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Determination of pairing matrix elements from average single particle level densities
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A simple and efficient method to treat nuclear pairing correlations within a simple Hartree-Fock–plus-BCS
description is proposed and discussed. It relies on the fact that the intensity of pairing correlations depends
crucially on level densities around the Fermi surface [ρ(eF )] and that any fitting of nuclear energies as functions
of the nucleon numbers is akin to a semiclassical average, smoothing out their quantal structure. A particular
attention has been paid to two points generally ignored in previous similar approaches. One is a correction
advocated by P. Möller and J. R. Nix [Nucl. Phys. A 536, 20 (1992)] taking into account the fact that the
data included into the fit correspond to ρ(eF ) values systematically lower than average. The second is due
to a systematic overestimation of the proton single particle (sp) level density at the Fermi surface resulting
from the local Slater approximation of the Coulomb exchange terms in use in most microscopic descriptions.
Our approach is validated by the agreement with data of corresponding calculated moments of inertia of
well and rigidly deformed rare-earth nuclei, evaluated according to the Inglis-Belyaev ansatz with some crude
Thouless-Valatin corrections. Indeed, the agreement found is at least of the same quality as that resulting from
a specific fit of the pairing intensities to these particular pieces of data. While this approach is currently limited
to the very simple seniority force pairing treatment, it may serve as a starting point to define pairing residual
interactions from averaged odd-even mass differences data, using merely average sp level densities associated
with the calculated canonical basis.
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I. INTRODUCTION

We aim at discussing a simple and phenomenologically
successful approach to determine the intensity of a pairing
residual interaction used in a two-step self-consistent ap-
proach of low energy nuclear structure as currently performed
and sketched below.

A self-consistent mean field is calculated upon using
any particle-hole effective interaction (here the Skyrme
parametrization will be considered for the strong interaction
part). This defines a single particle (sp) canonical basis from
which pairing correlations are introduced either within a self-
consistent Hartree-Fock (HF) approach (see the seminal paper
[1]) or within a diagonalization in a highly truncated particle-
hole basis (the so-called HTDA as introduced in [2]).

In order to do so, one makes an appropriate choice of the
residual interaction: seniority force (constant pairing matrix
elements around the chemical potential), delta interaction pos-
sibly with a density dependence to enhance the surface effects
[3], Gaussian in r space or separable in p space [4]. Here, as a
first step, to demonstrate the validity and performance of the

*Contact author: kmhock@utm.my
†Contact author: quentin@cenbg.in2p3.fr

general approach we will consider the simple seniority force
ansatz.

Bohr, Mottelson, and Pines [5] have pointed out, in partic-
ular, two nuclear spectroscopic properties strongly contingent
upon pairing correlations [odd-even mass differences δE and
moments of inertia J (MoI), i.e., in practice, the first 2+
energies in well and rigidly deformed nuclei]. Both are a
priori accessible to a theoretical description within the above
defined self-consistent approaches.

In a previous paper [6], making two independent fits of
these two properties in the rare earth region, it has been shown
that one has obtained very similar values for the parameters
of the seniority force matrix elements. This provides hints
that (a) as expected, pairing correlations are indeed (all things
being kept similar) the main factor to yield precise values of
δE as well as J , and (b) that such a simplified approach,
also followed here, was suited globally to describe these
properties.

However, in both approaches the quality of the agreement
with data was locally (i.e., around a given nucleus) contin-
gent upon a perfect reproduction of the ordering and fine
distribution of the sp energies. But a fit corresponds in its
very principle to a reproduction of some properties on the
average. The above quoted success was obtained upon con-
sidering reasonably sized samples so one could conclude that
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on the average the regime of pairing correlations was correctly
adjusted.

Taking stock of this remark, we have chosen here to per-
form an estimate of the pairing strengths using a tool a priori
less sensitive to local sp spectrum deficiencies. The question
we ask ourselves here is whether in doing so, we would obtain
a reproduction of MoI at least as good as what has been
obtained by a direct fit of these moments (see Ref. [6]).

In practice we used the so-called uniform gap method [7]
(see also Ref. [8]), providing a value of the average matrix
elements (around the Fermi energy) of the pairing residual in-
teraction upon adopting an adequate smooth parametrization
of the neutron and proton pairing gaps �(N, Z ).

Some special attention has been paid to two important
points of a different nature.

The first issue is of a physical nature. Some analytical
forms of the �(N, Z ) function have been proposed by Jensen
et al. [9] and Madland and Nix [10], but Möller and Nix [11]
have pointed out a systematic bias of these approaches related
to the lower than average character of the sp level density at
equilibrium deformations. They proposed a phenomenologi-
cal correction which we will adopt in this paper.

The second point concerns an approximation made in
most self-consistent calculations (including most of ours) for
the sake of numerical easiness. In previous studies (e.g., in
Table II of [6]) one has noticed that the treatment of pairing
correlations was significantly more successful for neutrons
than it was for protons. It has been hinted that it was related
to an approximate treatment of the nonlocal Fock term of
the Coulomb mean field due to Slater [12]. As discussed
in Sec. II D, this approximation systematically overestimates
the sp level density near the Fermi level [13–15]. A proper
account of this spurious enhancement was thus in order and
an appropriate correction to the proton sp level density has
been implemented upon comparing the effect of the Coulomb
exchange terms issued from approximate and exact calcula-
tions.

Calculations have been performed for a sample of 19 lan-
thanide nuclei supplemented by three isotopes of hafnium
and one isotope of tungsten (hereafter loosely refered to as
rare earth nuclei) and 22 actinide nuclei. They are listed in
Table I. These nuclei are well (β20 values in the 0.2–0.3
range with usual notation) and rigidly deformed. The latter
property is ascertained by a ratio of their first 2+ and 4+ levels
R42 � 3.290 as displayed in Table I (energy data taken from
the compilation of Ref. [16]).

