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Effect of nuclear deformation and orientation about the symmetry axis of the target
nucleus on heavy-ion fusion dynamics
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Nuclear shape and orientation degrees of freedom are incorporated into the calculation of the double-folding
nuclear potential within the relativistic mean-field (RMF) formalism. The quadrupole deformations (β2), nuclear
densities, and the effective nucleon-nucleon (NN) interaction potential are obtained using the RMF approach for
the hybrid, NL3∗, and NL3 parametrizations. The calculated quadrupole deformations are included in the target
densities through the nuclear radius. The deformation and orientation-dependent microscopic nuclear potentials
are further employed to obtain fusion barrier characteristics and cross sections for 12 even-even heavy-ion
reactions with doubly magic spherical 16O and 48Ca as projectiles along with deformed targets from different
mass regions. The results obtained for the relativistic R3Y NN potential are compared with those of the Reid
version of the nonrelativistic M3Y NN potential as well as with the available experimental data. A decrease in the
barrier height and increase in the cross-section is observed upon the inclusion of target quadrupole deformations
in the nuclear density distributions at the target orientation angles, θ2 � 58◦ for the R3Y NN potential and at
θ2 � 60◦ for the M3Y NN potential. On comparing the θ2-integrated cross section calculated using M3Y and
R3Y NN potentials with spherical and deformed densities, one observes that the deformed densities and the
relativistic R3Y NN potential obtained for the hybrid parameter set provide better agreement with the available
experimental data for all the considered reactions. Moreover, the modifications in the characteristics of the fusion
barrier and hence in the cross section with the inclusion of nuclear shape degrees of freedom and orientations are
found to become more prominent in reactions forming heavier compound nuclei. This implies that the inclusion
of nuclear deformations and orientation in the calculation of the microscopic nuclear potential within the RMF
formalism is crucial to provide a reliable description of the sub-barrier nuclear fusion dynamics, especially in
the heavy and superheavy mass regions.
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I. INTRODUCTION

The investigation of heavy-ion fusion reactions in the
low-energy regime plays a vital role in exploring various
phenomena, ranging from energy generation in stars to the
extension of the nuclear chart through the synthesis of new el-
ements. Consequently, a large number of studies have focused
on understanding the mechanism of nuclear fusion reactions,
both in experimental and theoretical contexts [1–11]. Theo-
retical investigations of fusion reactions involving heavy ions
usually begin with the interpretation of the total potential
between the two interacting nuclei [6–11]. The long-range
repulsive part of this total potential includes the well-defined
Coulomb potential, which depends upon the electric charge,
and the centrifugal potential, which depends upon the angu-
lar momentum of the fusing nuclei. The short-range nuclear
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potential contributes an important attractive part to the to-
tal interaction potential [10–24]. In the literature, numerous
macroscopic, semiclassical, and microscopic approaches have
been constructed to evaluate this nuclear potential [10–24].

A well-founded technique to obtain the nuclear potential
is the double-folding approach [25], in which the nucleus-
nucleus potential is determined by integrating the overlap
of nuclear densities with an effective nucleon-nucleon (NN)
interaction. The Paris [26] and Reid [27] versions of the
Michigan 3 Yukawa (M3Y) effective NN potential have been
frequently utilized to calculate this nucleus-nucleus optical
potential. Recently, the double-folding approach was applied
using nuclear densities and the microscopic R3Y NN in-
teraction developed within the relativistic mean-field (RMF)
approach. The nuclear potential thus obtained was imple-
mented successfully in studies of nuclear fusion and cluster
radioactivity [24,28–38]. In all these studies, for the sake
of simplicity, the nuclear potential was calculated assuming
the spherical symmetry of the interacting nuclei. However,
nuclear fusion is a complicated phenomenon which may be
influenced by numerous factors such as the nuclear shape
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degrees of freedom and related orientations, shell effects, pair-
ing energy, the mass and isospin asymmetry of the entrance
channel [6–11,39–48]. Therefore, including these characteris-
tics in the evaluation of the nuclear interaction potential is es-
sential for a better understanding of the dynamics of complex
fusion.

Taking into account these various factors, the influence of
nuclear deformations on nuclear reactions and decay dynam-
ics has been studied extensively [6–11]. This is because the
shape of nuclei tends to deviate from a spherical one due to the
long-range correlations, as one moves away from the magic
shell nuclei. The most prominent deformations observed in
atomic nuclei are the quadrupole ones, in which the nuclei
still maintain reflection and axial symmetries [49–58]. Conse-
quently, many theoretical as well as experimental studies have
been done to probe the impact of the quadrupole deformations
of interacting nuclei on the reaction and decay mechanisms.
Furthermore, with the inclusion of degrees of freedom of the
nuclear shape in the description of the interaction potential,
the relative orientations of the colliding nuclei also affect the
characteristics of the nuclear interaction potential [6–11]. In
the present study, our aim is to move forward from our previ-
ous studies by including the effect of quadrupole deformation
and the orientation of the symmetry axis of the target nucleus
in microscopic calculations of the nuclear potential within the
RMF formalism.

