrophysical interest
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The p process nucleosynthesis is responsible for the synthesis of 35 neutron-deficient nuclei from 35Se to
196Hg. An important input that can affect the modeling of this process is the nuclear level density at the relevant
excitation energies of the nuclei involved in the reaction network. The OSLO method has been extensively used
for the measurement of level densities in excitation energies of several MeV. In this work, Bayesian optimization
has been used in order to estimate the 95% credible intervals for the parameters of two level-density models
optimized on the OSLO data. These uncertainties are then propagated on the cross sections of (p, γ ) reactions
leading to the compound nuclei 105,106Pd and 105,106Cd inside the astrophysically relevant energy range. Imposing
constraints in this region of the isotopic chart is important for network calculations involving the nearby p nuclei
102Pd and 106Cd. We discuss the reduction of the range of cross sections due to the uncertainties arising from
the level-density data compared to the range of the six default level-density models available in TALYS and we
highlight the need for level-density data inside the astrophysically relevant energy ranges.
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I. INTRODUCTION

Thirty-five neutron-deficient nuclei, from 94Se to 196Hg
cannot be created by the s and r processes, which are based
on neutron capture and are responsible for the synthesis of
the bulk of elements heavier than iron [1,2]. The s process,
whose most probable astrophysical site are the AGB stars
[3], runs close to the valley of stability, creating stable nu-
clei until Bismuth. On the contrary, the r process rapidly
deviates from the stable region, flowing to neutron-rich nu-
clei far from stability, in order to allow for subsequent β−
decays to form neutron-rich nuclei. The kilonova signal [4],
observed in 2017 by a neutron star merger, has greatly con-
tributed to the question of the astrophysical site of the r
process [5].

For the creation of the nuclei on the neutron-deficient side
of the nuclear chart, another process had to be introduced
in order to explain their existence in our solar system. This
process is called the p process, and when photodisintegration
reactions are dominant, the term γ process is also used [6].
Candidates for the astrophysical sites of the p process are the
supernovae of type II and type Ia [7–9].

The modeling of the reaction network of the γ process
consists of around 20 000 reactions involving approximately
2000 nuclei below a mass number of A � 210 [6]. Important
reactions in this network are photodisintegration reactions
such as (γ , n), (γ , p), (γ , α), as well as their inverse ones
(n, γ ), (p, γ ), (α, γ ). For the case of radiative proton capture,
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their cross-section values lie usually in the range of 1–100 µb
inside the Gamow window [6]. Such low cross sections can be
notably challenging to measure experimentally. If the target
nucleus is stable, then measurements can be performed using
a proton beam on a preferably isotopic target, with the latter
to minimize any beam induced background on the γ spectra,
using various techniques [10–12]. A highly efficient detecting
setup is also necessary to counter the low values of the cross
sections. On the other hand, if the target nucleus is not stable,
then inverse kinematics measurements with radioactive beams
can provide a solution as shown in a recent study [13]. How-
ever, the low values of these cross sections can pose again
a significant challenge, which could lead to relatively large
uncertainties. Attempts have also been made in the past using
the GANIL Wien filter [14].

Due to the scarcity of experimental cross sections, the
calculations of the relevant reaction rates rely heavily on
Hauser-Feshbach statistical model calculations [15]. Within
the Hauser-Feshbach model, quantities such as optical model
potentials (OMPs), nuclear level densities (NLDs), and γ -
strength functions (γ SFs) are parameters that can significantly
influence the reaction cross sections and subsequently the
reaction rates in the respective stellar environments.