The paper is organized as follows. The general fitting ap-
proach is presented in Sec. II. The extraction of averaged
sp level density is performed à la Strutinsky [7] from our
microscopic calculations for a sample of well and rigidly
deformed nuclei. The uniform gap method is used to extract
the matrix element of the pairing residual interaction upon
using the Möller-Nix ansatz for average �(N, Z ) values. The
definition of effective average gaps to be fitted as well as
the correction in the proton case for the approximation made
on the Fock Coulomb terms are also discussed there. Some
technical details are briefly presented in Sec. III. They include
the choice of the sample of deformed nuclei in the two con-
sidered regions of heavy deformed nuclei (around rare-earth

and actinide elements) and the specific choice made for the
Strutinsky averaging of the sp level density. Our results ob-
tained with three parametrisations of the Skyrme interaction,
namely SIII [17], SkM* [18] and SLy4 [19], for the moments
of inertia are presented in Sec. IV. Finally, Sec. V summarizes
the main conclusions of our work.

II. THE APPROACH

A. Overview of the approach

Assuming that we know the smooth behavior of the av-
erage neutron and proton pairing gaps with N and Z , we
devise here an approach to get the corresponding smooth
evolution of pairing matrix elements Vq (where q stands for
the charge states) averaged over a given sp valence space
being contained in the [λq − �, λq + �] range, where λq is
the Fermi energy to be defined later, while the above energy
interval (spanning a 2� energy range) characterizes the do-
main of sp states (of the canonical basis) active in the BCS
treatment.

From the exact sp level density ρ(e) as a function (rig-
orously speaking distribution) of the energy e, we define
a semiclassical sp level density function ρ̃(e) obtained in
practice by a Strutinsky averaging in e [7]. We recall
here the close connection of the Strutinsky energy averag-
ing with a semiclassical averaging à la Wigner-Kirkwood
(see Ref. [20]).

As stated in the introduction, we restrict ourselves in this
work to constant pairing matrix elements Vq for each charge
state q within an energy range of 2� centered around averaged
Fermi energies λ̃q defined below. Limiting the interval of sp
states active in the BCS variational process makes the value
of Vq dependent on the value of �, as well known. Here
consistently we will take � = 6 MeV.

The matrix elements Vq are determined in terms of the
averaged sp level densities ρ̃q(e) and the average pairing gaps
�̃q through the following gap equation:

1

Vq
=

∫ λ̃q+�

λ̃q−�

ρ̃q(e)√
(e − λ̃q)2 + �̃2

q

de. (1)

The Fermi energies λ̃q are defined from the average density
ρ̃q(e) for a total fermion number Nq such that

Nq =
∫ λ̃q

−∞
ρ̃q(e)de. (2)

A frequently used approximation of the above gap equa-
tion consists in assuming that the variation of ρ̃q(e) is small
enough within the [λ̃q − �, λ̃q + �] sp energy interval so that
one can replace it by a constant, namely its Fermi energy
value ρ̃q(λq). Upon performing the integral one then obtains a
closed form formula for Vq as

1

Vq
= 1

2
ρ̃q(λq) sinh−1

(
�

�̃ q

)
. (3)

This approximation is shown to be indeed rather good,
as displayed in Fig. 1 where we have plotted the difference
in the pairing matrix elements obtained using Eqs. (1) and
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TABLE I. The ratio of the first 4+ over 2+ energy R42, the estimated neutron Vn and proton Vp pairing matrix elements (in MeV),
the calculated MoI (in h̄2/MeV), including a Thouless-Valatin corrective factor of α = 1.32, obtained with the SIII, SkM*, and SLy4
parametrizations and the experimental MoI extracted from the first 2+ energy, Jexp, for a nucleus with Z protons and N neutrons. Actinide
nuclei removed from the MoI rms analyses presented in Table V are marked with dashed lines.

SIII SkM* SLy4

Z N A R42 Vn Vp JTV Vn Vp JTV Vn Vp JTV Jexp

62 94 156 3.290 0.1901 0.2529 37.742 0.1769 0.2450 39.438 0.2013 0.2537 38.221 39.531
62 96 158 3.301 0.1862 0.2517 38.068 0.1727 0.2440 42.063 0.1964 0.2527 37.148 41.209
62 98 160 3.292 0.1818 0.2510 40.765 0.1683 0.2435 40.693 0.1916 0.2518 39.215 42.373
64 96 160 3.302 0.1865 0.2454 36.537 0.1735 0.2383 39.943 0.1970 0.2467 35.192 39.860
64 98 162 3.302 0.1822 0.2442 40.663 0.1694 0.2377 38.840 0.1925 0.2453 38.258 41.899
64 100 164 3.295 0.1776 0.2430 40.657 0.1651 0.2370 38.136 0.1880 0.2445 42.849 40.944
64 102 166 3.297 0.1738 0.2422 42.775 0.1612 0.2366 39.549 0.1843 0.2437 37.230 42.857
66 96 162 3.294 0.1867 0.2389 35.283 0.1742 0.2308 38.742 0.1974 0.2393 35.302 37.193
66 98 164 3.301 0.1825 0.2379 39.453 0.1701 0.2302 38.577 0.1931 0.2381 39.004 40.876
66 100 166 3.310 0.1783 0.2373 38.850 0.1645 0.2294 38.936 0.1888 0.2372 43.868 39.171
66 102 168 3.313 0.1743 0.2367 40.901 0.1564 0.2290 42.649 0.1847 0.2359 38.845 40.021
68 100 168 3.309 0.1797 0.2318 36.297 0.1669 0.2224 37.682 0.1893 0.2319 41.603 37.592
68 102 170 3.310 0.1749 0.2307 39.076 0.1631 0.2217 39.339 0.1854 0.2302 37.400 38.173
68 104 172 3.314 0.1712 0.2296 35.341 0.1605 0.2209 39.610 0.1796 0.2287 36.688 38.961
70 100 170 3.293 0.1791 0.2261 35.754 0.1674 0.2167 38.655 0.1895 0.2266 40.594 35.606
70 102 172 3.305 0.1753 0.2246 37.865 0.1637 0.2154 41.260 0.1859 0.2244 37.624 38.099
70 104 174 3.310 0.1717 0.2227 35.636 0.1602 0.2135 43.698 0.1823 0.2221 37.465 39.231
70 106 176 3.310 0.1681 0.2215 34.882 0.1567 0.2120 42.205 0.1786 0.2202 38.821 36.525
70 108 178 3.310 0.1646 0.2204 37.397 0.1533 0.2109 42.128 0.1756 0.2185 38.506 35.714
72 106 178 3.291 0.1686 0.2164 31.988 0.1573 0.2108 33.572 0.1789 0.2188 33.180 32.196
72 108 180 3.307 0.1652 0.2154 33.615 0.1539 0.2097 31.557 0.1753 0.2175 31.464 32.146
72 110 182 3.295 0.1617 0.2144 31.436 0.1506 0.2089 31.185 0.1725 0.2165 31.184 30.678
74 108 182 3.291 0.1653 0.2112 30.384 0.1543 0.2061 27.708 0.1753 0.2141 27.755 29.968

