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In this paper we focus on three mass regions where first-order phase transitions occur, namely, for N = 40,
60, and 90. We investigate four isotopic chains (Se, Zr, Mo, and Nd) in the framework of microscopic
Skyrme-Hartree-Fock+Bardeen-Cooper-Schrieffer calculations for 15 different parametrizations. The micro-
scopic calculations show the typical behavior expected for first-order phase transitions. To find the best candidate
for the critical point phase transition we propose different microscopic position and occupation indices calculated
for positive-parity and negative-parity proton and neutron single-quasiparticle states around the Fermi level.
The microscopic calculations are completed by macroscopic calculations within the algebraic collective model
(ACM), and compared with the experimental data for 74Se, 102Mo, and 150Nd, considered to be the best candidates
for the critical-point nuclei.
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I. INTRODUCTION

Quantum phase transitions (QPTs) [1–3] and critical-point
symmetries (CPSs) [4–7] in even-even atomic nuclei belong
to one of most studied topics in nuclear structure physics for
several decades. They are observed in chains of isotopes in
which the addition of two neutrons causes a radical change
of the nuclear structure, the sudden jump from vibrational
behavior in 150Sm to rotational behavior in 152Sm [5,8] being
a characteristic example. The neutron number is used as a con-
trol parameter in these transitions [9], while various collective
quantities are used as the order parameter [10–13].

The Ehrenfest classification of nuclear QPTs started in
1981 [14], with the realization that, within the parameter
space of the interacting boson model [15–18], a second-order
QPT takes place between U(5) (spherical) [15] and O(6)
(γ unstable, i.e., soft towards triaxial deformation) [17] nu-
clei, while a first-order QPT occurs between U(5) (spherical)
and SU(3) (deformed) [16] nuclei. The critical-point sym-
metries E(5) [4,19] and X(5) [5,20,21] have been introduced
in 2000 and 2001, respectively, for the description of these
QPTs within the framework of the Bohr collective Hamilto-
nian [22–24] providing parameter independent (up to overall
scales) predictions for spectra and transition rates at the crit-
ical point of these QPTs. The N = 90 isotones 150Nd [25],
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152Sm [8], 154Gd [26], 156Dy [27] have been suggested as the
best experimental manifestations of the X(5) CPS. A γ -rigid
version of X(5), called X(3), in which the γ value has been
fixed to zero, has also been introduced [28].

Even before the introduction of the concept of CPS, the
mechanism of the onset of deformation within microscopic
models was investigated in a series of papers by Feder-
man and Pittel [29–32]. They pointed out the crucial role
played by the proton-neutron interaction in the creation of
deformation, in particular stressing the major role played by
intruder neutron orbitals in the development of deformation
across the nuclear chart. In addition, the concept of quasi-
dynamical symmetries [33], i.e., symmetries persisting in
the presence of strong symmetry-breaking interactions has
been introduced for both first-order [34] and second-order
[35,36] QPTs.

Recently, the connection between CPSs linked to QPTs
and the effect of shape coexistence (SC) [37–41] attracted
considerable interest [42–45]. Shape coexistence [37–41] is
said to occur in nuclei in which the ground-state band and
an excited K = 0 band lie close in energy and simultane-
ously exhibit radically different structures and symmetries;
for example, one of them being spherical and the other one
deformed, or both of them being deformed, but one of them
exhibiting a prolate (rugby-ball-like) shape and the other one
showing an oblate (pancake-like) one. The N = 60 isotones
100Zr [42–44] and 98Sr [45] have been found as the best nuclei
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in which the connection between CPS and QPT is observed.
The relevant studies have been carried out in the framework
of the IBM with configuration mixing (IBM-CM), which takes
particle-hole (p-h) excitations into account [46–49] and allows
for mixing of the ground-state configuration of N bosons
with the excited 2p-2h configuration, described by N + 2
bosons [50,51]. It should be noticed that the occurrence of
phase coexistence in the region of transition between spher-
ical and deformed shapes has been pointed out in the IBM
framework already in 1998 [52], while the structural similarity
between the N = 90 and N = 60 regions has been pointed out
already in 1981 [53], implying a common microscopic origin
of the QPT from spherical to deformed shapes in these two
regions. Furthermore, it has been recently suggested [54–56]
that 100Zr is the critical point of two intertwined QPTs, the
one from spherical to deformed shapes already mentioned and
another one from normal configurations (without particle-hole
excitations) to intruder configurations (involving particle-hole
excitations).

In addition, a recent study [57] of the systematics of energy
levels and B(E2) transition rates in the N = 40 region around
74Se pointed out the structural similarity of the N = 40 region
to the above-mentioned N = 60 and N = 90 regions. It has
been shown that in all these three regions intruder orbitals
start participating to the onset of deformation. In particular,
neutron particle-hole excitations are found to lead to both SC
and QPT from spherical to prolate deformed shapes taking
place in parallel.

The above findings suggest that the three regions with
N = 90, N = 60, and N = 40 exhibit in a similar way a QPT
from spherical to deformed shapes, based on the microscopic
picture of the onset of deformation due to increased proton-
neutron interaction, with SC triggered at the same time by the
creation of neutron particle-hole excitations [called proton-
induced particle-hole excitations in the framework of the dual
shell mechanism [58] for SC developed within the proxy-
SU(3) approximation [59–61], corroborated through covariant
density-functional theory calculations [62,63]]. Theoretical
calculations in these three regions, related to the presence of
SC, have been recently reviewed in Ref. [41].

However, despite the similar microscopic origins of the
three regions, only the critical isotones with N = 90 can be
described in terms of the parameter-free predictions of the
X(5) CPS [8,25–27], while for N = 60 and N = 40 the data
for spectra and B(E2) transition rates are far from the X(5)
predictions. It is therefore of interest to look for a more
flexible theoretical framework, possibly able to accommodate
these three critical regions simultaneously.