At relatively low energies inside the Gamow window, and
close to the low-mass p nuclei, the OMPs are the most sen-
sitive parameter in cross-section calculations [16]. However,
large uncertainties seem to arise at higher energies due to
the unknown NLDs and γ SFs. These two parameters can be
significantly constrained, when experimental data are avail-
able by the OSLO method [17]. Data obtained by this method
can help constrain NLD and γ SFs, which have a significant
impact on the cross sections relevant to the γ -process reaction
network.
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In this work, we focus on the impact of NLD uncertainties
on the radiative-capture cross sections for several impor-
tant reactions for the γ process [18,19]. In particular, the
present work is concentrated on the radiative proton-capture
reactions which can happen in the vicinity of the p nuclei
102Pd and 106Cd. The reactions 104,105Ag(p, γ ) 105,106Cd and
104,105Rh(p, γ ) 105,106Pd are studied in the present work in
terms of their proton-capture cross sections and their un-
certainty after optimization of the corresponding NLD data.
Cross-section data for these reactions still remain unmea-
sured, as such data would be also hard to obtain, in particular
with stable beams, as the target nuclei are not stable. However,
experimental data on NLDs exist for those nuclei [20], making
it possible to constrain the model calculations for the radiative
proton-capture cross sections.

The cross sections and the relevant reaction rates of
the reactions 104,105Rh(p, γ ) 105,106Pd can have an influence
on the synthesis of the p nucleus 102Pd. As shown in
Ref. [16], this nucleus is underproduced in model calcula-
tions. The aforementioned reactions are happening on the
vicinity of this nucleus and their cross sections are still
not measured. This is due to the difficulty in using stable
beams on the unstable isotopes 104,105Rh, as well as the
challenge on producing the corresponding radioactive beams
for inverse-kinematics measurements. Until today, the only
measurements on radiative-capture reactions involving Pd
isotopes have been performed in Refs. [21,22]. It is thus
important to take advantage of the available level-density data
[23] and attempt to constrain cross sections of neighboring
reactions.

Furthermore, the Cd isotopic chain hosts a p nucleus
(106Cd) whose abundance is significantly underproduced
by astrophysical models [16], as in the case of 102Pd.
Proton-capture cross sections studies reaching 108Cd are
more accessible due to the existence of the stable target
107Ag. These cross sections have been studied extensively
in Refs. [24,25] and have sufficiently constrained the cross-
section ranges inside the Gamow window. On the other hand,
for the case of 105,106Cd, similar data are nonexistent because
of the lack of stable targets. In Ref. [19], theoretical calcula-
tions predict high degree of competition between the reaction
104Ag(p, γ ) 105Cd and 105Ag(n, γ ) 106Cd. It is thus necessary
to take advantage of the level-density data for 105,106Cd and
attempt to constrain the range of cross sections of the proton
capture reactions 104Ag(p, γ ) 105Cd and 105Ag(p, γ ) 106Cd by
optimizing the BSFG and HFB + comb models on the OSLO

data for these isotopes [26].
Bayesian optimization has been used in the present work in

order to estimate 95% credible intervals on the level-density
data which are available at the OSLO database of experimen-
tal NLDs [20]. The phenomenological Back-shifted Fermi
gas model (BSFG) [27,28], as well as the semimicroscopic
level densities derived from Hartree-Fock-Bogoliubov plus
the combinatorial (HFB + comb) method [29] have been used
for the estimation of these intervals. Then these intervals have
been used in order to calculate the corresponding cross sec-
tions inside the Gamow window [30]. The nuclear reaction
code TALYS [31] has been used to calculate all values for the
theoretical NLDs and cross sections presented in this work.

TABLE I. Table of reactions relevant to the p process studied
in this work. The Gamow window (GW) corresponds to stellar
temperatures of T9 = 1.7–3.3. The references of the level-density
experimental data are also given.

Reaction Q value (MeV) GW (MeV) Ex (MeV) Ref.

104Rh(p, γ ) 105Pd 8.748 1.54–4.55 10.28–13.30 [23]
105Rh(p, γ ) 106Pd 9.345 1.54–4.55 10.88–13.89 [23]
104Ag(p, γ ) 105Cd 6.506 1.59–4.67 8.10–11.17 [26]
105Ag(p, γ ) 106Cd 7.350 1.59–4.67 8.94–12.02 [26]

It is important to note that only the uncertainties arising
from the NLDs are considered in this work. Concerning the
OMPs and γ SF models, the Koning-Delaroche potential [32]
and the Kopecky-Uhl standard Lorentzian [33] have been
used respectively, using the default values of their parame-
ters in TALYS. Furthermore, this work does not consider the
systematic uncertainties arising due to the model dependent
normalization of the level-density data [34]. While the latter
can give rise to important deviations, this work considers the
data as given in the OSLO database [35], along with the level-
density values at the neutron separation energy for each target
nucleus given in Refs. [23,26]. The normalization issue could
be avoided by the newly developed shape method [36] in the
future, which introduces a model-independent normalization
of the level-density data.