90 144 234 3.291 0.1216 0.1744 57.708 0.1131 0.1671 65.546 0.1297 0.1715 74.584 60.545
92 140 232 3.291 0.1254 0.1632 63.879 0.1172 0.1628 – 0.1340 0.1678 76.273 63.061
92 142 234 3.296 0.1235 0.1698 – 0.1153 0.1630 – 0.1291 0.1677 82.008 68.969
92 144 236 3.304 0.1217 0.1700 63.052 0.1135 0.1634 – 0.1300 0.1678 84.126 66.307
92 146 238 3.303 0.1203 0.1701 59.663 0.1117 0.1639 – 0.1281 0.1682 71.416 66.791
92 148 240 3.347 0.1181 0.1704 – 0.1099 0.1642 – 0.1262 0.1691 63.613 66.667
94 142 236 3.304 0.1237 0.1654 – 0.1156 0.1599 71.615 0.1291 0.1593 – 67.219
94 144 238 3.312 0.1219 0.1654 67.935 0.1138 0.1601 70.205 0.1250 0.1645 – 68.081
94 146 240 3.309 0.1201 0.1656 65.827 0.1120 0.1602 73.433 0.1284 0.1647 71.278 70.054
94 148 242 3.307 0.1183 0.1703 61.921 0.1103 0.1606 – 0.1265 0.1650 66.699 67.355
94 150 244 3.391 0.1167 0.1663 63.423 0.1086 0.1609 64.584 0.1248 0.1654 73.284 67.873
94 152 246 3.308 0.1150 0.1669 – 0.1075 0.1612 59.134 0.1233 0.1656 59.224 64.240
96 146 242 3.252 0.1202 0.1622 – 0.1123 0.1565 – 0.1290 0.1611 – 71.208
96 148 244 3.314 0.1185 0.1626 66.225 0.1061 0.1566 – 0.1267 0.1610 70.430 69.837
96 150 246 3.313 0.1169 0.1630 65.332 0.1091 0.1569 68.096 0.1250 0.1612 – 70.008
96 152 248 3.313 0.1152 0.1635 – 0.1073 0.1571 64.122 0.1197 0.1614 65.674 69.124
98 150 248 3.318 0.1170 0.1597 63.764 0.1093 0.1532 71.893 0.1251 0.1592 – 72.237
98 152 250 3.321 0.1153 0.1599 – 0.1076 0.1534 68.774 0.1234 0.1578 67.810 70.223
98 154 252 3.319 0.1138 0.1640 – 0.1060 0.1537 62.400 0.1216 0.1579 61.026 65.617
100 154 254 3.319 0.1139 0.1560 – 0.1063 0.1499 64.823 0.1218 0.1546 62.273 66.679
100 156 256 3.317 0.1098 0.1560 – 0.1047 0.1502 59.527 0.1201 0.1545 61.250 62.344
102 150 252 3.310 0.1152 0.1520 67.468 0.1097 0.1469 – 0.1252 0.1521 – 64.655

(3) using an integration interval defined by � = 6 MeV. The
difference in the proton pairing matrix elements between
the two equations is mostly localized between ±1 keV, while
the largest difference for neutrons in absolute value is 4.3 keV.

While we have shown en passant that the approximate
Eq. (3) is a rather good approximation, we have, however,

resorted to making a full integration using Eq. (1) for our
calculations.

At the end of this process, we will then have for
each charge state an average matrix element of the pair-
ing residual interaction Vq(N, Z ) as a function of N
and Z .
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FIG. 1. Difference in pairing matrix elements �vq between val-
ues obtained using a full integration over the pairing window � and
those obtained using the asinh function given in Eq. (3).

B. Determination of the average single-particle level density

The crucial part is then to determine the average level
density for a given set of sp levels. We have computed the
average level density using the equation [7,21]

ρ̃q(e) = 1

γ

∫ ∞

−∞
ρ(e′) f

(
e′ − e

γ

)
de′. (4)

The so-called curvature corrections (as discussed in
Refs. [7,21]) are taken care of by the f (x) term defined
as

f (x) = P(x) w(x), (5)

where P(x) is a polynomial of degree 2M in x defined in terms
of generalized Laguerre polynomials L(α)

M of the form

P(x) = L1/2
M (x2) =

M∑
n=0

a2n x2n (6)

with coefficients a2n given in Table II and w(x) being weights
of Gaussian type defined by

w(x) = 1√
π

e−x2
. (7)

The value of the smoothing width γ appearing in Eq. (4)
is crucial to define a correct energy window for the discrete

TABLE II. Five lowest generalized Laguerre polynomial coeffi-
cients entering Eq. (6).

M a0 a2 a4 a6 a8

0 1
1 3/2 −1
2 15/8 −5/2 1/2
3 35/16 −35/8 7/4 −1/6
4 945/384 −315/48 63/16 −9/12 1/24

sp levels to be considered in the integration of Eq. (4). This,
as discussed in, e.g., Refs. [7,21], is generally defined by ful-
filling the so-called plateau condition ensuring that the shell
effect energy is almost constant as a function of γ .

In practice, we chose a value of γ (in MeV) according to
the total nucleon number A as

γ = β
41

A1/3
[MeV] (8)

using the standard (see Ref. [22]) formula for the energy
spacing between major oscillator shells. The specific value of
the above constant β and the polynomial order 2M in x of P(x)
will be discussed in Sec. III B.