The self-consistent RMF formalism has been used to
study infinite and finite nuclear matter characteristics, such
as nuclear deformation parameters, charge radii, and binding
energies [28–30,59–68]. Here, we calculate the quadrupole
deformation (β2) for each target nucleus using the axially
deformed RMF theory with the well-known NL3 [62] set
and its revised versions, the NL3∗ [63] and hybrid [64]
parametrizations. The influence of quadrupole deformations
and related orientations is included in the target densities
through the nuclear radius. The nuclear potential is obtained
by folding the overlap of the deformed densities with the
relativistic R3Y effective nucleon-nucleon (NN) potential and
results are also compared with the non-relativistic M3Y NN
potential. The validity of this nuclear potential obtained us-
ing the RMF formalism along with the inclusion of target
deformations and orientations is then assessed by probing
the nuclear fusion dynamics of twelve reactions, namely,
16O + 148,150Nd, 16O + 154Sm, 16O + 176Yb, 16O + 176,180Hf,
16O + 182,186W, 48Ca + 32S, 48Ca + 154Sm, 48Ca + 168Er, and
48Ca + 238U. These heavy-ion reactions have doubly magic
spherical 16O and 48Ca projectiles that fuse with deformed
target nuclei from different mass regions of the nuclear chart.
Fusion and/or capture cross sections are determined from
the �-summed Wong model [69,70] and the theoretical cross
sections are compared with the available experimental data
[71–78].

The paper is structured as follows. Section II is devoted to
a detailed description of the theoretical formalism adopted to
calculate the cross section by incorporating the target defor-
mations and orientations. The results obtained are elaborated
in Sec. III, while Sec. IV summarizes and concludes the find-
ings of the present analysis.

II. THEORETICAL FORMALISM

The total interaction potential between two colliding heavy
ions forms an important part of the foundation for under-
standing the complex reaction dynamics. As this interaction
potential depends upon the structural properties of the collid-
ing nuclei, here, we aim to include the impact of nuclear shape
degrees of freedom and orientation in the description of the
nucleus-nucleus interaction potential. The total interaction po-
tential formed between a deformed target having quadrupole
deformation β2 and a spherical projectile can be written as

VT (R, β2, θ2) = VC (R, β2, θ2) + Vn(R, β2, θ2) + h̄2�(� + 1)

2μR2
.

(1)

Here, VC (R, β2, θ2) and Vn(R, β2, θ2) are the deformed,
orientation-dependent Coulomb, and nuclear potentials, re-
spectively. The internuclear separation distance is denoted
by R, μ represents the reduced mass, and θ2 is the angle
between �R and the axis of symmetry of the deformed target
nucleus. The nuclear potential between a spherical projectile
and deformed target nucleus is obtained here using the double
folding approach [25], i.e.,

Vn( �R, β2, θ2) =
∫

ρp(�rp)ρt [�rt (β2, θ2)]

× Veff (|�rp − �rt + �R|≡r)d3rpd3rt , (2)

where ρp(�rp) and ρt [�rt (β2, θ2)] denote the total densities (sum
of neutron and proton densities) for the spherical projec-
tile and axially deformed target nucleus, respectively. The
term Veff in Eq. (2) is the nucleon-nucleon (NN) interaction
potential.

The densities in Eq. (2) are calculated self-consistently
using the relativistic mean-field (RMF) approach. The RMF
formalism has been used frequently to explore the charac-
teristics of finite nuclei lying close and far from the line of
β stability [28–30,59–63,65–68]. In the RMF approach, the
internucleon interaction is mediated via the exchange of pho-
tons and mesons. A phenomenological Lagrangian density,
which defines the nuclear-meson many-body interactions, can
be written as [28–30,59–63,65–68]

L = ψ{iγ μ∂μ − M}ψ + 1

2
∂μσ∂μσ

− 1

2
m2

σ σ 2 − 1

3
g2σ

3 − 1

4
g3σ

4 − gσψψσ

− 1

4

μν
μν + 1

2
m2

ωωμωμ − gwψγ μψωμ

− 1

4
�Bμν · �Bμν + 1

2
m2

ρ �ρμ · �ρμ − gρψγ μ�τψ · �ρμ

− 1

4
FμνFμν − eψγ μ (1 − τ3)

2
ψAμ. (3)

The symbol ψ in this equation represents a Dirac nucleon
of mass M. The terms mσ , mω, mρ and gσ , gω, gρ denote
the masses and nucleon-meson coupling constants for the σ ,
ω, ρ mesons, respectively. The terms g2 and g3 denote the

024601-2



EFFECT OF NUCLEAR DEFORMATION AND ORIENTATION … PHYSICAL REVIEW C 110, 024601 (2024)

nonlinear self-interactions of the isoscalar scalar σ mesons.
The meson masses, nucleon-meson, and meson self-coupling
constants are the principal parameters of the RMF formalism
and are often adjusted to match the experimental data for the
ground state observables of a selected number of closed-shell
nuclei. A number of the RMF parameter sets are available in
the literature [66]. Here, the widely adopted NL3 [62] param-
eter set is employed to calculate the quadrupole deformation,
nuclear densities and R3Y effective NN potential. Calcula-
tions are also performed with the NL3∗ parameter set [63],
which is a revised version of the set NL3 that produces a value
of the incompressibility of nuclear matter (K = 258.28 MeV)
within its current acceptable range [79,80]. Moreover, we
have also used the hybrid parameter set in the present
study, which produces a comparatively soft equation of state
with K = 230.01 MeV [64]. The symbols τ and τ3 in
Eq. (3) denote the nucleon isospin and its third component,
respectively.