Therefore, in the present paper we investigate the three
CPS regions within different microscopic and macroscopic
approaches, attempting to shed more light on the nature of
the CPS and possibly find a common framework for all of
them. In Sec. II empirical systematics of different spectral
and transitional signatures of CPS are discussed in the three
regions of interest. In Sec. III we turn to microscopic calcu-
lations based on the Skyrme-Hartree-Fock+Bardeen-Cooper-
Schrieffer (SHF+BCS) model to study potential-energy
curves (PECs) as functions of quadrupole, octupole and hex-
adecapole deformations, and introduce microscopic position

and occupation indices for positive-parity and negative-parity
proton and neutron single-quasiparticle states around the
Fermi level. In Sec. IV we briefly introduce the algebraic
collective model (ACM), which is then applied to 74Se, 102Mo,
and 150Nd in Sec. V.

II. EMPIRICAL SYSTEMATICS

We are going to use the energy ratios

R4/2 = E (4+
1 )

E (2+
1 )

, R2/0 = E (2+
1 )

E (0+
2 )

, R2/2 = E (2+
γ )

E (2+
1 )

, (1)

as well as the rates of change with the neutron number
N (which possess twice the value of relevant mathematical
derivative),

dR4/2

dN
(N ) = R4/2(N ) − R4/2(N − 2),

dR2/2

dN
(N ) = R2/2(N ) − R2/2(N − 2). (2)

In addition we are going to use the transition rates
B(E2; 2+

1 → 0+
1 ), and their rate of change with the neutron

number N (which possesses twice the value of relevant math-
ematical derivative),

dB(E2; 2+
1 → 0+

1 )

dN
(N ) = B(E2; 2+

1 → 0+
1 )(N )

− B(E2; 2+
1 → 0+

1 )(N − 2), (3)

The ratio R4/2 is a well-known indicator of collectiv-
ity [64], obtaining values 2.0–2.4 for near-spherical nuclei,
2.4–3.0 for γ -unstable nuclei, and 3.0–3.33 for deformed
nuclei.

The transition rate B(E2; 2+
1 → 0+

1 ) is known [65] to be
proportional to the square of the quadrupole deformation pa-
rameter β, expressing the deviation of the nuclear shape from
sphericity.

The ratio R2/0 is known [57] to exhibit a maximum in the
region of the QPT from spherical to deformed nuclei.

In Fig. 1 an abrupt increase of R4/2 is seen at N = 90 in
the Nd-Sm-Gd-Dy region, at N = 60 in the Sr-Zr-Mo region,
and at N = 42 in the Zn-Ge-Se region. This is corroborated
by the rate of change of R4/2 vs N [10] within these series of
isotopes.

In Fig. 2 an abrupt increase of B(E2; 2+
1 → 0+

1 ) is seen
around N = 90 in the Nd-Sm-Gd-Dy region, around N = 60
in the Sr-Zr-Mo region, and around N = 42 in the Zn-Ge-
Se region. This is corroborated by the rate of change of
B(E2; 2+

1 → 0+
1 ) vs N [10] within these series of isotopes.

In Fig. 3 maxima of the energy ratio R2/0 are seen around
N = 88 in the Nd-Sm-Gd-Dy region, around N = 58 in the
Sr-Zr-Mo region, and around N = 40 in the Zn-Ge-Se region.
In other words, the maxima appear two neutrons earlier in
relation to the maximal changes of R4/2 and B(E2; 2+

1 → 0+
1 )

seen in Figs. 1 and 2.
In Fig. 4 an abrupt increase of R2/2 is seen around N = 90

in the Nd-Sm-Gd-Dy region, around N = 60 in the Sr-Zr-Mo
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FIG. 1. Experimental [67] energy ratios R4/2 and their rate of change dR4/2/dN with respect to the neutron number N in the N = 90, 60,
40 regions. See Sec. II for further discussion.

region, and around N = 42 in the Zn-Ge-Se region. This is
corroborated by the rate of change of R2/2 vs N [10] within
these series of isotopes.

In Table I the values of these quantities for the nuclei close
to the maxima are reported. We see that while the three re-

gions exhibit in Figs. 1–4 very similar behavior, the numerical
values in each region differ. In particular,

(a) the R4/2 ratio exhibits near-rotational values in the N =
90 region, intermediate values in the N = 60 region,
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FIG. 2. Experimental B(E2; 2+
1 → 0+

1 ) transition rates [68] and their rate of change dB(E2; 2+
1 → 0+

1 )/dN with respect to the neutron
number N in the N = 90, 60, 40 regions. See Sec. II for further discussion.

and much lower, near-vibrational values in the N = 40
region.

(b) in qualitative agreement with (a), the B(E2; 2+
1 → 0+

1 )
transition rate exhibits higher values in the N = 90

region, intermediate values in the N = 60 region, and
lower values in the N = 40 region. This is expected,
since the B(E2; 2+

1 → 0+
1 ) transition rate is propor-

tional to the square of the quadrupole deformation
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FIG. 3. Experimental [67] energy ratios R2/0 in the N = 90, 60, 40 regions. See Sec. II for further discussion.

β [65], despite the fact that part of the difference is
due to the factor A4/3 accompanying β2 in the relevant
equation [65].

(c) the R2/0 values exhibit the opposite trend, namely,
lower values in the N = 90 region, evolving to higher
values in the N = 40 region, in agreement to the well-
known fact [67] that the 0+

2 state raises to very high
values as a nucleus approaches the rotational limit of
R4/2 = 10/3.

(d) the R2/2 ratio exhibits higher values in the N = 90
region, intermediate values in the N = 60 region, and
lower values in the N = 40 region, corroborating the
structural similarity between the ground state band and
the γ band [69].

These observations indicate that the parameter-
independent values of R4/2 = 2.904 and R2/0 = 0.177 [5,66]
characterizing the X(5) critical-point symmetry [5] apply
very well to the N = 90 isotones, but they do not apply in the
N = 60 and N = 40 regions, for which a more flexible model
appears to be required. The values seen in the N = 40 region,

in particular, are quite similar to the parameter-independent
values of R4/2 = 2.44 and R2/0 = 0.35 seen in X(3) [70], the
γ -rigid analog of X(5).

The N = 90 isotones 150Nd [25], 152Sm [8], 154Gd [26],
156Dy [27] are well established examples of the X(5) critical-
point symmetry.