C. Empirical vs effective-pairing gaps

The next crucial ingredients to the approach are the pairing
gaps extracted from the data on δE , entering Eqs. (1) or (3).
At this point, it is important to differentiate between empirical
pairing gaps as used, e.g., in Refs. [9,10] and those to be
employed in any fitting approach such as ours. The latter are
referred to as effective interaction pairing gaps in [11].

As discussed in [11], these effective gap values should take
into account a bias due to the shell effects in the sp level den-
sity at equilibrium deformation making it systematically lower
than its average value. Therefore the experimental pairing
gaps should not be used as such to determine average pairing
properties. Their values should be quenched, otherwise a fit
of the residual interaction based on them would lead to an
overestimation of the pairing correlations in actual Hartree-
Fock–plus–BCS (HF+BCS) calculations.

Herein, we use the effective-interaction average pairing
gaps, phenomenologically determined in Ref. [11] to be

�̃q = rBs

N1/3
q

, (9)

where Bs is set to 1 and r = 4.8 MeV [11].

D. Effective pairing gaps in the proton case

In the case of protons, the above value of r yields slightly
too high BCS pairing gaps since the above formula corre-
sponds supposedly to an exact treatment of the Coulomb
interaction This is, however, not the case in most mean-
field calculations. In order to avoid considering nonlocal
mean fields, the Coulomb-exchange contribution is usually
accounted for à la Slater, i.e., upon using the infinite nuclear
matter Pauli correlation function [12]. As found long ago
[13] and confirmed later [14,15], the Slater approximation in
use systematically overestimates the sp level density near the
Fermi level with respect to the corresponding exact treatment.

In order to correct for this systematic spurious trend mod-
ifying significantly the level density, we have proceeded as
follows. We have considered for a given nucleus, two sp pro-
ton spectra obtained within the Skyrme HF+BCS framework,
corresponding to an exact treatment and the Slater approxima-
tion of the Coulomb exchange terms. The exact calculation of
the Coulomb energy matrix elements was performed accord-
ing to the method developed in Refs. [13] and [15]. This yields
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TABLE III. The average Fermi level densities for neutrons and
protons (in MeV−1) are reported in columns 4 and 5, respectively,
for the 176Yb and 240Pu nuclei in the ground-state deformation char-
acterized by its quadrupole moment Q20 (in barns). Columns 6 and 7
give the corresponding fitted values (in MeV) of the average matrix
elements Vq (with M = 2, β = 1.2). These values are generated from
HF+BCS calculations using different Gq values (equal for neutrons
and protons) as reported in column 2.

Nucleus Gq Q20 ρ̃n(λn) ρ̃p(λp) Vn Vp

16 19.13 4.709 3.619 0.1681 0.2151
Yb-176 19 18.73 4.710 3.622 0.1681 0.2215

22 18.34 4.717 3.625 0.1680 0.2300

16 28.72 6.388 4.736 0.1201 0.1602
Pu-240 19 28.26 6.386 4.735 0.1201 0.1656

22 27.77 6.385 4.735 0.1201 0.1733

a corresponding ratio Rp of the BCS gaps:

Rp = �exact
p

�Slater
p

. (10)

We take for granted the average effective gap of Ref. [11]
[see Eq. (47)] with r = 4.8 MeV as reproducing adequately
effective average pairing matrix elements. For a given well
and rigidly deformed nucleus and a given interaction, we
perform calculations with the Slater approximation using the
Möller-Nix value of r and reasonable values (as defined be-
low) of the average pairing matrix element for instance as
(see the discussion of such a choice in Sec. III A)

V 0
q = Gq

11 + Nq
∀q, Gq = 19 MeV. (11)

It is well known that the sp spectra are almost unaffected by
a variation of Gq in quite a large range of nearby values, such
as those displayed above in Eq. (11). This is demonstrated at
least for the average sp level densities at the Fermi surface
in Table III. For two nuclei in their deformed ground states,
176Yb and 240Pu, we have calculated ρ̃q(λq) for three values
of the intensity parameter Gq = 16, 19, 22 MeV. They vary
for both nuclei and for all values of Gq no more than 0.1%.
Therefore, the resulting values of the average pairing matrix
elements V 1

q contingent merely upon the sp spectra should
seemingly not depend on the arbitrary chosen values of V 0

q .
This is clearly so for the neutron matrix elements Vn and not
really the case for the proton matrix elements Vp, for reasons
which will be discussed now.

It is not as simple to perform calculations with these V 0
p

values taking exactly into account the Coulomb exchange
calculations to get �exact

p and then determine Rp as defined in
Eq. (10) to correct for the Möller-Nix parameter. It turns out
that the value of Rp depends on the chosen value of V 0

p or, in
effect, on the degree of pairing correlations as a monotonically
increasing function. This could be expected since the more
pairing correlations that are present, the closer to a smoothed-
out level density distribution one would get, making it more
and more close to the one present in infinite nuclear matter
corresponding to the Slater approximation.

FIG. 2. Ratio of the proton BCS gap between exact Coulomb
and Slater approximation calculations Rp as a function of the proton
pairing condensation energy Econd (given in MeV).

To quantify the degree of pairing correlations, we consider
the so-called pair condensation energy E p

cond for protons (the
absolute value of the part of the HF+BCS energy which
involves the abnormal density), given by

E p
cond = �2

p

Vp
. (12)

To determine the variation of Rp as a function of E p
cond, we

consider a sample of 19 nuclei in the case of SIII (17 nuclei
for SLy4 and SkM*) with respect to the 45 nuclei listed in
Table I. Specifically, we have excluded nuclei exhibiting large
sp energy gaps leading to an artificially low BCS pairing gap,
in view of the well-known deficiency of the BCS approxima-
tion in such weak pairing regimes (see, e.g., Ref. [23]).

For these nuclei, we performed both exact Coulomb and
Slater approximation calculations using the pairing matrix
elements listed in Table IV. The obtained ratio Rp of the BCS
proton gaps from all three Skyrme parametrizations consid-
ered herein are then plotted in Fig. 2 as a function of the proton
condensation energy E p

cond.
The ratio Rp increases, albeit rather minimally, with E p

cond
defined in Eq. (12). A fit of the data to a linear equation yields

Rp = 0.0181 E p
cond + 0.781, (13)

where E p
cond is given in MeV. This equation allows for an

estimation of the reduction factor to the Möller-Nix param-
eter for any Skyrme parametrization and at a given initial
pairing matrix element V 0

p . Multiplying the initial Möller-Nix
parameter r = 4.8 MeV with the reduction factor, one then
obtains the proton pairing gap to be utilized in the estimation
of pairing matrix element via Eq. (1).