The quantities, 
μν , �Bμν and Fμν , represent the field
tensors for ω, ρ-mesons and photons, respectively, and are
given as


μν = ∂μων − ∂νωμ, (4)

�Bμν = ∂μ�ρν − ∂ν �ρμ, (5)

and

Fμν = ∂μAν − ∂νAμ. (6)

Here, Aμ represents the electromagnetic field. The equa-
tions of motions for mesons as well as Dirac nucleons are
derived by solving the Euler-Lagrange equations in the mean-
field approximation and are written as

(−iα · � + β(M + gσ σ ) + gωω + gρτ3ρ3)ψ = εψ,(−�2 + m2
σ

)
σ (r) = −gσ ρs(r) − g2σ

2(r) − g3σ
3(r),(−�2 + m2

ω

)
ω(r) = gωρ(r),(−�2 + m2

ρ

)
ρ(r) = gρρ3(r). (7)

The isoscalar scalar σ provides a short-range attractive NN
interaction, and the isoscalar vector ω meson provides a
short-range repulsive NN interaction. The isovector vector ρ

meson contributes a short-range attractive interaction between
protons and neutrons and a short-range repulsive potential
between nucleons of identical isospin. This indicates that an
effective NN interaction can be obtained by solving the RMF
equations for mesons in the single meson exchange limit. We
call the effective relativistic NN interaction the R3Y potential
[28–31]. It is given as a function of the internucleon separation
(r) as

V R3Y
eff (r) = g2

ω

4π

e−mωr

r
+ g2

ρ

4π

e−mρr

r
− g2

σ

4π

e−mσ r

r

+ g2
2

4π
re−2mσ r + g2

3

4π

e−3mσ r

r
+ J00(E )δ(r). (8)

Here, the last term represents a pseudopotential which ac-
counts for the one pion exchange potential (OPEP). The

quadrupole deformation (β2) for the considered target nuclei
is calculated using the RMF formalism on an axially de-
formed basis. The spherically symmetric radial densities for
projectile and target nuclei are also calculated using the RMF
Lagrangian defined in Eq. (3). The pairing correlations are
taken into account within the well-known Bardeen-Cooper-
Schrieffer (BCS) approach [81–86].

The nuclear shape degrees of freedom for the target nucleus
are included in the description of the nuclear density through
the radius vector. The radius of a deformed and oriented
target nucleus can be written in terms of a spherical harmonic
expansion as [49,87,88]

rt (β2, θ2) = r0t [1 +
√

(5/4π )β2P2(cos θ2)] (9)

where r0t is the corresponding spherical radius. With the
inclusion of the nuclear shape degrees of freedom, the orien-
tation (θ2) of the symmetry axis of the quadrupole-deformed
target relative to the internuclear separation vector ( �R) also af-
fects the nuclear interaction potential. This deformation- and
orientation-dependent nuclear interaction potential is com-
puted using Eq. (2), using the R3Y effective NN potential and
the nuclear densities and quadrupole deformations obtained
within the self-consistent RMF formalism. The results of the
relativistic R3Y NN potential are also compared with the Reid
version of the nonrelativistic M3Y NN potential, which is
given in terms of three Yukawa components [25,27] as

V M3Y
eff (r) = 7999

e−4r

4r
− 2140

e−2.5r

2.5r
+ J00(E )δ(r). (10)

The nuclear potential calculated using the M3Y and R3Y
effective NN interactions, along with the Coulomb and cen-
trifugal potentials generates the total interaction potential [see
Eq. (1)]. The repulsive Coulomb potential between a spherical
projectile and axially deformed target nuclei that have atomic
numbers Zp and Zt , respectively, is given as [69]

VC (R, β2, θ2) = ZpZt e2

R

[
1 + r2

t β2P2(cos θ2)

R2

×
(√

9

20π
+ 3β2P2(cos θ2)

7π

)]
. (11)

To obtain the Coulomb potential, r0t is taken from the ex-
pression r0t = 1.28A1/3

t − 0.76 + 0.8A−1/3
t [87,88], where At

is the atomic mass number of the deformed target nucleus.
Here, we have not taken into account additional correction
terms in the Coulomb potential, since their contribution is
usually very small for the heavy-ion fusion at near-barrier
energies [89]. Also, the angle between the radius vector and
the symmetry axis of the target nucleus is fixed at a given
θ2 such that the separation distance between the surfaces of
the interacting nuclei is minimum [45,90–93]. Moreover, the
Coulomb reorientation of deformed nuclei is not taken into ac-
count in the present study as its extent is observed to be small
for reactions involving deformed targets with heavier mass
[94–96] and the considered reactions also involve heavier de-
formed targets except for 32S which has comparatively smaller
β2(hybrid) = 0.147. The sum of the attractive and repulsive
potentials leads to the formation of the fusion barrier. The
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properties, i.e., height, position, and curvature of this barrier
determine the fusion probability. After determining the total
potential [Eq. (1)] at each target orientation angle (θ2), the
barrier height (V �

B ), and the barrier position (R�
B) are obtained

using

dV �
T

dR

∣∣∣∣
R=R�

B

= 0 (12)

and

d2V �
T

dR2

∣∣∣∣
R=R�

B

� 0. (13)

Moreover, the barrier curvature (h̄ω�) is determined as

h̄ω� = h̄
[∣∣d2V �

T (R)/dR2
∣∣
R=R�

B
/μ

] 1
2 . (14)

The barrier properties are further used to calculate the
barrier penetration probability in the parabolic barrier ap-
proximation. The Hill-Wheeler transmission coefficient [97]
through an inverted harmonic oscillator-shaped barrier is
widely adopted to obtain the heavy-ion fusion probability
[31,36,69,70] and is given as

P�(Ec.m., θ2) =
[

1 + exp

(
2π

(
V �

B (θ2) − Ec.m.