Radiative-proton capture reactions proceed mainly via the
compound nucleus mechanism in the Gamow window. For the
scenario of the synthesis of the p nuclei during the explosive
phase of a type II supernova, where the temperature is in the
range T9 = 1.7–3.3 [6], this window ranges from 1.2 to 6.4
MeV for the whole reaction network and in the center of mass
for proton-capture reactions. In this range, the reactions pro-
ceed by the compound nucleus mechanism [37,38]. In Table I,
the Gamow window, as well as the Q values and excitation
energies for the compound nuclei formed after the reac-
tions 104,105Ag(p, γ ) 105,106Cd and 104,105Rh(p, γ ) 105,106Pd,
are given along with the corresponding references of the NLD
data.

II. MODELS AND METHODS

A. The Back-shifted Fermi gas model

The first model that will be used in the present work in
order to constrain the level densities is the phenomenological
Back-shifted Fermi gas model (BSFG) [27]. The advantage
of this phenomenological model allows for the optimization
of its parameters along the whole energy range, contrary to
the Gilbert-Cameron model [39], which is essentially a com-
bination of the constant-temperature model at low excitation
energies and the Fermi gas model at higher excitation ener-
gies. Furthermore, the OSLO data used in this work have been
renormalized using this model [35]. In addition, the relevant
excitation energies for proton capture relevant to the p pro-
cess are in the range where a Fermi gas description is more
appropriate.
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In the BSFG model, which is implemented in the TALYS

code, the level density is given by the formula:

ρtot (U ) = 1√
2πσ

√
π

12

exp (2
√

aU )

a1/4U 5/4
. (1)

where σ is the spin-cutoff parameter. The quantity U is con-
nected with the excitation energy Ex:

U = Ex − χ
12√

A
− δBSFG, (2)

where χ = −1, 0,+1 for odd-odd, odd-even, and even even
nuclei, respectively; A is the mass number of the nucleus;
and a, δBSFG are free parameters. The posterior distributions
of these parameters will be sampled in order to estimate the
credible intervals for each parameter. It is to be noted that
while the parameter a can be treated as energy dependent to
account for shell effects, no energy dependence is taken into
account in the present work.

B. The Skyrme-Hartree-Fock Bogoliubov
plus combinatorial model

The Skyrme-Hartree-Fock Bogoliubov plus combinatorial
model (HFB + comb) is a microscopic model used to calcu-
late the level densities for excitation energies up to 200 MeV
[29]. These level densities are available in TALYS in tabulated
format.

Within TALYS, the possibility of adjusting these micro-
scopic level densities ρtab to the experimental data has also
been added by using two-parameter scaling function of the
form [31]:

ρ(Ex, J, π ) = exp(c
√

Ex − δHFB)ρtab(Ex − δHFB, J, π ), (3)

where Ex is the excitation energy; J and π are the spin and
parity of the excited state; and c, δHFB are parameters that play
a similar role as the parameters a and δBSFG of the previously
mentioned BSFG model.

Using the available experimental data given by the OSLO

database, it is thus possible to calculate the posterior distri-
butions for the parameters c, δHFB of the scaling function and
estimate the relevant credible intervals. A comparison of the
relevant credible intervals with the ones of the BSFG model
is also interesting in order to see how the uncertainties vary
depending on the model choice.

C. Bayesian optimization

Bayesian optimization is a statistical method that can op-
timize the free parameters of a model in order to describe
a dataset. In nuclear reaction theory, this approach has been
successfully used for constraining OMPs for nucleon transfer
reactions [40–44]. It has also been argued that the uncer-
tainties obtained by the Bayesian approach represent more
accurately the real uncertainties compared to the uncertainties
obtained by frequentist approaches [45].