Having at hand the function Rp(E p
cond ), we will proceed

as follows. We perform HF+BCS calculations with Coulomb
à la Slater with the matrix elements V 0

p . We then obtain BCS
pairing gaps �q and in particular the proton gap �p(V 0

p ),
which combined with V 0

p will provide us with E p
cond(V 0

p ) and
the associated value R0

p of the gap ratio defined in Eq. (10). It
is clear that this ratio depends on the retained value for the
initial proton pairing matrix element V 0

p . The necessity for
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TABLE IV. The ratio Rp of BCS proton pairing gap between Slater approximation �Slater
p and exact Coulomb exchange �exact

p calculations
using the initial neutron and proton pairing matrix elements listed in columns 4 and 5 respectively. The proton condensation energies defined
in Eq. (12) are given in column 9.

Z N A V 0
n V 0

p �Slater
p �exact

p Rp E p
cond

62 94 156 0.1902 0.2686 1.0449 1.1884 0.879 5.2579
62 96 158 0.1855 0.2682 0.9930 1.1319 0.877 4.7770
64 96 160 0.1862 0.2600 1.0430 1.1894 0.877 5.4411
66 98 164 0.1824 0.2520 1.0326 1.1612 0.889 5.3512
66 100 166 0.1784 0.2515 1.0061 1.1436 0.880 5.1995
66 102 168 0.1742 0.2511 0.9788 1.1254 0.870 5.0449
68 104 172 0.1712 0.2433 0.9818 1.1108 0.884 5.0721
70 104 174 0.1717 0.2363 0.9235 1.0772 0.857 4.9115
70 106 176 0.1681 0.2358 0.8414 1.0169 0.827 4.3853

SIII 72 106 178 0.1625 0.2291 0.9270 1.0700 0.866 4.9968
74 108 182 0.1652 0.2227 0.9229 1.0715 0.861 5.1554
92 142 234 0.1235 0.1765 0.9011 1.0114 0.891 5.7972
92 148 240 0.1182 0.1756 0.9965 1.0954 0.910 6.8322
94 148 242 0.1183 0.1720 0.8597 0.9952 0.864 5.7574
94 150 244 0.1167 0.1718 0.9058 1.0375 0.873 6.2669
96 148 244 0.1185 0.1686 0.7969 0.9611 0.829 5.4776
98 154 252 0.1138 0.1646 0.9361 1.0406 0.900 6.5775
100 154 254 0.1139 0.1615 0.8723 0.9700 0.899 5.8271
100 156 256 0.1124 0.1612 0.8765 0.9806 0.894 5.9661

62 94 156 0.2013 0.2688 1.2149 1.1111 0.915 5.4913
62 96 158 0.1964 0.2678 1.2015 1.0971 0.913 5.3897
64 96 160 0.1970 0.2603 1.2320 1.1356 0.922 5.8315
66 98 164 0.1931 0.2523 1.1568 1.0111 0.874 5.3031
66 100 166 0.1889 0.2516 1.1287 0.9786 0.867 5.0636
66 102 168 0.1847 0.2507 1.0978 0.9427 0.859 4.8064
68 104 172 0.1815 0.2432 1.0554 0.9247 0.876 4.5793

SLy4 72 106 178 0.1789 0.2300 1.1540 1.0573 0.916 5.7891
74 108 182 0.1753 0.2237 1.1912 1.0646 0.894 6.3422
92 148 240 0.1263 0.1742 1.0504 0.9242 0.880 6.3322
94 146 240 0.1283 0.1717 0.9364 0.8173 0.873 5.1070
94 148 242 0.1265 0.1712 0.9784 0.8606 0.880 5.5929
94 150 244 0.1248 0.1707 1.0267 0.9148 0.891 6.1745
96 148 244 0.1267 0.1681 0.8995 0.7800 0.867 4.8136
98 154 252 0.1216 0.1637 0.9353 0.7838 0.838 5.3446
100 154 254 0.1217 0.1609 0.9020 0.8601 0.954 5.0579
100 156 256 0.1201 0.1603 0.9253 0.8174 0.883 5.3397

62 94 156 0.1770 0.2574 1.2016 1.0758 0.895 5.6088
62 96 158 0.1726 0.2570 1.1636 1.0319 0.887 5.2677
64 96 160 0.1735 0.2493 1.2251 1.1169 0.912 6.0193
66 98 164 0.1701 0.2414 1.1526 1.0119 0.878 5.5037
66 100 166 0.1661 0.2409 1.1356 0.9898 0.872 5.3521
66 102 168 0.1623 0.2405 1.1239 0.9740 0.867 5.2519
68 104 172 0.1594 0.2331 1.0271 0.9068 0.883 4.5248
72 106 178 0.1572 0.2199 1.1150 1.0251 0.919 5.6524

SkM* 74 108 182 0.1543 0.2138 1.1472 1.0296 0.897 6.1558
92 148 240 0.1100 0.1675 1.0164 0.8614 0.848 6.1661
94 146 240 0.1120 0.1644 0.9456 0.8330 0.881 5.4395
94 148 242 0.1103 0.1642 0.9824 0.8719 0.888 5.8792
94 150 244 0.1086 0.1639 1.0222 0.9149 0.895 6.3749
96 148 244 0.1106 0.1609 0.9179 0.8042 0.876 5.2362
98 154 252 0.1060 0.1570 0.9236 0.7692 0.833 5.4339
100 154 254 0.1063 0.1539 0.8662 0.7278 0.840 4.8742
100 156 256 0.1047 0.1537 0.9012 0.7656 0.850 5.2850
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an iterative determination of the correct ratio Rp consistent
with a corresponding matrix element Vp should, in principle,
be advocated.