)
h̄ω�(θ2)

)]−1

. (15)

Here, Ec.m. represents the center of mass energy of the target-
projectile system. Finally, the fusion and/or capture cross
section is calculated at each target orientation angle (θ2) using
the modified version of the simple Wong formula [69,70].
This extended version of the Wong formula is known as the
�-summed Wong model and incorporates term-by-term alter-
ations of the interaction potential due to its dependence on the
angular momentum [31,36,70]. Within the �-summed Wong
model, the cross section is written in terms of the �-partial
waves as

σ (Ec.m., θ2) = π

k2

�max∑
�=0

(2� + 1)P�(Ec.m., θ2). (16)

Here, k =
√

2μEc.m.

h̄2 and the �max values are determined using
the sharp cut-off [98] model in the energy region above the
barrier. In the sub-barrier region, an energy-dependent extrap-
olation is adopted to obtain the �max values. The �-summed
cross section is obtained using Eq. (16) at each target orienta-
tion angle (θ2 varying from 0◦ to 90◦ with at step size of 1◦)
and is further integrated over the target orientation angle (θ2)
to obtain the integrated fusion cross section, i.e.,

σint (Ec.m.) =
∫ π/2

0
σ (Ec.m., θ2) sin θ2dθ2. (17)

This equation is used to obtain a cross section for reactions
involving a deformed target nucleus fusing with a spherical
projectile.

III. RESULTS AND DISCUSSION

The structural properties of two heavy ions play a pivotal
role in the understanding of the nuclear fusion mechanism. In

this direction, the appropriate nuclear shape degree of freedom
and orientations are incorporated in the cross sections through
the total interaction potential from the self-consistent relativis-
tic mean-field (RMF) approach. The RMF formalism has a
wide range of applications, from exploring the properties of
infinite nuclear matter to understanding the various structural
characteristics of finite nuclei [28–30,59–63,65–68]. In our
recent studies [31–38], spherical nuclear densities and R3Y
effective NN interaction potential evaluated using the RMF
formalism has also been adopted to explore the nuclear fu-
sion dynamics of heavy-ion reactions. In the present study,
we have incorporated the influence of the target quadrupole
deformations and orientations in the calculation of the nuclear
interaction potential. The deformation and orientation depen-
dent nuclear potential is further employed to obtain the fusion
barrier characteristics and cross-section for several heavy-
ion reactions using doubly magic spherical and/or nearly
spherical 16O and 48Ca projectiles fusion with deformed ro-
tational target nuclei from different mass regions, namely,
32S, 148,150Nd, 154Sm, 168Er, 176Yb, 176,180Hf, 182,186W, and
238U. The calculations are performed using the NL3 and NL3∗
parameter sets, which have been found to be suitable for
studying nuclear fusion [36,37]. The hybrid parameter set [64]
with a relatively soft EoS is also used in the present study.

To explore the impact of nuclear structure properties on the
reaction dynamics, first, the ground state quadrupole deforma-
tions (β2) are obtained from the RMF formalism in the axially
deformed harmonic oscillator basis for all the considered tar-
get nuclei. Figure 1(a) depicts the β2 values obtained from
the hybrid (black spheres), NL3∗ (blue squares), and NL3 (or-
ange triangles) sets, as a function of target mass number (At ).
The predicted β2 values from the finite-range droplet model
(FRDM) [49] (magenta circle) and the experimental data
[50,51] (green stars) are shown in Fig. 1(a) for comparison.
A reasonable match can be observed between the β2 values
obtained from the RMF formalism and the experimental data,
as well as with the FRDM predictions, especially in the heavy
mass region. The β2 values obtained for different RMF sets
show a slight deviation in the lighter mass region, whereas,
the values match in the heavier mass region. Furthermore, all
target nuclei studied have positive β2 values, therefore exhibit-
ing a rugby ball-like prolate shape in their ground state. Unlike
spherically symmetric nuclei, the radius and density of an
axially deformed nucleus are orientation dependent, leading to
the dependence of the interaction potential on the orientation
angle (θ2) between the spherical projectile and the deformed
target. Thus, it is crucial to take into account the effect of
nuclear deformation and the resulting orientation dependence
for a better understanding of the nuclear reaction dynamics.

The surface diffuseness is an important parameter of the
nuclear density distributions and is often used to study the
surface properties of atomic nucleus. The nuclear surface dif-
fuseness parameter is also calculated for the nuclei considered
to correlate the surface properties with the nuclear density
distributions. The equivalent nuclear surface diffuseness pa-
rameter for the density distributions can be obtained using
the relation ai ≈ −ρi/

dρi

dr , where i stands for the proton (ap),
neutron (an), and charge (ach) of the nucleus. Figure 1(b)
displays the calculated surface diffuseness parameters for
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FIG. 1. (a) The quadrupole deformation parameter (β2) for the target nuclei obtained from axially deformed RMF calculations using
the hybrid (black spheres), NL3∗ (blue squares), and NL3 (orange triangles) parameter sets. The finite range droplet model (FRDM) [49]
(magenta circles) and the experimental values [50,51] (green stars) are plotted for comparison. (b) Surface diffusion parameter for all targets
and projectiles considered. The experimental data are taken form [99].

neutron (orange spheres) and proton (orange squares) density
distributions from the RMF approach. Here, we have only
plotted the surface diffuseness parameter for the NL3 param-
eter set, since all the considered parameter sets give similar
results for the densities and radii of the nuclei considered.
Hence, the results for the surface diffuseness are also expected
to overlap. The surface diffuseness for the charge density
(green stars) from [99] is shown in Fig. 1(b). The magnitude
of the surface diffuseness parameter is higher for neutron
densities than the proton densities for the considered nuclei.
This observation also persists for nuclei with N = Z . Further,
the values of the calculated surface diffuseness parameter for
proton density are smaller than those for the experimental
charge density. This difference of ≈0.1 fm arises due to the
finite size effect of the proton density, which is not taken into
account in the RMF calculations.