In the N = 60 region, 104Mo62 has initially been sug-
gested [71] as an X(5) candidate, based on its ratio R4/2 =
2.917, which is very close to the X(5) value of 2.904. In
addition, its ratio R2/0 = 0.217, is also very close to the X(5)
value of 0.177. However, it was later disregarded, since its
B(E2)s within the ground-state band have been found [72]
to exhibit a deformed behavior. Figures 1–4 suggest that the
N = 60 isotones 98Sr, 100Zr, 102Mo are better candidates for
the critical point of the spherical to deformed QPT in the
Z = 40 region.

It should be noticed that Figs. 1–4 shed light on the nature
of ground-state QPTs [3,11,12]. According to the Ehrenfest
classification, a first-order phase transition occurs when the
first derivative of a physical quantity (serving as the order
parameter) exhibits a discontinuity with respect to the con-
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FIG. 4. Experimental [67] energy ratios R2/2 and their rate of change dR2/2/dN with respect to the neutron number N in the N = 90, 60,
40 regions. See Sec. II for further discussion.

trol parameter [11,12]. The ground-state spectra and B(E2)
transition rates shown in Figs. 1 and 2 suggest the occurrence
of a first-order ground-state QPT within the ground-state
band for nuclei around N = 90, 60, 42, since the rate of
change of these quantities vs the neutron number N exhibits a

discontinuity, while the quantities themselves show an in-
crease with N , which becomes abrupt at the critical point of
the QPT. The same behavior is seen in Fig. 4, suggesting a
similar behavior for the γ band. However, this is not the case
for the ratio R2/0 (Fig. 3), which presents itself a maximum
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TABLE I. Energy ratios R4/2, R2/2, and transition rates B(E2; 2+
1 → 0+

1 ), as well as their rates of change as a function of the neutron number
N , (dR4/2/dN )(N ), (dR2/2/dN )(N ), and [dB(E2)/dN](N ), are listed for nuclei at N = 90, 60, 42, and 40, lying near the maxima appearing in
Figs. 1–4. In addition, the energy ratios R2/0 are shown for the isotones listed, labeled as R2/0(N ). The parameter-independent predictions of
the critical-point symmetries X(5) [5,66] and X(3) [28] are also shown for comparison. See Sec. II for further discussion.

B(E2) dB(E2)
dN (N )

Nuc. R4/2
dR4/2

dN (N ) W.u. W.u. R2/0(N ) R2/2
dR2/2

dN (N )

150Nd90 2.927 0.434 114.4 56.9 0.193 8.156 4.017
152Sm90 3.009 0.693 143.7 86.8 0.178 8.916 5.786
154Gd90 3.015 0.821 158.0 89.3 0.181 8.095 4.873
156Dy90 2.934 0.700 149.2 50.4 0.204 6.464 3.392
98Sr60 3.006 0.806 92.4 74.7 0.669 10.674 8.676
100Zr60 2.656 0.982 80.5 0.642 5.628 3.808
102Mo60 2.507 0.386 69.0 30.6 0.425 2.859 0.873
72Zn42 2.297 0.278 21.1 3.5 0.432 2.539 0.551
74Ge42 2.457 0.385 33.1 9.6 0.402 2.021 0.266
76Se42 2.380 0.232 45.1 6.4 0.498 2.175 0.176
74Se40 2.148 0.249 38.7 17.4 0.743 1.999 0.472
X(5) 2.907 0.177
X(3) 2.440 0.350

around the critical point. This difference is rooted to the
fact that the ground-state band and the γ band tend to have
similar structures [69], while the nature of the β band has
been a point of controversy [73–76], with the first excited
0+ state being able to correspond to several different phys-
ical situations and not necessarily to the bandhead of the β

band [77].

III. MICROSCOPIC MEAN-FIELD CALCULATIONS

The regions of interest have been investigated within
several different mean-field frameworks. Nonrelativistic cal-
culations using the Skyrme interaction have been performed
for the Nd-Sm-Gd-Dy [78] and Zr [79,80] isotopes, while
the Gogny interaction has been used in the Nd-Sm-Gd-
Dy [81–83], Zr [84], and Se [85] regions. Relativistic
mean-field calculations have been performed for the Nd-

Sm-Gd-Dy [86–88] and Sr-Zr-Mo [89–92] isotopes. A
five-dimensional quadrupole collective Hamiltonian with pa-
rameters determined from relativistic mean-field calculations
has been used in the Nd-Sm-Gd-Dy [93–95] and Sr-Zr-
Mo [96] isotopes. In addition, an IBM Hamiltonian with
parameters determined by covariant density-functional theory
calculations has been applied to the Nd-Sm-Gd-Dy [97–100],
Sr-Zr-Mo [101], and Se [102] regions.

In the present section we are trying to accommodate all
three regions of N = 90, N = 60, and N = 40 within the same
theoretical framework.

Self-consistent mean-field methods based, e.g., on the
most widely used Skyrme-Hartree-Fock+Bardeen-Cooper-
Schrieffer (SHF+BCS) calculations [103] represent a mi-
croscopic possibility to investigate phase transitions in finite
nuclei. One would expect to observe a typical bump structure
in the potential-energy curve (PEC) calculations as a function

FIG. 5. PECs as a function of β2 for (a) 74Se and (b) 76Se for all investigated parametrizations. The parametrization SV-mas07 (violet
dashed) gives a slightly different PEC compared with the others.
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FIG. 6. PECs as a function of β2 for the selenium isotopes for two SHF parametrizations, (a) SV-bas and (b) SV-mas07. Flat-bottomed
PECs are indicated by thicker curves.

of the quadrupole deformation parameter β2 [97,98], which
manifests itself in a wider flat region around the minimum
of the PEC compared with neighboring nuclei. In addition,
the presence of opposite-parity intruder states in both proton
and neutron single-quasiparticle spectra close to the Fermi
level represents another microscopic signature of the phase
transition [29–32].

Because there exist plenty of SHF functional parametriza-
tions we investigate here the whole family of parametrizations
based on the SV-bas one (15 parametrizations) [104]. In cal-
culations using the axial SHF code SKYAX [105] with a density
dependent δ-force interaction in the pairing channel [106],
single-particle levels up to 75 MeV were taken into account
(eight oscillator shells). We investigated PECs as a function of
quadrupole β2, octupole β3 and hexadecapole β4 deformations
for four isotopic chains around N = 40, 60, and 90 (68Se–
80Se, 92Zr–104Zr, 94Mo–106Mo, 144Nd–156Nd).