However, as discussed at length in the Appendix, the
convergence of this iterative process is indeed very fast. Fur-
thermore, upon making some very limited preliminary studies,
it is easy to determine a priori, for a given particle-hole inter-
action, an interval of initial values of V 0

p , previously dubbed
as reasonable, such that the particular choices which are made
for those, lead to insignificant corrections. It appears that the
above mentioned choice of Gn = Gp = 19 MeV is convenient
in this respect. We therefore stick to the corresponding initial
values of

rcorr = r R0
p (14)

without a reiterative procedure. We get the final value V 1
p of

the proton average pairing matrix element as done in the first
stage of this calculation for a given nucleus and a given inter-
action, using now the corrected value rcorr of the Möller-Nix
parameter for the estimation process.

III. TECHNICAL DETAILS

A. Generation of sp levels

We have performed HF+BCS calculations for the de-
formed nuclear ground states using three Skyrme parametriza-
tions, namely SIII [17], SkM* [18], and SLy4 [19], for the
strong interaction part of the particle-hole interaction.

The canonical basis is determined upon solving the HF
equations resulting from the corresponding energy density
functional of the one-body reduced density matrix includ-
ing self-consistently the BCS occupation probabilities. The
eigensolutions of the corresponding one-body Hamiltonian
are obtained by projection of their eigenstates onto the eigen-
states of an axially symmetrical harmonic oscillator, a choice
consistent with the axial and intrinsic parity symmetries im-
posed onto our solutions.

The size of the deformation-dependent basis corresponds
for spherical solutions to 17 major shells (i.e., with N0 = 16
in the notation of [1]). The two parameters defining the size
and the ellipsoidal deformation of the harmonic oscillator
potential (i.e., b and q respectively in the notation of [1]) are
optimized for each nucleus to yield the lowest equilibrium en-
ergy. Integrals involving the densities are performed using the
Gauss-Hermite and Gauss-Laguerre approximate integration
methods with 50 and 16 mesh points, respectively.

Pairing correlations are only considered in the isospin
T = 1 channel, which amounts in practice, for the consid-
ered nuclei far enough from the N = Z line, to restricting to
neutron-neutron and proton-proton pairing (thus for |Tz| = 1).
As already mentioned in Sec. I we define this residual pairing
interaction v̂res from an average of its BCS matrix elements,

V i j
q = 〈iqīq |̂vres(| jq j̄q〉 − | j̄q jq〉) (15)

for a given pair (i, j) of the canonical basis states.
Now, we make a further phenomenological step consider-

ing as in Ref. [24] a specific dependence of Vq on the neutron

or proton numbers Nq in the form

Vq = Gq

11 + Nq
, (16)

and in what follows Gq will be referred to as the pairing
strength.

The validity of this parametrization has been demonstrated
by the quality of the description, concurrently, of odd-even
mass differences and of moments of inertia obtained in
Ref. [6]. A residual interaction is by definition dependent
on the number of fermions (through the dependence of the
mean field). Yet, it is worth noting that the above parametriza-
tion does not necessarily represent only such a dependence
but also, and maybe primarily, in an average fashion, the cor-
responding dependence of the sp wave functions (e.g., through
their size or compactness).

Thus our task here is to determine, as sketched in Sec. II,
the two parameters Gn and Gp (and thus Vn and Vp) for each
of the 35 well and rigidly deformed nuclei in the rare earth
and actinide regions (see Sec. IV for details). Our approach
depends only on sp spectra (through the Fermi levels λ̃q and
the value of the average sp level density at these energies λ̃q).
To get the sp spectra, we have considered pairing residual
matrix elements defined by Gn = Gp = 19 MeV, as already
mentioned.

B. Choice of coefficients to determine average level density

Two important ingredients entering Eq. (1), apart from
the choice of pairing gap �̃q which has been addressed in
Sec. II C, are the order M of the generalized Laguerre poly-
nomial and the constant β.

To determine optimal values of M and β, we performed
fits of pairing matrix elements with � = 6 MeV for two rare
earth (166Dy and 176Yb) and two actinide (240U and 252No)
nuclei. Figure 3 shows the variation of neutron (top panels)
and proton (bottom panels) pairing matrix elements with M
and β for these nuclei.

We searched for the values of (M, β ) pairs where a plateau
in the average Vq matrix elements is roughly achieved to
ensure that they remain almost constant upon varying β. A
value of β < 1 is not sufficient to smooth the shell effect;
see Fig. 4, where some remnants shell effects are still ap-
parent even for β = 1. On the other hand, one must avoid
too large β values (e.g., such that β � 1.6) to avoid the
dubious contribution of unbound sp states poorly approxi-
mated by their projection onto a truncated harmonic oscillator
basis.

From the results displayed in Fig. 3, we have taken as an
optimal choice the following values of the smoothing param-
eters: M = 2 and β = 1.2.

IV. RESULTS

Using the approach discussed above, we calculated the
MoI using the Inglis-Belyaev [25] formula with the estimated
pairing strengths unique to each nucleus. To account approx-
imately for the Thouless-Valatin self-consistency correction
(see Ref. [26]) the calculated MoI have been multiplied by a
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FIG. 3. Variation of neutron (top panels) and proton (bottom panels) pairing matrix elements showing their evolution as a function of the
order M for different values of β.

factor 1.32, as suggested in Ref. [27] and shown in previous
calculations (see, e.g., Ref. [6]) to provide good estimates
of this effect, for the three Skyrme parametrizations. The
experimental MoI Jexp are determined from the energies of
the first 2+ excited state in the pure rotor limit (these energies
are taken from the compilation of Ref. [16] and tabulated in
Table I).

Prior to comparing our calculated MoI with experimental
data, we further eliminate some actinide nuclei which exhibit
deficiencies in the sp level spectra. These nuclei marked with
dashed lines in Table I, all of which are in the heavy nuclei
region, show large energy gaps located at incorrect nucleon
numbers. In such nuclei, comparing the calculated MoI with
experimental data would not be meaningful as the observed
deviation is not due to the estimation procedure proposed
herein, but rather due to the underlying mean-field solution,

providing locally an inadequate sp level distribution at the
Fermi surface.