The β2 values obtained from the RMF formalism are used
to include the nuclear shape degrees of freedom and orienta-
tions in the nuclear densities through the nuclear radius [see
Eq. (9)]. Figure 2(a) shows the deformed RMF total density
(sum of neutron and proton densities) obtained for hybrid
(black lines), NL3∗ (blue lines), and NL3 (orange lines) pa-
rameter sets at three orientation angles θ2 = 0◦ (dashed lines),
45◦ (dash double dotted lines), and 90◦ (dotted lines) in the
illustrative case of the 154Sm nucleus. A significant change
in the density distribution in the surface region with respect to
the spherically symmetric RMF density (solid lines) can be at-
tributed to the inclusion of quadrupole deformations (β2). For
a given parameter set, the highest surface density is observed
at θ2 = 0◦. Further, a decrease in surface density is observed
with the increase in the θ2 and a minimum density is observed
at θ2 = 90◦. On comparing the nuclear densities obtained for
different parameter sets, it is noted that the spherical density
in the surface region increases with the decrease in the nuclear
incompressibility (K) of the parameter set, with the hybrid and
NL3 parameter sets giving the highest and lowest densities,
respectively. For the case of deformed density, the NL3∗ pa-
rameter set gives the lowest peripheral density at θ2 = 0◦. This

is because the NL3∗ parameter set gives the lowest value of β2

for the 154Sm nucleus. However, at θ2 = 90◦, the NL3 param-
eter set gives the lowest surface density and NL3∗ gives the
highest density. As nuclear fusion is a surface phenomenon,
a small shift in the peripheral density leads to modification of
the fusion barrier characteristic [37,100]. To explore the effect
on nuclear fusion of this change in the target densities in the
surface region due to the inclusion of nuclear shape degrees of
freedom and orientations, the nuclear interaction potential is
obtained by integrating the deformed densities with the R3Y
NN potential obtained from the RMF formalism. The results
of the microscopic R3Y NN potential are also compared
with the widely adopted nonrelativistic M3Y NN potential.
The repulsive Coulomb potential obtained using Eq. (11) and
the centrifugal potential are added to the nuclear potential to
obtain the total interaction potential for the 12 reactions under
study.

Figures 2(b) and 2(c) show the values of the total s-wave
(� = 0) potential VT (R) (MeV) versus the inter-nuclear sep-
aration R (fm) at orientation angles θ2 = 0◦ (dashed lines),
45◦ (dash double dotted lines), and 90◦ (dotted lines) calcu-
lated using the M3Y and R3Y NN potentials, respectively,
for the illustrative case of the 16O + 154Sm reaction. The total
interaction potentials obtained for the spherically symmet-
ric target density, i.e., β2 = 0 (solid lines) are also shown
for comparison. The NL3 and hybrid sets are observed to
give the highest and lowest barrier heights for the case of a
spherical target. Noticeable modifications in the height and
positions of the fusion barrier are observed with the inclusion
of the quadrupole deformation of the target nucleus depend-
ing upon the orientation angle (θ2). For a given parameter
set, the highest fusion barrier and shortest interaction ra-
dius (hot, compact configuration) are observed at θ2 = 90◦,
whereas the lowest barrier height and longest interaction ra-
dius (cold, elongated configuration) are obtained at θ2 = 0◦
for both the M3Y and R3Y NN potentials. These results are
in line with the optimum orientations [101,102] observed for
the case of colliding spherical and prolate nuclei using the
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FIG. 2. (a) Total RMF densities as a function of target radius rt (fm) for the 154Sm nucleus for spherical (solid lines) and deformed cases at
different orientation angles (θ2). (b) The total s-wave (� = 0) potential VT (MeV) as a function of the inter-nucleus separation R (fm) obtained
by folding the M3Y NN potential with deformed RMF-NL3 densities plotted for the illustrative case of the 16O + 154Sm reaction at different
target orientation angles (θ2). (c) Same as (b) but for the R3Y NN potential.

phenomenological proximity potential. Moreover, at θ2 = 0◦
and θ2 = 45◦, the highest barrier is obtained for NL3∗ param-
eter set, which gives the lowest value of β2 for 154Sm. The
hybrid parameter set gives the lowest fusion barrier. However,
at θ2 = 90◦ the height of the barrier increases with the increase
in β2 value of the target nucleus. All these observations show
that the characteristics of the fusion barrier depend signifi-
cantly upon the nuclear deformations and orientations as well
as on the choice of the EoS. Furthermore, a lower barrier
height for the R3Y NN potential when compared to the M3Y
NN potential is observed at all orientation angles. This is
because the relativistic R3Y NN potential, developed in terms
of nucleon-meson couplings [see Eq. (8)], furnishes a much
more attractive nuclear potential than the nonrelativistic Reid
M3Y NN potential, written in terms of Yukawa terms that
are fit to reproduce the G-matrix elements in an oscillator
basis [25,27].