In the selenium chain all parametrizations predict similar
PECs; the parametrization SV-mas07 gives slightly different
results (see Fig. 5). In the quadrupole deformation PECs

one observes phase transition from oblate to prolate shape
at N = 38–44 (see Fig. 6). For N = 40 SC is predicted with
one spherical and one oblate minimum close in energy. A
wider flat region is observed for N = 38 and 40 (SV-bas)
and for N = 40 and 42 (SV-mas07). Octupole deformation
does not play any significant role, as expected. Hexadecapole
deformation remains positive and close to zero (β4 = 0 for
N = 40 and 42).

In the zirconium chain all parametrizations again predict
similar quadrupole-deformation PECs with a more pro-
nounced minima for the SV-tls parametrization (see Figs. 7
and 8). Interestingly, for the SV-bas, one observes three min-
ima: oblate, spherical, and prolate for N � 58, the oblate one
and the spherical one being almost degenerate for N = 60 (the
flattest PEC). For SV-tls, the flat-bottomed PECs were found
for N = 58–60. Octupole deformation is again not important.
Hexadecapole deformation is around β4 = 0.

The molybdenum chain behaves similarly (see Figs. 9
and 10). The flat-bottomed PECs were found for N = 60
(SV-bas) and N = 58 (SV-tls).

FIG. 7. PEC as a function of β2 for (a) 98Zr and (b) 100Zr for all investigated parametrizations. The parametrization SV-tls (dark green
dashed) gives a more pronounced oblate minimum and the lowest energy differences for different β2 values.
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FIG. 8. PEC as a function of β2 for the zirconium isotopes for two SHF parametrizations: (a) SV-bas and (b) SV-tls. Flat-bottomed PECs
are indicated by thicker curves.

In the neodymium chain one observes a gradual develop-
ment of prolate deformation (see Fig. 11) with a wider flat
region around the prolate quadrupole deformation minimum
for N = 90 for all parametrizations (see Fig. 12). Octupole
deformation does not play any significant role; in the region
N � 90 octupole deformation softness occurs. Hexadecapole
deformation increases from β4 = 0 to β4 = 0.22 along the
chain with a PEC wider flat region for N = 60 (see Fig. 13).

To check if triaxiality plays an important role in the inves-
tigated regions we have to use SKY3D code [107]. Results for
the parametrization SV-bas are presented in Table II. Because
the codes use different definitions of β2, β2SKYAX is recalcu-
lated according to the β2 definition in the SKY3D code. One
can see that both values of β2 coincide and the triaxiality is
not important in the investigated regions.

To track the phase transitions on a single-quasiparticle
level, one has to investigate a relative position of single-
quasiparticle positive- and negative-parity proton and neutron
states with respect to the Fermi level. We, therefore, define

four new position indices I (ν, π ) for proton positive-parity
(ν = p, π = +), proton negative-parity (ν = p, π = −),
neutron positive-parity (ν = n, π = +), and neutron negative-
parity (ν = n, π = −) states. Values of I (ν, π ) are found from
I (ν, π ) = ∑

i(ν,π )(0.5 − |v2
i − 0.5|), where v2

i is the pairing
occupation probability of the state i and we sum over all
model states of defined ν and π . Because v2 = 0.5 exactly
at the Fermi level, the contribution of the levels close to the
Fermi level to the position index approaches the maximum
value of 0.5, whereas the contribution of the levels far from
the Fermi level approaches to zero. The position index also
depends on the strength of the pairing force. If it is low, the
indices approach zero, too. In the limit of zero pairing v2

i = 0
or 1 for all states i and I (ν, π ) = 0. Parity enables the sep-
aration of intruder states: In the selenium isotopes (Z = 34)
both proton and neutron intruder states have positive parity,
while in the zirconium (Z = 40) and molybdenum (Z = 42)
isotopes proton intruder states have positive parity and neu-
tron intruder states have negative parity. In the neodymium

FIG. 9. PECs as a function of β2 for (a) 100Mo and (b) 102Mo (b) for all investigated parametrizations. The parametrization SV-tls (dark
green dashed) gives a more pronounced oblate minimum and the lowest energy differences for different β2 values.
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FIG. 10. PECs as a function of β2 for the molybdenum isotopes for two SHF parametrizations: (a) SV-bas and (b) SV-tls. Flat-bottomed
PECs are indicated by thicker curves.

(Z = 60) isotopes, instead, proton intruder states have nega-
tive parity and neutron intruder states have positive parity. Re-
sults for selenium, zirconium, molybdenum, and neodymium
chains are presented in Figs. 14 and 15 for the SV-bas
parametrization.

In selenium isotopes protons and neutrons occupy the
same shell and I (p,+) = I (n,+) between N = 38 and 40
and around N = 44. I (p,−) = I (n,−) symmetrically around
N = 40 for N = 36 and N = 44. In zirconium isotopes
I (p,−) = I (n,−) for N = 56 and neutron intruder position
index I (n,−) reaches its maximum for N = 60, i.e., these
states are closer to the Fermi level. In molybdenum isotopes
I (p,−) = I (n,−) again close to N = 56 and the neutron
intruder position index I (n,−) gradually increases up to
N = 60.

In neodymium isotopes, both I (p,+) = I (n,+) and
I (p,−) = I (n,−) between N = 88 and 90 where the phase
transition should occur. The position indices for intruder pro-
ton negative-parity states and for proton positive-parity states

are almost the same. This means that an almost-equal number
of proton negative- and positive-parity states lie close to the
Fermi level, with a slight preference for the intruder states
(higher position index) before the phase-transition point.
Close to the phase-transition point a crossing of both indices
occurs and after it, the proton intruder states are more distant
from the Fermi level and, simultaneously, the proton pairing
gets weaker. A similar situation occurs for Mo, except the
weakening of the pairing interaction. A common feature of
both regions, N = 60 and N = 90, namely, a gradual increase
of I (n,+) and I (n,−) and a gradual decrease of I (p,+) and
I (p,−) is more pronounced in the case of neodymium. In
addition, in both regions, the intruder-neutron position index
approaches its maximum for N = 60 and 90, respectively,
indicating a maximum proximity of neutron intruder states to
the Fermi level.