Indeed, the proposed method which relies on an semi-
classical averaging is blind to the existence of a large sp
energy gap. As examples to this point, we refer to the 246Pu
and 248Cm (N = 152) isotones listed in Table I. In Ref. [28]
it was reported that an incorrect energy gap was found at
N = 152 with the SIII parametrization. This deficiency is not
propagated to the estimated Vn, as can be clearly seen when
comparing the estimated Vn with its neighboring nuclei.

For comparison between our calculated values with exper-
imental MoI, we look at the root-mean-square (rms) deviation
χJ such that

χJ =
√∑N

i

(J i
TV − J i

exp

)2

N
, (17)
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FIG. 4. Average neutron (top panels) and proton (bottom panels) sp level densities (in MeV−1) using Eq. (1) for the Dy-166 nucleus with
M = 2 and β = 1.0, 1.2, and 1.4 as a function of sp energies. Red arrows indicated the location of the Fermi level.
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TABLE V. Weighted root-mean-square deviations χJ (in units
of h̄2/MeV), 104 χA

J (in units of h̄2/MeV) and 102 χ
exp
J as defined in

equations (17), (18) and (19 between calculated and experimentally
defined MoI obtained with the three Skryme parametrisations.

SIII SkM* SLy4

Rare earth 1.769 2.706 2.940
χJ

Actinide 4.582 3.394 3.498

Rare earth 3.515 5.080 5.883
χA
J

Actinide 4.844 3.588 3.621

Rare earth 4.548 7.230 7.551
χ

exp
J

Actinide 6.671 5.168 5.248

where N is the total number of sample nuclei. The rms devi-
ations have been analyzed for 23 nuclei around the rare-earth
region with all three Skyrme parametrizations and 12 (13)
actinide nuclei with SIII and SLy4 (SkM*) separately. The
χJ are tabulated in the top part of Table V.

We found that the χJ values range from 1.7 to 3.0 h̄2/MeV
in the rare-earth region and from 3.4 to 4.6 h̄2/MeV in the
actinide region. It is interesting to note here that the value of
χJ ≈ 1.77 h̄2/MeV for rare-earth nuclei only is indeed very
close to the rms deviation (1.75 h̄2/MeV) obtained from aver-
age pairing strengths fitted to experimental MoI in Ref. [6].

In comparing the χJ values, it appears that the agreement
with data is less spectacular in the actinide region as compared
to the rare-earth region. However, comparison of rms devia-
tion based on χJ defined in Eq. (17) is not suitable since the
numbers A of nucleons are starkly different, affecting thus the
values of MoI through their A5/3 dependence. To remove the A
dependence, we compare instead the weighted rms deviation
defined as

χA
J =

√√√√∑N
i

(J i
TV−J i

exp

A5/3
i

)2

N
, (18)

χ
exp
J =

√√√√∑N
i

(J i
TV−J i

exp

J i
exp

)2

N
. (19)

In doing so, we see that the agreement with experimental MoI
are indeed better for actinides than the rare-earth region for
the SkM* and SLy4 parametrizations (see Table V).

Finally, we show that these values of the weighted rms
deviation provide a way to estimate the uncertainty in the
calculated MoI uniquely for each nucleus. We define two
uncertainty ranges for J associated with a given nucleus
displayed in Table VI as �A

J (resp. �
exp
J ) by multiplying χA

J
(resp. χ

exp
J ) by A5/3 (resp. by JTV).

V. CONCLUSION

In this paper, we have proposed and discussed a simple
and efficient method to treat pairing correlations within a

TABLE VI. Uncertainty ranges for the moment of inertia (in
units of h̄2/MeV) of some nuclei �A

J and �
exp
J as defined in the text.

Z N JTV Jexp �A
J �

exp
J

62 98 40.765 42.373 1.658 1.854
68 100 36.297 37.592 1.798 1.651
72 106 31.988 32.196 1.980 1.455
92 140 63.879 63.061 4.243 4.261
94 150 63.423 67.873 4.615 4.231
102 150 67.468 64.655 4.870 4.501

microscopic (nonrelativistic) description of the structure of
atomic nuclei. It takes into account the fact that the intensity
of pairing correlations depends crucially on level densities
around the Fermi surface. It is suited to approaches where one
has a good knowledge of the particle-hole interaction (e.g., of
the usual Skyrme type) yielding (possibly in a self-consistent
manner) the normal density matrix (and its canonical basis).
Then one searches for a relevant approach to the abnormal
density matrix, typically in a HF+BCS framework.

At present, it is limited to a very simple ansatz, namely
using constant pairing matrix elements for sp states located in
the vicinity of the Fermi surface, dubbed the seniority force
pairing treatment. Moreover, it is only operative a priori, so
far, to describe the ground states of well and rigidly deformed
nuclei. As a result, it yields, in a well-defined fashion, the pair-
ing average matrix elements suited for a given nuclear ground
state and a given particle-hole interaction. It is furthermore
important to recall that by no means does it give any direct
access to a residual interaction since its output includes some
average information on the wave functions of the states around
the Fermi surface, particularly their spatial extensions.

Although limited now, it may serve, however, as a basis to
determine the ingredients of a more elaborate pairing treat-
ment, i.e., defining univocally a residual pairing interaction
(contingent now merely on the choice of the particle-hole
interaction) and not some average of its matrix elements. This
would allow one to build up a BCS treatment which can be
used more reliably in two respects: for all nuclei and away
from their equilibrium deformation. On the one hand, it would
include explicitly (and not in the average) information on the
structure of the relevant sp wave functions. And, defining an
effective residual Hamiltonian, it could be used in a natural
fashion away from the limited region where it has made sense
to have it fitted with some piece of data, on another hand. The
study of this necessary extension is currently under comple-
tion and will be presented in a forthcoming publication. To
reach that goal it was therefore necessary to assess, first, the
quality of the approach discussed here, for which it has been
specifically tailored.

To determine the relevant pairing matrix elements, we
used smoothly varying (with nucleon numbers) gaps as
in Refs. [9,10] corrected according to the prescription of
Ref. [11]. Experimental odd-even mass differences δE are the
raw data from which these gaps are extracted. Such energies
depend of course on the shell structure, which is generally
well reproduced by state-of-the-art microscopic calculations,
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but allows in some well localized regions the generation of
some misplacement or bad rendering of sp gap intensities in
some low sp level density regions. This is why the information
from existing fits of experimental data in terms of smoothly
varying (with respect to the nucleon numbers) has not been
directly compared with the results from quantal calculations
but with their underlying semiclassical content, determined
in an approximate fashion. The only ingredients of the latter
relevant to pairing properties within our pairing model is the
average sp level density at the Fermi surface and the nucleon
numbers of the considered nucleus.