Bayesian optimization is based on Bayes’s theorem:

P(H |D; θ ) = P(H ; θ )P(D|H ; θ )

P(D; θ )
. (4)

TABLE II. Prior distributions for parameters a, δBSFG of the
BSFG model and c, δHFB of the scaled HFB+comb model [Eq. (4)].
An uninformative Gaussian prior is used in all cases. The means aM ,
δBSFG

M , cM , δHFB
M and their standard deviations σa, σδBSFG , σc, σδHFB are

tabulated. See text for details.

Isotope aM δBSFG
M σa σδBSFG cM δHFB

M σc σδHFB

105Pd 11.93 0.17 119.3 17 0 0 10 10
106Pd 12.03 0.17 120.3 17 0 0 10 10
105Cd 11.93 0.17 119.3 17 0 0 10 10
106Cd 12.03 0.17 120.3 17 0 0 10 10

Here P(H ; θ ) is a prior distribution that expresses our prior
hypothesis H of the distributions of the model parameters
θ , without the information of the dataset D that we want
to study. Next, P(D|H ; θ ) is the likelihood function, which
expresses the degree of probability that our model correctly
describes the dataset, while P(D; θ ) is the model evidence,
which expresses the sum of probabilities of all possible hy-
potheses. The model evidence is essentially a scaling factor
and does not vary over the parameter space. This distribution
in general cannot be calculated analytically, but it is possible
to sample the distribution using Markov-chain Monte Carlo
(MCMC) methods. The above three distributions give the pos-
terior distribution P(H |D; θ ), which expresses the probability
distribution of the parameters θ after the information obtained
from the dataset.

As previously mentioned, due to the difficulty in calcu-
lating the evidence analytically, the posterior distributions in
Eq. (4) have to be sampled. For this work we have used the
Goodman and Weare ensemble sampler [46] with the rele-
vant software package EMCEE [47]. The sampler was coupled
with the TALYS code for the calculation of the theoretical
level-density values (see Python script in the Supplemental
Material [48]).

For the BSFG model, we have used as prior distributions
wide Gaussians of mean equal to the values derived from
systematics [31]. The standard deviation of these Gaussians
is 100 times their mean values, in order to fully explore the
parameter space (see Sec. III C). For the HFB + comb model
we have used priors centered at 0 and a standard deviation
equal to 10, which is the limit that TALYS imposes. Table II
summarizes all the Gaussian priors and their standard devia-
tions used for each isotope in the present work. The likelihood
is calculated from the relation:

P(D|H ; θ ) =
N∏

i=1

1

σi

√
2π

exp

{
−1

2

[
ρ th

i (θ ) − ρ
exp
i

]2

σ 2
i

}
, (5)

where N is the number of data points; ρ th
i (θ ) is the level

density given by the model, which is a function of a given
number of model parameters θ ; ρ

exp
i is the experimental value

and σ 2
i is calculated from [49,50]:

σ 2
i = σ 2

ρ,i + (
ρ th

i

)2 × exp(ln f 2), (6)

where σρ,i are the measurement errors of the experimental
data; and the positive parameter f expresses any unknown
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TABLE III. Posterior distributions for the parameters a, δBSFG

and ln f of the BSFG model. The 95% high-density intervals
(a1, a2), (δBSFG

1 , δBSFG
2 ) and (ln f BSFG

1 , ln f BSFG
2 ) are given.

Isotope 105Pd 106Pd 105Cd 106Cd

a1 12.03 11.54 10.67 10.9

a2 12.61 12.12 11.28 11.38

δBSFG
1 −1.07 −1.08 −1.02 −1.03

δBSFG
2 −0.90 −0.88 −0.78 −0.85

ln f BSFG
1 −2.23 −1.18 −1.77 −1.20

ln f BSFG
2 −1.58 −0.74 −1.13 −0.75

inaccuracies/noise between the models and the data. Since
these inaccuracies are not known, this parameter will be op-
timized at the same time with the other model parameters to
obtain a posterior distribution. For the parameter f , always a
flat prior will be used between ln f = −10 and ln f = 1.