If we look closely at the single-quasiparticle (qp) states
close to the Fermi level obtained in our SHF+BCS calcu-
lations, we can identify microscopic signatures of the CPS

FIG. 11. PECs as a function of β2 for the neodymium isotopes for two SHF parametrizations: (a) SV-bas and (b) SV-mas07. Flat-bottomed
PECs are indicated by thicker curves.
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FIG. 12. PECs as a function of β2 for 150Nd for all investigated
parametrizations. The parametrization SV-mas07 (violet dashed)
gives more pronounced minima.

on the single-particle level. Here, we restrict ourselves to the
SV-bas parametrization only, because for other parametriza-
tions similar results were obtained. The states resulting from
the SHF+BCS calculations are characterized by the projec-
tion of the total angular momentum jz on the symmetry axis
and their parity π . In Figs. 16–19 the occupation index i =
0.5 − v2 for the qp states closest to the Fermi levels for the
Se, Zr, Mo, and Nd chains is shown (the index i approaches
zero when the qp state approaches the Fermi level and is
positive for particle states and negative for hole states; in
addition, it approaches 0.5 for particle and −0.5 for hole states
if the qp states are distant from the Fermi level or the pairing
interaction is weak).

One can observe a typical proton-qp level crossing around
the phase-transition points: in the Se chain 1/2− gets occu-
pied while 5/2− is unoccupied, in the Zr and Mo chains the
intruder 9/2+ gets occupied while 1/2− is unoccupied, in
the Mo chain 7/2− gets occupied in addition, and in the Nd
chain 3/2+ and the intruder 1/2− get occupied while 5/2+

TABLE II. Comparison of quadrupole deformations, β2SKYAX

and β2Sky3D, γSky3D, calculated using SKYAX and SKY3D codes for the
parametrization SV-bas.

Nucleus β2SKYAX β2Sky3D γSky3D

68Se −0.150 0.147 60.0
70Se −0.126 0.132 60.0
72Se −0.102 0.108 60.0
74Se 0.000 0.000 22.4
76Se 0.000 0.003 52.4
78Se 0.053 0.063 0.1
80Se 0.090 0.086 0.0
92Zr 0.000 0.002 17.8
94Zr 0.000 0.004 7.2
96Zr 0.000 0.007 10.5
98Zr 0.000 0.004 53.2
100Zr −0.108 0.005 56.8
102Zr −0.114 0.122 59.6
104Zr −0.121 0.003 57.0
94Mo 0.000 0.003 5.4
96Mo 0.000 0.009 2.8
98Mo 0.000 0.012 4.6
100Mo 0.000 0.009 41.3
102Mo −0.114 0.118 57.1
104Mo −0.120 0.126 57.9
106Mo −0.126 0.129 59.4
144Nd 0.048 0.033 7.8
146Nd 0.089 0.089 0.2
148Nd 0.119 0.125 0.0
150Nd 0.179 0.203 0.0
152Nd 0.204 0.214 0.0
154Nd 0.210 0.219 0.0
156Nd 0.216 0.225 0.0

and the intruder 3/2− are unoccupied and the proton pairing
gets weaker.

For the Se chain and N = 40 the neutron pairing gets
weaker, at N = 38 neutron-qp states 1/2− and intruder 3/2+
cross the Fermi level and the intruder 9/2+ lies closer to the
Fermi level and later between N = 42 and 44, 5/2−, 3/2− and

FIG. 13. PEC as a function of (a) β3 and (b) β4 for the neodymium isotopes for SV-bas parametrization.
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FIG. 14. Position index I for the (a) selenium and (b) zirconium chains (SV-bas parametrization).

the intruder 5/2+ cross the Fermi level. For the Zr and Mo
chains, 1/2+ and intruders 3/2− and 7/2− cross the Fermi
level and become occupied, while for Mo only 5/2+ becomes
unoccupied. In the case of the Nd chain, 3/2− and the intruder
1/2+ get occupied around N = 90.

To summarize, we have found three possible microscopic
signatures of criticality (QPT): (i) flatness of PECs, (ii) posi-
tion index for neutron intruder states approaching a maximum
value, and (iii) occupation index of selected proton qp-levels
along the isotopic chain changes its sign (i.e., some particle
states become hole states and v.v. at the QPT point).

To bridge from the microscopic calculations within the
SHF + BCS model towards macroscopic calculations within
the algebraic collective model (ACM), we can use the pro-
cedure described in Ref. [108]. In macroscopic calculations
we need a potential VACM as a function of two deformation
parameters, β and γ . It can be constructed from the micro-
scopic PEC as a function of β2, V (β2) and expanded up to the
first-order term in cos 3γ :

V (β, γ ) = 1
2 [V (β2) + V (−β2)]

+ 1
2 [V (β2) − V (−β2)] cos 3γ . (4)

The potential obtained from Eq. (4) is composed of two
parts, a γ -independent symmetric part and a γ -dependent
antisymmetric part. The results for the investigated N = 40,
60, and 90 nuclei are shown in Figs. 20 and 21 for two
parametrizations, SV-bas and SV-tls. Qualitatively, we get a
γ -independent well for the symmetric part of the potential and
a decreasing antisymmetric γ -dependent potential for low and
medium quadrupole deformations.

IV. ALGEBRAIC COLLECTIVE MODEL

The algebraic collective model (ACM) [109–111], intro-
duced as a computationally tractable version of the collective
model of Bohr and Mottelson (BMM) [23,24] restricted
to quadrupole rotational and vibrational degrees of free-
dom, is characterized by a well-defined algebraic structure.
Unlike the conventional U(5) ⊃ SO(5) ⊃ SO(3) dynamical
subgroup chain used, for example, in the Frankfurt pro-
gram [112,113], as well as in the IBM [15,18], the ACM
makes use of the subgroup chain [114–118]

SU(1, 1) × SO(5) ⊃ U(1) × SO(3) ⊃ SO(2) (5)

FIG. 15. Position index I for the (a) molybdenum and (b) neodymium chains (SV-bas parametrization).
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FIG. 16. Occupation index i for the (a) proton and (b) neutron states closest to the Fermi level in the selenium chain (SV-bas
parametrization).

to define basis wave functions as products of β wave functions
and SO(5) spherical harmonics.