For a more comprehensive and quantitative investiga-
tion of the variation of the fusion barrier height with the
target quadrupole deformation and orientations, the s-wave
(� = 0) barrier heights VB (MeV) are plotted as a function
of target orientation angle (θ2) in Fig. 3 for the 12 re-
actions under study, i.e., (a) 16O + 148Nd, (b) 16O + 150Nd,
(c) 16O + 154Sm, (d) 16O + 176Yb, (e) 16O + 176Hf, (f)
16O + 180Hf, (g) 16O + 182W (h) 16O + 186W, (i) 48Ca + 32S,
(j) 48Ca + 154Sm, (k) 48Ca + 168Er, and (l) 48Ca + 238U. Here,
the filled symbols represent the barrier heights obtained by
using the R3Y NN potential and deformed RMF densities,
whereas, the hollow symbols represent those obtained us-
ing the M3Y NN potential integrated with deformed RMF
densities. The solid and dashed lines without symbols in
Fig. 3 denote the barrier height obtained using spherically
symmetric RMF densities along with the R3Y and M3Y NN
potentials, respectively. The quadrupole deformation parame-
ters (β2) calculated from the axially deformed RMF approach
using the different parametrizations for the target nuclei are
also denoted in the respective panels of Fig. 3. It can be
clearly noted from the panels of Fig. 3 that the R3Y NN

potential gives a lower barrier than the M3Y NN potential
in the case of a spherical density, for all the reactions under
study. This observation also persists at a given θ2, when the
effect of target quadrupole deformation is included. Also,
the lowest and highest barrier height are observed at θ2 = 0◦
and θ2 = 90◦, respectively, for both the M3Y and R3Y NN
potentials for all the reactions under study. This is because the
target nuclei are all prolate (β2 > 0) in their ground state and
when a prolate target collides with a spherical projectile, the
interaction radius will be maximum (cold, elongated configu-
ration) at θ = 0◦ and minimum (hot, compact configuration)
at θ = 90◦. The increase in the barrier height on changing θ2

from 0◦ to 90◦ is smallest (1.94 MeV for R3Y and 1.98 MeV
for M3Y) for the 48Ca + 32S reactions, in which the lightest
compound nucleus (CN) is formed and is the largest (20.72
MeV for R3Y and 20.97 MeV for M3Y) for 48Ca + 238U,
leading to the formation of a CN in the superheavy mass
region. For the 48Ca + 168Er reaction, involving the target nu-
cleus with the highest β2 = 0.352, the change in barrier height
on changing θ2 from 0◦ to 90◦ is 19.51 (19.76) MeV for the
R3Y (M3Y) NN potential. Moreover, this shift in the barrier
height is slightly smaller for the R3Y NN potential in compar-
ison to the M3Y NN potential for the reactions considered.
On comparing the barrier heights obtained including target
quadrupole deformation with those obtained using spherical
RMF densities, we observe that the former are smaller than the
latter at θ2 � 60◦ for the M3Y NN potential and at θ2 � 58◦
for the R3Y NN potential for all the considered reactions.
The θ2 value at which the barrier height obtained for the
deformed case surpasses that obtained for the spherical case is
always smaller for the R3Y NN potential than the M3Y NN
potential for all the reactions. Moreover, this value is smaller
(θ2 � 58◦) for 16O induced reactions than that (θ2 � 61◦) for
48Ca induced reactions.

On comparing the barrier heights obtained for different
RMF parameter sets for the case of s spherical target, it can
be noted that the hybrid parameter set gives the lowest barrier,
whereas the NL3 set gives the highest fusion barrier for all the
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FIG. 3. Variation in the height of the s-wave (� = 0) barrier VB (MeV) with target orientation angle (θ2) for the nuclear potential obtained
by folding the M3Y and R3Y interactions with deformed RMF densities obtained for hybrid (black), NL3∗ (blue) and NL3 (orange) sets.

reactions under study. Thus, it can be inferred that the param-
eter set with the softest EoS gives the lowest barrier height.
This trend also persists at a given θ2 when the effect of target
quadrupole deformation is included, but only for the reactions
for which the hybrid, NL3∗, and NL3 parameter sets give
similar values of β2. Moreover, the barrier height at higher
orientation angles is directly proportional to the quadrupole
deformation, whereas at lower orientation angles, the trend
of the barrier height obtained for different parametrizations
depends upon both the β2 values and choice of EoS. A more
careful study of Fig. 3 shows that the change in the bar-
rier height upon the inclusion of quadrupole deformation is
smaller for the R3Y NN potential than the M3Y interaction

at smaller orientation angles. This trend however becomes
inverted at θ2 � 59◦ for the 16O induced reactions and at
θ2 � 63◦ for the 48Ca induced reactions. The barrier heights
obtained by folding the M3Y NN potential with quadrupole
deformed densities are smaller than those obtained by folding
the R3Y NN potential with spherical RMF densities at θ2 �
30◦. The barrier height obtained for the R3Y NN potential
folded with deformed RMF densities surpasses the barrier
height obtained for the M3Y NN potential folded with spher-
ical RMF densities at larger orientation angles (θ2 � 87◦)
for the 16O induced reactions involving target nuclei hav-
ing β2 � 0.279, i.e., 16O + 150Nd, 16O + 154Sm, 16O + 176Yb,
16O + 176,180Hf, and 16O + 182W. All these observations imply
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FIG. 4. The cross section σ (mb) as a function of the center-of-mass energy Ec.m. (MeV) obtained using (a) the M3Y and (b) the R3Y NN
potentials and deformed densities for the 16O + 154Sm reaction at different target orientation angles (θ2).

that the inclusion of target quadrupole deformations and the
related orientation significantly modify the properties, such as
the height, position and shape, of the total interaction potential
generated between two fusing nuclei.