III. RESULTS AND DISCUSSION

A. The reactions 104,105Rh(p, γ ) 105,106Pd

The posterior distributions optimized for the level-density
parameters a, δBSFG of the BSFG model, as well as for the
natural logarithm of the parameter f , are shown in Fig. 1
and their numerical values are tabulated in Table III. The
same are shown for the HFB + comb model in Fig. 2 and
in Table IV. The correlations between the three parameters
of each model are also shown in the same figures. Although
not present in every case, there seems to be a correlation
between the parameters a and δBSFG for the BSFG model and
between the parameters c and δHFB. The complex “interac-
tion” between the priors and the likelihood makes it difficult
to pinpoint the reason; however, it seems that there is more
correlation for the cases of odd-even nuclei, where the datasets
of the level densities do not show strong oscillating behavior
at low energies. The strong correlations could be an indica-
tion that the model is unnecessarily complex and thus not
the most appropriate one for the description of the odd-even
datasets. Additionally, no correlations are observed with the
parameter f .

The 95% credible intervals can be calculated directly from
the posterior distributions and they can then be compared

TABLE IV. Posterior distributions for the parameters c, δHFB

and ln f of the HFB+comb model. The 95% high-density intevals
(c1, c2), (δHFB

1 , δHFB
2 ) and (ln f HFB

1 , ln f HFB
2 ) are given.

Isotope 105Pd 106Pd 105Cd 106Cd

c1 −0.42 −0.39 −0.1 0.47
c2 −0.13 −0.23 0.09 0.56
δHFB

1 −1.23 0.05 −0.63 0.32
δHFB

2 −0.85 0.22 −0.39 0.39
ln f HFB

1 −2.08 −1.59 −2.05 −1.58
ln f HFB

2 −1.49 −1.09 −1.41 −1.06

with the level-density data. The comparisons are shown in
Figs. 3(a) and 3(b), together with the calculated cyan and red
bands corresponding at the 95% of the credible intervals for
the BSFG and HFB + comb models, respectively.

Using the 95% credible intervals, the corresponding range
of radiative proton-capture cross sections of the reactions
104,105Rh(p, γ ) 105,106Pd can be calculated using TALYS. The
results for both the BSFG and the HFB + comb models are
shown in Figs. 3(c) and 3(d). It has to be noted that al-
though the ideal approach would be to simultaneously infer
NLDs and cross sections on the level-density data, a separate
cross-section calculation is performed using the 95% credible
intervals of the NLDs. This was done in order to avoid a
very computationally expensive calculation, as for each sam-
ple the TALYS code would have to compute simultaneously
OMPs, NLDs, and γ SFs in order to give the cross-section
results.

For the case of 105Pd, the model uncertainties are smaller
for the BSFG model reaching approximately a difference
up to factor of 2, compared to the scaled HFB + comb
model. This is not the case for the isotope 106Pd, where not
only the uncertainty intervals are smaller but there is a no-
ticeably very good description of the HFB.+comb on the
lower energy parts below 3 MeV. The “oscillating” behavior
in these energy range is nicely reproduced and the calculated
uncertainties contain well the datasets. It is important to note
that in the case of the BSFG model, this low energy behavior
106Pd is enlarging the credible intervals in this region, leading
to larger uncertainties.

When attempting to extrapolate to the Gamow Window
(gray shaded area in the figures), the two models and their
uncertainties can differ by approximately a factor of 4.5. In
particular for the case of 105Pd, the maximum difference can
reach even almost half an order of magnitude. The reason for
this could be traced on the different behavior of the models
at higher energies. The lack of experimental level-density
data at energies inside the Gamow window is also a factor,
highlighting a necessity for measurements at higher excita-
tion energies. These uncertainties are propagated to the cross
sections, which are relatively smaller at low energies. This
is expected, as at these energies, the cross section depends
mainly on the OMPs and not on the level density.

B. The reactions 104Ag(p, γ ) 105Cd and 105Ag(p, γ ) 106Cd

The same procedure is followed as for the previously
described Pd isotopes. The posterior distributions and the
correlations of the BSFG model parameters a, δBSFG and ln f
and the HFB + comb model parameters c, δHFB and ln f for
the isotopes 105,106Cd are shown in Figs. 1 and 2 and tabulated
in Tables III and IV, respectively.