Several advantages result from this choice of the dynamical
subgroup chain:

(i) With the now available SO(5) Clebsch-Gordan coef-
ficients [119,120] and explicit expressions for SO(5)
reduced matrix elements, matrix elements of BMM
operators can be calculated analytically [110].

(ii) By appropriate choices of SU(1,1) modified oscil-
lator representations, the β basis wave functions
range [110] from those of the U(5) ⊃ SO(5) har-
monic vibrational model to those of the rigid β wave
function of the SO(5)-invariant model of Wilets and
Jean [121].

(iii) With these SU(1,1) representations, collective model
calculations converge an order of magnitude more
rapidly for deformed nuclei than in U(5)⊃ SO(5)
bases [111].

Thus, the ACM combines the advantages of the BMM and
the IBM and makes collective model calculations a simple

routine procedure [119,122]. A pedagogical treatment of the
geometrical and algebraic foundations of the ACM can be
found in the book by Rowe and Wood [123].

Recall that both E(5) [4] and X(5) [5] critical-point
symmetries correspond to special solutions of the Bohr
Hamiltonian [22], in which an infinite square well potential
in the quadrupole (β) degree of freedom is assumed. The
question of whether the assumption of a flat potential in both
models is justified has been raised and investigated using
various methods. Limiting ourselves to the regions of interest,
we mention the following cases:

(a) The need for a potential with a nonflat bottom in
152Sm within the geometric collective model has been
early realized [124]. A sextic potential possessing two
minima has been used in the Bohr Hamiltonian for
the description of some Nd [125], Mo [126], and
Se [127] isotopes. A potential with two minima (spher-
ical and deformed) has been recently employed in the
Bohr Hamiltonian for the description of the Zr iso-
topes [128,129]. The existence of a bump in the PES of

FIG. 17. Occupation index i for the (a) proton and (b) neutron states closest to the Fermi level in the zirconium chain (SV-bas
parametrization).
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FIG. 18. Occupation index i for the (a) proton and (b) neutron states closest to the Fermi level in the molybdenum chain (SV-bas
parametrization).

good experimental X(5) cases might be related to the
confined β-soft (CBS) rotor model [130], employing
an infinite square well potential displaced from zero,
as well as to the relevance of the Davidson potential
β2 + β4

0/β2 [131,132], where β0 is the minimum of
the potential.

(b) Potential-energy surfaces (PES) for the N = 90 iso-
tones calculated in the relativistic mean field (RMF)
framework [97,98] also exhibit a shape with two min-
ima. An alternative approach [99,133], allowing for
efficient calculation of spectra and transition rates, is
based on the use of an IBM Hamiltonian, the parame-
ters of which are determined by fitting the IBM PES to
the PES obtained from RMF calculations. The results
of these studies do not predict flat potential-energy sur-
faces (PES) for the N = 90 isotones [97–100], which
are the best experimental manifestations of X(5), while
a similar picture occurs also in the N = 60 [101] and
N = 40 [102] isotones.

(c) Shell-model calculations in the regions of interest have
been rather limited because of obvious computational
hurdles. However, recent calculations [134] for the Se

isotopes have pointed out the importance of the tensor
force [135,136] in shaping up the nuclear properties.
While the central force has a minimum at zero, the ten-
sor force possesses a minimum at a nonzero distance
from the center (see Fig. 1 of Ref. [134]), its shape
roughly resembling a Kratzer potential [137,138].
Monte Carlo shell-model calculations have recently
reached the Zr isotopes, studying the QPT appearing
in them at N = 60 [139,140].

From the above the importance of having a flexible po-
tential within the ACM to address these questions becomes
evident.

In our implementation of the ACM, observables of interest
are formed by taking sums of products of several generating
operators, that are SO(3) invariant, such as β̂2, ˆβ−2, β d

dβ
,

�2. The Hamiltonians that can be analyzed are polynomials
in these operators with coefficients that may be arbitrary real
numbers or functions of the quantum numbers on which they
operate.

FIG. 19. Occupation index i as a function of the neutron number for the (a) proton and (b) neutron states closest to the Fermi level in the
neodymium chain (SV-bas parametrization).
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FIG. 20. (a) Symmetric and (b) antisymmetric parts of the potential derived from the microscopic PECs for the SV-bas parametrization
and the investigated N = 40, 60, and 90 nuclei.

For the purposes of our study, the starting point will be the
Hamiltonian in the form

Ĥ = x1∇2 + x2 + x3β
2 + x4β

4 + x5

β2
+ x6β cos 3γ

+ x7β
3 cos 3γ + x8β

5 cos 3γ + x9

β
cos 3γ + x10 cos2 3γ

+ x11β
2 cos2 3γ + x12β

4 cos2 3γ + x13

β2
cos2 3γ

+ x14

h̄2 [π̂ ⊗ q̂ ⊗ π̂ ]0, (6)

where

∇2 = 1

β4

∂

∂β
β4 ∂

∂β
+ 1

β2
	̂ (7)

is the Laplacian on the five-dimensional collective model
space and 	̂ is the SO(5) angular-momentum operator [123].
Such a Hamiltonian, expressed in terms of the quadrupole
deformation parameters β and γ serves as a useful starting
point for a description of a wide range of nuclear collective

spectra. As the above Hamiltonian is a rational function of the
basic observables q̂ and π̂ , its matrix elements are obtained
efficiently via available analytic expressions.

V. NUMERICAL RESULTS OBTAINED WITHIN
THE ALGEBRAIC COLLECTIVE MODEL

In the numerical application of the ACM to the studied
nuclei we fitted the parameters of the Hamiltonian of Eq. (6) to
the experimentally known low-lying members of the ground,
beta, and gamma bands in 150Nd, 102Mo, and 74Se. Both theo-
retical and experimental spectra are shown in Figs. 22–24. As
for the 100Zr, the used ACM model does not give satisfactory
results. In an attempt to describe the very low energy of the
β bandhead (Rβ/21 = 1.56), the structure of the ground and
excited bands is severely disturbed. We intend to address this
issue in our future studies.