The properties of the interaction barrier are prerequi-
sites to obtaining the fusion probability for two interacting
heavy ions. Here, we have used the Hill-Wheeler approx-
imation [97] to obtain the transmission coefficient, which
is further employed to calculate the cross section from the
�-summed Wong model [31,36,69,70]. In recent studies, the
�-summed Wong model equipped with nuclear potential cal-
culated using spherical RMF densities and the relativistic
R3Y NN interaction has been used frequently to explore
fusion dynamics [31–38]. In the present analysis, we move
a step further by including the impact of the nuclear shape
degrees of freedom in the calculation of nuclear poten-
tials and cross sections for the systems 16O + 148,150Nd,
16O + 154Sm, 16O + 176Yb, 16O + 176,180Hf, 16O + 182,186W,
48Ca + 32S, 48Ca + 154Sm, 48Ca + 168Er, and 48Ca + 238U re-
actions. The �max values in the energy region above the barrier
are obtained from the sharp cut-off model [98], while an
energy-dependent extrapolation is used for below-barrier en-
ergies. As discussed above, the characteristics of the total
interaction potential depend upon the angle between the in-
ternuclear separation axis and the axis of symmetry of the
quadrupole-deformed target nucleus (θ2).

To further explore the impact of target orientation on nu-
clear fusion, the cross section obtained for hybrid (black
lines), NL3∗ (blue lines), and NL3 (orange lines) sets with
the inclusion of target quadrupole deformation is plotted at
orientation angles θ2 = 0◦ (dashed lines), 45◦ (dash double
dotted lines), and 90◦ (dotted lines) in Fig. 4 for the illustrative
case of the 16O + 154Sm reaction. Figures 4(a) and 4(b) repre-
sent the cross section obtained using deformed RMF densities
as well as the M3Y and R3Y NN potentials, respectively.
The cross section calculated using the spherically symmetric
RMF densities (solid lines) and experimental data [72] (black
spheres) are also shown here for comparison. It can be clearly
seen from Fig. 4 that the cross-section changes significantly

at near and sub-barrier energies (Ec.m.) with the inclusion
of nuclear shape degrees of freedom, i.e., target quadrupole
deformation. Further, the cross section is observed to decrease
as the target orientation angle (θ2) increases, with a minimum
cross section obtained at θ2 = 90◦. This is because the surface
density of 154Sm having a prolate shape (β2 = 0.320) has
a minimum radius at θ2 = 90◦ [see Fig. 2(a)], which leads
to a higher fusion barrier and a lower cross section at this
orientation. On comparing the cross section obtained with
spherical RMF densities to that obtained using deformed RMF
densities, an increase in the cross section is noted on the inclu-
sion of target quadrupole deformation at θ2 � 45◦. Moreover,
the hybrid and NL3 parameter sets are observed to give the
highest and lowest cross section for the case of spherical tar-
gets. On the other hand the NL3∗ parameter set is observed to
give the lowest cross section at θ2 = 0◦ and θ2 = 45◦, whereas
the hybrid parameter set yields the lowest cross section at
θ2 = 90◦. Further, a higher cross section is observed using the
R3Y NN potential in comparison to the M3Y NN one at each
orientation angle. The reason is that the R3Y NN interaction
generates a more attractive nuclear potential which leads to
a lower fusion barrier and consequently a higher cross sec-
tion in comparison to the nonrelativistic M3Y NN potential.
On comparing the theoretical results with the experimental
data, one finds that both the M3Y and R3Y NN potentials
underestimate the cross section when folded with the spheri-
cal RMF densities. However, a reasonable correspondence is
observed with the inclusion of target quadrupole deformation
at θ2 = 45◦ for the R3Y and at θ2 = 0◦ for the M3Y NN
potential. However, during the experimental measurement of
a cross section, the target nuclei are not aligned at a particular
angle. So, for a more comprehensive analysis, integrated cross
sections [see Eq. (17)] are calculated for the considered heavy-
ion reactions.

Figure 5 displays the total θ2-integrated cross section σint

(mb) calculated using the deformed densities along with
the relativistic R3Y (thick solid lines) and M3Y (thin solid
lines) effective NN potentials versus the center-of-mass en-
ergy Ec.m. (MeV) for (a) 16O + 148Nd, (b) 16O + 150Nd,
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FIG. 5. The total integrated cross-section σint (mb) obtained using the R3Y and M3Y NN potentials for spherical and prolate target nuclei.
The experimental data [71–78] is also given for comparison. See text for details.

(c) 16O + 154Sm, (d) 16O + 176Yb, (e) 16O + 176Hf, (f)
16O + 180Hf, (g) 16O + 182W (h) 16O + 186W, (i) 48Ca + 32S,
(j) 48Ca + 154Sm, (k) 48Ca + 168Er, and (l) 48Ca + 238U reac-
tions. The cross sections calculated using the spherical RMF
densities along with the R3Y (dashed lines) and the M3Y
(dotted lines) as well as the experimental data [71–78] (black
spheres) are also plotted in Fig. 5 for comparison. We note
that similar �max values are found for a given center of mass
energy for the 12 different nuclear potentials obtained by
folding the M3Y and R3Y NN potentials with spherical and
deformed RMF densities obtained for the hybrid (black lines),