The calculated level densities and the cross sections of
the reactions 104,105Ag(p, γ ) 105,106Cd are compared with the
data in Figs. 4(a) and 4(b) for the BSFG model and for
the HFB + comb model. The range of uncertainties of the
NLDs from the two models is quite similar for the isotope
105Cd. On the contrary, for the isotope 106Cd the uncertainties
are significantly smaller for the HFB + comb model, and the
description of the low-energy data is very accurate. These
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FIG. 1. Posterior distributions of the parameters a, δBSFG and ln f BSFG by optimizing the BSFG model on the OSLO data for the isotopes
105,106Pd and 105,106Cd. Each column is associated with the isotopes and each row with the parameters. The correlations between the parameters
are also shown. See text for details.

results point out that uncertainties can significantly depend
on the choice of the model. It is also noticeable that the two
models tend to diverge at excitation energies higher than 5
MeV, where the uncertainties of the data are higher. This is

expected, as the uncertainties act as a weight in the likelihood
[Eq. (5)], resulting in larger divergence between model and
data in this excitation energy range. The cross sections of the
reactions 104Ag(p, γ ) 105Cd and 105Ag(n, γ ) 106Cd are shown
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FIG. 2. Posterior distributions of the parameters c, δHFB and ln f HFB by optimizing the scaling function of Eq. 3 for the HFB + comb model
on the OSLO data for the isotopes 105,106Pd and 105,106Cd. Each column is associated with the isotopes and each row with the parameters. The
correlations between the parameters are also shown. See text for details.
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FIG. 3. Calculated level densities and cross sections using the posterior distributions of the parameters a, δBSFG and f BSFG of the BSFG
model and the parameters a, δHFB and f HFB of the HFB + comb model for the isotopes 105,106Pd. The 95% credible intervals obtained after
Bayesian optimization are shown with the cyan and red bands, for the BSFG and HFB + comb models, respectively. The gray-shaded area
represents the Gamow window for the reactions 104,105Rh(p, γ ) 105,106Pd. See text for details.

in Figs. 4(c) and 4(d), following a similar trend as the NLD
uncertainties.

C. Prior sensitivity and autocorrelation

It is useful for every study using Bayesian inference to
include a sensitivity study of the posterior distribution due to
the prior distribution. An efficient way to check this sensitivity
is described in Ref. [40] and consists of checking the posterior
distribution by varying the standard deviation of the Gaussian
priors.

In Fig. 5, the posterior 95% credible intervals for the pa-
rameters a and δBSFG of the BSFG model are shown as a
function of the standard deviation of their Gaussian priors.
The sensitivity check starts from a Gaussian distribution with
mean, µ, equal to the systematic values of level densities
and a standard deviation equal to λ × aM, δBSFG

M for a and
δBSFG, respectively. The standard deviation of the prior can

then be varied by increasing the factor λ, that is, by increasing
the width of the Gaussians. As shown in Fig. 5, for λ < 1,
there seems to be a strong variation of the posterior as a
function of the standard deviation of the prior. After this
threshold, the posteriors seem to be the same, something that
is expected as the prior becomes too uninformative. In all
calculations presented in this work, the factor λ is chosen
large enough (λ = 100) in order to minimize prior influ-
ence and fully explore the parameter space, as argued in
Ref. [45].

The memory effect (autocorrelation) of the Markov Chain
can be solved by running a large chain or thinning the chain
by a step. In Fig. 6, the trace of the parameter a of the BSFG
is shown for the isotope 106Cd. The traces of the rest of the
parameters for all the cases studied in the present work exhibit
similar behavior. A chain of 10 000 events was run using six
walkers. As shown, no correlating structure is viewed in the
trace.

024602-7



A. CHALIL et al. PHYSICAL REVIEW C 110, 024602 (2024)

FIG. 4. Calculated level densities and cross sections using the posterior distributions of the parameters a, δBSFG and f BSFG of the BSFG
model and the parameters a, δHFB and f HFB of the HFB + comb model for the isotopes 105,106Cd. The 95% credible intervals obtained after
Bayesian optimization are shown with the cyan and red bands, for the BSFG and HFB + comb models, respectively. The gray-shaded area
represents the Gamow window for the reactions 104,105Ag(p, γ ) 105,106Cd. See text for details.