When fitting the experimental spectra, we take into ac-
count the fact that the first excited K = 0 state band is not
necessarily the β band [77]. There are still many questions

FIG. 21. (a) Symmetric and (b) antisymmetric parts of the potential derived from the microscopic PECs for the SV-tls parametrization and
the investigated N = 40, 60, and 90 nuclei.
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FIG. 22. Comparison of experimental (left) and ACM (right)
spectra for 150Nd. The energy difference between the 2+

1 and 0+
1

states is normalized to the experimental value in 150Nd. The B(E2)
transition rates are expressed in units of the B(E2, 2+

1 → 0+
1 ) = 1

transition. The parameters used in the ACM calculations are dis-
played in the right corner.

about the true nature of this state [73–76]. Thus, we focus the
comparison to the ground-state band and to the first-excited
2+ states, which are undoubtedly the γ bandheads. In doing
so, we try to achieve the best possible description of the
energy of the first-excited K = 0 state, whose low energy is a
signature of the shape phase coexistence, but it is challenging,
especially in case of 74Se. As a result of the attempt to describe
the low-lying K = 0 states we observe centrifugal stretching
in the ground band, all the more prominent when the energy
of the first-excited K = 0 state decreases.

FIG. 23. Comparison of experimental (left) and ACM (right)
spectra for 102Mo. The energy difference of the 2+

1 and 0+
1 states is

normalized to the experimental value in 102Mo. The B(E2) transition
rates are expressed in units of the B(E2, 2+

1 → 0+
1 ) = 1 transition.

The parameters used in the ACM calculations are displayed in the
right corner.

FIG. 24. Comparison of experimental (left) and ACM (right)
spectra for 74Se. The energy difference of the 2+

1 and 0+
1 states is

normalized to the experimental value in 74Se. The B(E2) transition
rates are expressed in units of the B(E2, 2+

1 → 0+
1 ) = 1 transition.

The parameters used in the ACM calculations are displayed in the
right corner.

Even if the three nuclei are candidates for critical-point
nuclei of a first-order QPT, we have already emphasized that
the energy conditions in them are very different. For example,
the ratio R42 decreases from 2.93 in 150Nd to 2.51 in 102Mo
and 2.15 in 74Se. This is very strongly reflected by the value
of the parameter x3, which increases from 150Nd to 74Se.

For 150Nd the agreement of the experimental and theo-
retical spectrum is very good. Along with the energies, the
moments of inertia of the bands are also relatively well de-
scribed. The β bandhead is significantly lower than the γ

bandhead, but relatively high compared with the other two
studied nuclei, the ratio Rβ2 = E (02)/E (21) being 5.2. Ob-
taining a low-lying β band is generally a big problem mainly
for lighter nuclei but in this case the energies of both β

and γ bandheads are well fitted by the model. We also see
that the ratio B(E2, 0+

2 → 2+
1 )/B(E2, 2+

1 → 0+
1 ) is 0.7 to be

compared with the experimental value of 0.37. A big value of
this ratio (above 0.3) is believed to be a signature of the QPT.

In case of 102Mo the ratio Rβ2 = E (02)/E (21) is about
2.4. In an attempt to fit such a low-lying state a pronounced
centrifugal stretching in the ground-state band is hard to avoid.
The ratio B(E2, 0+

2 → 2+
1 )/B(E2, 2+

1 → 0+
1 ) = 1 is in an ex-

cellent agreement with the experimental value of 0.95.
74Se is the lightest studied isotope with R42 having a

near-vibrational value of 2.15. Thus to get an overall good
agreement with the experimental spectrum a higher value of
the parameter x3 = −1 is needed. Some centrifugal stretching
is again observed in the ground band, but the energies and
moments of inertia of the γ band are very good. The energy of
the β bandhead is less satisfactory, being about twice as high
as its experimental counterpart. Consequently, the theoretical
ratio B(E2, 0+

2 → 2+
1 )/B(E2, 2+

1 → 0+
1 ) = 1 is much smaller

than the experimental value of seven.
Let us comment briefly on some of the parameters used

in the calculation. All in all, the parameters x5 and x8 allow
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FIG. 25. Ratios R42, Rβ2, and Rγ 2 as functions of (a) the ACM parameter x8 and (b) ratios R42, Rβ2, Rγ 2, and R2(β )2 as functions of the ACM
parameter x9.

us to reduce the ratios R42, Rβ2, Rγ 2 = E (2γ )/E (21), and
R2(β )2 = E (2β )/E (21), the effect of the parameter x8 being
more important (see Fig. 25). We may also notice that while
in 150Nd the 2+ member of the γ band is the third excited 2+
state, the situation changes in 102Mo where the 2+ member
of the γ band is the second excited 2+ state. [The second
or third excited 2+ state is identified as a γ bandhead based

on the basis of a stronger B(E2, 3+
1 → 2+

2,3) transition]. The
relative position of the 2γ and 2β states is strongly sensitive to
the parameter x9, as illustrated in Fig. 25. It can be seen that,
from a certain value of this parameter, the relative position
of the 2γ and 2β states changes. Therefore, the largest value
of x9 for 150Nd (among the three studied cases) is obvious. It
should be noted that the term proportional to parameter x10 in

FIG. 26. Symmetric (left) and antisymmetric (middle) parts of the ACM potential and the total ACM potential (right) obtained from the fit
to the experimental spectra of 150Nd. Potential terms diverging for β = 0 are excluded in the upper panel and included in the lower panel.
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FIG. 27. Symmetric (left) and antisymmetric (middle) parts of the ACM potential and the total ACM potential (right) obtained from the fit
to the experimental spectra of 102Mo. Potential terms diverging for β = 0 are excluded in the upper panel and included in the lower panel.

Hamiltonian of Eq. (6) can induce triaxiality. This term is not
needed for 150Nd, where microscopic calculations result in an
effective γ value of 0◦ (see Table II). In the case of 102Mo
and 74Se, a small parameter value of x10 = 0.5 leads to an
overall improvement of the fit of the experimental spectra.
This seems to be consistent with microscopic calculations,
where, especially in the case of 74Se, the effective value of
the parameter γ = 22◦.