NL3∗ (blue lines), and NL3 (orange lines) sets. The hybrid
parameter set, with comparatively soft EoS, is noted to give
the highest cross section, which also shows a better match
with the experimental data. A significant enhancement in
the cross section, which becomes more prominent in the
sub-barrier energy region can be clearly noticed for all the
reactions upon the inclusion of target quadrupole deformation
in the description of the nuclear interaction potential within
the RMF formalism. The θ2-integrated cross section ob-
tained for spherically symmetric RMF density folded with
both M3Y and R3Y interactions is found to underestimate
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the experimental data for all the considered reactions. This
underestimation of the cross section is smaller for the rel-
ativistic R3Y interaction as compared to its nonrelativistic
M3Y counterpart. The overlap between the experimental data
and cross section calculated from the Reid version of the
M3Y NN potential however becomes better on folding with
the deformed RMF densities, but still underestimates the ex-
perimental data at sub-barrier energies. On the other hand,
a reasonable overlap with the experimental data is noted for
the cross section calculated using the microscopic R3Y NN
potential and the deformed RMF densities obtained using
the considered three nonlinear parametrizations for the 12
heavy-ion fusion reactions under study. Moreover, the θ2-
integrated cross sections calculated by employing different
nuclear potentials overlap at above barrier energies because
the impact of the deformed nuclear structure is suppressed in
the above barrier region and the centrifugal potential plays
a major role. All these observations lead to the conclusion
that the nuclear potential evaluated from the relativistic R3Y
NN potential and RMF densities along with the inclusion of
nuclear shape degrees of freedom and orientation is necessary
to study nuclear fusion. However, a slight underestimation of
the experimental cross section can be noticed for 16O + 154Sm,
48Ca + 32S, 48Ca + 154Sm, and 48Ca + 238U reactions at deep
sub-barrier energies. This discrepancy might be due to higher
order deformations such as the hexadecapole (β4) deformation
of the target nuclei which has not been incorporated in this
analysis. The investigation of the impact of these higher-order
deformations and other nuclear structure effects on the fusion
and decay dynamics will be pursued in future studies.

IV. SUMMARY AND CONCLUSIONS

The impact of nuclear shape degrees of freedom and
orientation on the fusion mechanism is explored using
the well-established relativistic mean-field (RMF) approach.
First, the quadrupole deformation parameter (β2) for the target
nuclei considered is calculated within the RMF formalism
in an axially deformed harmonic oscillator basis using the
nonlinear hybrid, NL3∗, and NL3 parameter sets. These β2

values for the prolate target nuclei are used to include the
effect of nuclear quadrupole deformations and orientation in
the RMF density distributions through the nuclear radius. The
equivalent surface diffuseness parameters are also calculated
for the proton and neutron densities from the RMF formal-
ism. The deformed densities and relativistic R3Y effective
NN potential are employed to evaluate the deformation and
orientation-dependent nuclear potential using the double fold-
ing model. This microscopic nuclear potential is further used
to explore the fusion dynamics of twelve even-even heavy-ion
reactions namely, 16O + 148,150Nd, 16O + 154Sm, 16O + 176Yb,
16O + 176,180Hf, 16O + 182,186W, 48Ca + 32S, 48Ca + 154Sm,
48Ca + 168Er, and 48Ca + 238U reactions with spherical and/or
nearly spherical projectile nuclei incident on deformed target
nuclei from different mass regions. The results of the relativis-
tic R3Y NN potential are also compared with the Reid version
of the well-adopted nonrelativistic M3Y NN potential.

The height of the fusion barrier is observed to decrease
upon the inclusion of target quadrupole deformations for
θ2 � 58◦ for R3Y NN potential and at θ2 � 60◦ for R3Y
NN potential. The height of the fusion barrier is observed
to increase with the increase in θ2 and the highest barrier
and shortest interaction radius are observed at θ2 = 90◦. The
change in the barrier characteristics with respect to the target
orientation angle θ2 becomes more prominent for the forma-
tion of compound nuclei in the heavier mass region. The R3Y
NN potential is observed to give lower barrier heights at a
given θ2 than the M3Y NN potential for all the reactions
under study. The deformation and orientation-dependent fu-
sion barrier properties obtained employing the RMF approach
are further used to calculate the cross-section within the �-
summed Wong model. Analogous to nuclear densities in the
tail region and the total interaction potential, significant mod-
ifications in the cross section are observed with the inclusion
of nuclear shape degrees of freedom and orientation. The
largest and smallest cross sections are obtained at θ2 = 0◦
and θ2 = 90◦, respectively, for both R3Y and M3Y NN po-
tentials folded with quadrupole deformed RMF densities. On
comparing the barrier characteristics obtained for different
RMF parameter sets, lower barrier height and higher cross
section are noted for the softer EoS. Moreover, the barrier
height (cross section) at higher orientation angles is observed
to increase (decrease) with the increase in quadrupole de-
formation. On the other hand, the barrier characteristics and
cross section at lower orientation angles depend upon both
the β2 values and choice of EoS. Further, θ2-integrated cross
sections are obtained for all the considered reactions using the
quadrupole deformed RMF densities and the results are com-
pared with those obtained using spherical RMF densities and
the available experimental data. An increase in cross-section is
observed at around and sub-barrier regions upon the inclusion
of target quadrupole deformation effects in the description of
the nuclear density distributions, which also leads to better
agreement with the experimental data. The nuclear potential
obtained using the deformed densities and microscopic R3Y
effective NN potential evaluated employing the RMF ap-
proach with the nonlinear hybrid parametrization is found to
give a better match with the experimental cross-sections when
compared to the Reid version of the M3Y NN potential for
all the reactions studied here. A more comprehensive analysis
of nuclear fusion, with the incorporation of the nuclear shape
degrees of freedom of both the reaction partners, i.e., target
as well as projectile nuclei, will be carried out in our future
studies.
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