D. Comparison with all TALYS models

A comparison with the range of all available default
TALYS models has also been performed in order to com-
pare the ranges of cross sections for the case of reaction
105Ag(p, γ ) 106Cd. The results are compared with the 95%
confidence levels that were calculated using the level-density
data and the BSFG and HFB + comb models. The comparison
is shown in Fig. 7.

The range between the maximum and minimum of all six
default TALYS models can cover a relatively large range which
can reach a difference of 1.5 mb for the higher energies in
the Gamow window. With the use of level-density data, this
uncertainty interval is significantly reduced to approximately
0.5 mb for the HFB + comb model. This highlights the im-
portance of the level-density data in constraining important
cross sections for the p process. It has to be noted however
that extrapolation to the Gamow window is necessary, as there

are usually no level-density data at such excitation energies.
This can pose significant challenges in constraining the cross
sections and highlights the need for both level-density and
cross-section data inside the Gamow window.

IV. CONCLUSIONS AND FUTURE DIRECTIONS

Four important radiative proton-capture reactions within
the p process reaction have been studied by using Bayesian
inference in order to quantify the uncertainties that arise from
measured level-density data. The 95% credible intervals using
the normalized level-density data from the OSLO database
[20] have been calculated and propagated to the (p, γ ) cross
sections. While the present study is oriented on the cross
sections of proton-capture reactions of astrophysical interest,
uncertainties in level densities could also constrain other ob-
servables in different domains such as in fission [51].
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FIG. 5. Prior sensitivity of posterior distributions for the param-
eters a and δBSFG of the BSFG for the isotope 106Cd. The standard
deviation of the Gaussian prior is given by the product of the factor
λ and the mean of the Gaussian prior. For large values of λ, the prior
distributions becomes more wide (uninformative prior), stabilizing
the posterior to specific values. Error bars represent the 95% credible
intervals of the posteriors. See text for details.

In three out four cases studied in the present work, the
HFB + comb model seems to provide smaller credible in-
tervals. An exception seems to be the case of 105Cd, where
uncertainties where found smaller by using the BSFG model.
This indicates that different models can give different results
when optimized on the same dataset, making the choice of the
model important. In all cases though, the shape of the credible
intervals of the HFB + comb model seem to describe very
well the low-energy level densities.

The level densities are not the only factor that affects the
final proton-capture cross section. The optical model potential
and the γ -strength function have also a significant impact.
A Bayesian approach has already been used for the γ SF
for the reaction 93Nb(p, γ ) 94Mo, by using the OSLO data
[52]. It is important to note, that no large scale uncertainty
quantification study has been made on the proton-nucleus
OMPs. Although these OMPs seem in general to describe

FIG. 6. Trace of the parameter a of the BSFG for the nucleus
106Cd.

FIG. 7. Cross sections calculations comparing the range of all six
default TALYS level-density models with the Bayesian 95% credible
intervals of the BSFG and HFB + comb models for 106Cd. See text
for details.

well the experimental data in the lower part of the Gamow
window [24,25,53,54], there exist cases in which they do not
give a good description in the whole energy range [10]. In
combination with the present work on NLDs, Bayesian un-
certainty quantification on the proton-OMPs and γ SF models
could give a more complete picture on the cross sections
uncertainties.

Constraining radiative capture cross sections is highly im-
portant for the p process reaction network. The present results
can serve as a reference for both theoretical and experimental
future works. Combined with further uncertainty quantifi-
cation studies, by taking advantage of the existing data on
OMPs, NLDs, γ SFs, such studies could give insight on the
values of the relevant cross sections and reaction rates where
experimental information directly on the cross section is chal-
lenging. Uncertainties could then be propagated to the relevant
reaction rates for network calculations and give significant
insights on the origin of the p nuclei.

While this work is focused on proton-capture reactions,
the impact of α captures is also significant for the p process
network. In this case, we have also to deal with the α-nucleus
potential problem, whose central value is not as well con-
strained as the nucleon-nucleus potentials. A Bayesian study
on existing data could give insight on the uncertainties related
to the α optical potential, which is important in particular for
the heavier p nuclei.
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