In Figs. 26–28 potentials used in the ACM fits for 150Nd,
102Mo, and 74Se are plotted. Their similarity to the mi-

croscopic symmetric and antisymmetric potentials (Figs. 20
and 21) for low and medium quadrupole deformation values
is clearly visible, especially for 74Se and 102Mo, where the
symmetric parts V1(β ) exhibit a minimum at low or medium
deformations while the antisymmetric parts V2(β ) are decreas-
ing. The potentials presented for 102Mo and 74Se are shown
without the term x10 cos2 3γ in Eq. (6) for simplicity, and thus
under the assumption of zero triaxiality. The cases of 150Nd
and 102Mo are qualitatively very similar. The upper-left panel
(the symmetric potential part not depending on cos 3γ and

FIG. 28. Symmetric (left) and antisymmetric (middle) parts of the ACM potential and the total ACM potential (right) obtained from the fit
to the experimental spectra of 74Se.
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containing positive even powers of β) looks like a Davidson
potential, widely used in the context of QPTs [132], except
that it does not go to infinity at the origin. The upper middle
panel (the antisymmetric potential part that is cos 3γ depen-
dent and contains positive odd powers of β) again looks like
a Davidson potential. Their sum (upper-right panel) indicates
that the result is dominated by the even powers. In the lower-
left and middle panels we see that the negative even powers
of β lead to minus infinity at the origin, while the negative
odd powers lead to plus infinity at the origin. The final result
(lower-right panel) indicates that the negative even powers
dominate at the origin, but the negative odd powers dominate
a little further to the right. It is clear that it is shaped up by
the Davidson potential of the positive even powers, the minus
infinity potential contributed by the negative even powers near
the origin, and the plus infinity potential contributed by the
negative odd powers a little further to the right. The final result
resembles very much the confined beta-soft (CBS) model of
Pietralla et al., which uses an infinite square well potential dis-
placed from the origin. This has been used for both deformed
nuclei [130] and gamma-soft nuclei [70]. In other words, the
main contribution of the negative odd powers is to produce the
displacement from the origin.

In the case of 74Se it seems that the negative powers are
not needed, since no displacement from the origin seems to
be required. The total potential is dominated by the positive
even powers of β. A Davidson potential is created by the
positive even powers, but it is very shallow and looks flat.
The same holds for the total potential. Thus in the case of 74Se
the total potential looks very similar to the square well poten-
tial starting from the origin, which is used in the E(5) and X(5)
CPS. The only difference is that the right wall of the potential
does not rise abruptly to infinity but rises more smoothly,
resembling the sloped wall potential used by Caprio [141] in
the E(5) and X(5) frameworks. The main effect of the sloped
wall is that it allows the beta band to go lower in energy. It also
allows for R4/2 ratios lower than the 2.91 value predicted by
X(5). For example, in Fig. 6 of Ref. [141] one can see that the
spectra and B(E2)s for 150Nd are well reproduced by a sloped
well which has R4/2 = 2.667 (see also Fig. 5 of Ref. [141] for
sloped wall results producing R4/2 = 2.643). However, 74Se
has the experimental value of R4/2 = 2.148, thus this sloped
wall alone cannot describe it.

VI. CONCLUSIONS

In the present investigation three regions of the nuclear
chart (N = 40, 60, 90), in which a QPT from spherical to
deformed nuclei is observed, are studied on equal footing
in three different ways: (a) by consideration of the em-
pirical systematics of spectra and B(E2) transition rates,
(b) through microscopic mean-field calculations using the
Skyrme-Hartree-Fock+BCS approach, and (c) in the frame-
work of the Bohr Hamiltonian, using the algebraic collective
model. Several similarities and differences among these three
regions are pointed out.

The empirical systematics of spectra and B(E2) transition
rates indicate the uniform occurrence of a first-order QPT

in all three regions. In contrast, they also show that the nu-
merical values of the various indicators of collectivity differ
in the three regions, showing values corresponding to high
deformation at N = 90, intermediate deformation at N = 60,
and low deformation at N = 40. From this point of view, the
N = 90 QPT appears to be close to the parameter-independent
predictions given by the X(5) critical-point symmetry, while
the N = 40 region appears to be closer to the X(3) CPS.

The potential-energy curves obtained through microscopic
Skyrme-Hartree-Fock+BCS calculations for several different
parametrizations provide a flat-bottomed potential at nonzero
prolate deformation in the N = 90 region, while in the N =
60 region some degree of flatness is obtained on the oblate
side. In the N = 40 region signs of flatness appear around zero
deformation.

In the framework of the algebraic collective model, the
free parameters in front of the various terms in the Bohr
Hamiltonian are fitted to the data. The resulting potential-
energy curves in the N = 90 and N = 60 regions resemble
a Davidson potential possessing a deformed minimum, be-
ing at the same time displaced from the origin, in analogy
to the confined β-soft (CBS) model, applicable in deformed
and transitional nuclei. In contrast, the PEC obtained in the
N = 40 region resembles a flat potential starting from the
origin, as expected within the E(5) and X(5) CPSs, albeit with
a sloped right wall instead of a vertical one. The radically
different picture obtained for N = 40 can be attributed to the
fact that valence protons and neutrons in this case occupy the
same major shell.

Several open questions call for further investigations. It has
been shown that the symmetric and antisymmetric parts of the
microscopic PECs and the ACM potential behave in a similar
way at least for low and middle β2 values. To establish a
closer link between these two approaches one has to take into
account also vibrational and rotational zero-point corrections
in the PEC calculations and include higher-order terms in β2

and cos 3γ to obtain a more realistic ACM potential. The
rigid kinetic term in the ACM Hamiltonian should be also
replaced by a deformation dependent (β2 and cos 3γ ) term
derived from the microscopic mass tensor that might solve the
problem of rotational band stretching in 100Zr.

The preference for prolate shapes in the N = 90 region
and for oblate shapes in the N = 60 region should be further
investigated. Since spectra alone do not provide differentia-
tion between prolate and oblate shapes, relevant investigations
should be focused on the determination of the sign of the rele-
vant quadrupole moments, which is opposite for oblate nuclei
in relation to prolate nuclei. In light and medium-mass nuclei,
in which the valence protons and neutrons occupy the same
major shell, the influence of the SU(4) Wigner supermultiplet
symmetry should be taken into account [142].
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