In doing so two important features, absent so far in fits of
the pairing intensity, to the best of our knowledge, have been
carefully taken into account. One is the correction advocated
by Möller and Nix [11] due to the unescapable selection of
data corresponding to sp level densities systematically lower
than average. The second is due to a systematic overestimation
of the proton sp level density at the Fermi surface resulting
from the local Slater approximation of the Coulomb exchange
contribution to the total energy [13–15].

The test of our method consists of using the so-determined
average pairing matrix elements (with three different Skyrme
force parametrizations) to compare, within an Inglis Belyaev
approach (plus some approximate Thouless-Valatin correc-
tion), MoI of about 40 well and rigidly deformed rare-earth
and actinide nuclei with what is deduced from the experimen-
tal energies of their first 2+ levels.

These sets of Skyrme parametrizations were chosen to
allow us to assess the versatility of our pairing matrix element
estimation approach using different mean-field solutions. It
was not our intention here to evaluate the quantal defi-
ciency of the sp spectrum produced using any of the Skyrme
parametrizations. In fact, we showed that the pairing matrix
elements estimated using the approach proposed herein is not
affected by the wrong reproduction of the sp energy gap.
Therefore, this deficiency is irrelevant for a test of our ap-
proach. Consequently, we had to remove these nuclei in our
samples because implementing them in our test would unduly
affect the quality assessment of the proposed method.

From the remaining list of good sample nuclei, we found
a rather good reproduction of the experimental MoI. This is
especially so for the case of the Skyrme SIII parametrization
in the rare earth region where our present estimates give
excellent agreement with results obtained from a direct fit to
these MoI.

This gives us confidence in the relevance of what is pro-
posed here, and allows us to rely on it to tackle our more
ambitious attempt to define pairing residual interactions from
averaged δE data, using merely average sp level densities at
the Fermi surface of the calculated canonical basis.
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APPENDIX: TREATMENT OF THE ARBITRARINESS
OF THE INITIAL PROTON MATRIX ELEMENT V 0

p

Here, we discuss how to circumvent the arbitrariness of the
chosen initial pairing matrix element V 0

p . Upon calculating
the ground state deformation solutions of our selected nu-
clei within the HF+BCS approach (using the seniority force
model) we get proton pairing condensation energies. They are,
as already noted, dependent upon the choice of the average
pairing matrix elements in use in these calculations. From
them, using Eq. (14) we should define new values of the
proton gaps from which, using the uniform gap method and
the sp spectra, we could generate new proton pairing matrix
elements V 1

p . And we could iterate this process to get a con-
vergence of the pairing matrix elements.

The question now is how much change from V 0
p could we

expect for these new matrix elements V 1
p . To estimate that, we

assume that we have chosen reasonable values of the original
V 0

p , i.e., quantified, for instance, by a deviation of the resulting
proton Econd from the value obtained through a converged
solution of this iterative process by no more than ±20%. We
see from Fig. 2 that such an interval for Econd corresponds to
an interval for Rp (and thus to the proton gaps used in the fit)
of ≈ ±2%. From the approximation (shown to be rather good;
see Fig. 1) of Eq. (3) concerning the relation between Vp and
�p, we get readily

δVp

Vp
= x

ln(
√

x + √
x2 + 1)

1√
x2 + 1

δ�p

�p
(A1)

with x = �/�p. Using the values � = 6 MeV and �p = 1
MeV, one obtains an uncertainty on Vp within the ±0.8%
range.

However, a specific convergence study has been performed
for the two deformed nuclei considered in Table III (176Yb
and 240Pu) for the three values of the proton pairing intensity
parameter, Gp = 16, 19, 22 MeV. One sees on Table VII that
the value of the proton matrix element Vp is converged at the
keV level at the second or third iteration. Similarly, the mass
quadrupole moment Q20 is converged at the fm2 level already
at the third iteration, even sometimes at the second. The other
lesson, comparing the starting value of V 0

p and the converged
one, is that one may infer that a reasonable range for V 0

p values
would lie in between Gp = 16 and Gp = 19 MeV. This con-
stitutes a very simple preliminary study, for any given specific
particle-hole interaction, allowing one to define a priori for a
global study some value of V 0

p close, at a level of about 1%,
to what an iterative process would produce.

In view of the rough nature inherent to the averaging char-
acter of the relation between Econd and Rp, we deem that the
iterative process sketched above presents no solid practical
justification relevant to this paper, which aims to illustrate a
method for determination of pairing strengths with limited
dependence on experimental data.
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TABLE VII. Estimated proton pairing matrix elements Vp (in MeV) at the ground-state quadrupole moments Q20 (in barns) obtained for
176Yb and 240Pu at corresponding iteration numbers with different starting initial pairing strengths G0

p = 16, 19, 22 MeV. The estimated Vp of
the preceding iteration are used as initial values for subsequent HF+BCS calculations.

G0
p = 16 MeV G0

p = 19 MeV G0
p = 22 MeV

Nucleus Iteration Q20 Vp Q20 Vp Q20 Vp

1 19.13 0.2151 18.73 0.2215 18.35 0.2300
2 18.89 0.2179 18.80 0.2189 18.74 0.2206

Yb-176 3 18.88 0.2183 18.85 0.2185 18.83 0.2188
4 18.86 0.2184 18.86 0.2185 18.85 0.2185
5 18.86 0.2185 18.86 0.2185 18.86 0.2185

1 28.72 0.1602 28.26 0.1656 27.77 0.1733
2 28.35 0.1614 28.34 0.1624 28.32 0.1639

Pu-240 3 28.35 0.1615 28.35 0.1617 28.35 0.1620
4 28.35 0.1616 28.31 0.1617 28.35 0.1616
5 28.35 0.1616 28.35 0.1616 28.35 0.1616
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