
PHYSICAL REVIEW C 110, 024308 (2024)

Collectivity of nuclei near the exotic doubly magic 78Ni by ab initio calculations
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Neutron-rich nuclei are attracting significant attention due to vital roles in the nucleosynthesis processes
of the universe. The shell evolution which breaks or creates magic numbers in some instances leads to shape
coexistence that frequently serves as a portal to the islands of inversion (IOI). 74Zn was suggested as a northern
extension of the N = 40 IOI across Z = 28, and a new IOI around N = 50 (Z = 20–28) had also been predicted.
We have performed ab initio calculations for even-even Zn isotopes and N = 50 (Z > 28) isotones located in
the north of the N = 40 and 50 IOIs. With a chiral two- plus three-nucleon force, the shell-model valence-space
effective Hamiltonian is derived using the many-body perturbation theory named Q̂-box folded diagrams, and
the effective operators of electromagnetic transitions are obtained using similar �̂-box folded diagrams. The
calculations reproduce experimental excitation energies and electric qudrupole transition strengths of excited
states of the nuclei, showing a collectivity of 70-78Zn isotopes and a noncollectivity of the N = 50 (Z > 28)
isotones.
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I. INTRODUCTION

The abundances of chemical elements in the universe are
a hot issue in nuclear astrophysics research. The rapid neu-
tron capture (r-process) produces approximately half of the
elements heavier than iron in the universe [1]. Therefore,
studying the structure of neutron-rich nuclei is important for
understanding nucleosynthesis processes [2]. The shell evo-
lution in neutron-rich exotic nuclei, which breaks or creates
magic numbers in some instances [3], leads to a distinctive
manifestation of nuclear dynamics. This manifestation, rarely
observed in interacting fermionic systems, is the phenomenon
known as shape coexistence [4,5]. This phenomenon involves
quantum states that exhibit distinct shapes while remaining
close in energy. The energy difference frequently proves to
be significantly smaller than those predicted by plain mean-
field calculations in which the rotational symmetry is not
conserved and configuration mixing is not considered. It has
been shown that beyond-mean-field effects (e.g., from sym-
metry restoration and configuration mixing) can enhance the
shape coexistence and significantly reduce the energy differ-
ence [6–9]. Shape coexistence in magic nuclei often serves
as a portal to the islands of inversion (IOI) where a group of
nuclei expected to be spherical in their ground states exhibits
deformation instead.

Theoretical and experimental studies have unveiled the
shape coexistence around 78Ni [10–13]. This has also led to
the theoretical prediction of the N = 50 IOI with deformed
ground states in 76Fe and 74Cr by the large-scale shell model
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(LSSM) [14]. Recent experiments have suggested that 74Zn
acts as a northern extension of the N = 40 IOI across Z =
28, in which the ground state exhibits an enhanced axial-
asymmetry shape (triaxiality) [15]. On the other hand, the
collectivity or noncollectivity in N = 50 (Z > 28) isotones
offers a special interest in understanding the northern edge of
the N = 50 IOI.

In even-even nuclei, the excitation energy E (2+
1 ) of the

first 2+ excited state and the electric quadrupole transition
strength B(E2; 2+

1 → 0+
1 ) serve as probes to the collectivity

of the nucleus. The systematics of the collectivity in E (2+
1 )

and B(E2; 2+
1 → 0+

1 ) of Zn isotopes around N = 40 is similar
to that of other Z = 24–36 isotopes except Z = 28, indicating
that the N = 40 shell closure vanishes in the neutron-rich iso-
topes [16,17]. The B(E2; 4+

1 → 2+
1 )/B(E2; 2+

1 → 0+
1 ) ratio,

also known as the B42 value, is another indicator of nuclear
collectivity with a typical value of 1.5 for the collectivity [18].

The goal of ab initio calculations is to understand the struc-
ture of the nucleus from the underlying interaction among
nucleons, with minimal reliance on experimental data beyond
those essential to define nuclear forces. With the development
of two- and three-nucleon forces (2NF and 3NF, respectively)
from the chiral effective field theoy (χEFT) [19–22], ab initio
many-body calculations have been playing important roles in
many aspects of predicting the properties of nuclei, such as
the location of the oxygen dripline [23–25], the Borromean
structure of 17Ne [26], and the origin of the anomalous long
lifetime of 14C [27]. A variety of observables for almost all
open-shell nuclei accessible through the conventional shell
model can be treated based on the ab initio many-body per-
turbation theory (MBPT) method [28,29]. The �̂-box method
which uses the MBPT to derive valence-space effective op-
erators of observables offers a powerful tool for the ab initio
calculations of nuclear observables [30].
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In this work, based on χEFT forces, we have studied
even-even Zn isotopes and N = 50 (Z > 28) isotones within
the shell model with the valence-space effective Hamiltonian
and other effective operators derived using the Q̂- [31,32] and
�̂-box folded diagrams [29,30,33], respectively. The neutron-
rich Zn isotopes and N = 50 (Z > 28) isotones are located in
the north of the N = 40 and 50 IOIs.

II. THE METHOD

Starting with the chiral 2NF plus 3NF, the intrinsic Hamil-
tonian of an A-nucleon system can be written as

H =
A∑

i=1

(
1 − 1

A

)
p2

i

2m
+

A∑
i< j

(
vNN

i j − pi · p j

mA

)
+

A∑
i< j<k

v3N
i jk,

(1)
where pi represents the nucleon momentum in the laboratory
coordinates, m denotes the nucleon mass, and vNN and v3N

correspond to 2NF and 3NF, respectively. The chiral 2NF
plus 3NF labeled by EM1.8/2.0 [22] has been used. This
interaction can globally reproduce nuclear binding energies
[34,35].

For Z = 30 Zn isotopes and N = 50 isotones, we take 56Ni
as the core of the shell model and the reference state of the
3NF normal-ordered process. To include more correlations,
we choose the Hartree-Fock (HF) single-particle states ob-
tained with the same EM1.8/2.0 as the starting basis. The
matrix elements of the interaction and other observable opera-
tor are transformed from the harmonic oscillator (HO) basis to
the HF basis by computing overlaps between the HF and HO
basis wave functions. Given the medium mass of the nuclei
of interest, a large-space chiral interaction has been used with
the HO basis at h̄ω = 16 MeV and covering 15 major shells
(i.e., e = 2n + l � emax = 14). For 3NF, we limit e3max =
e1 + e2 + e3 � 14. The valence space of the shell model takes
π{1p3/2, 1p1/2, 0 f5/2}⊗ν{1p3/2, 1p1/2, 0 f5/2, 0g9/2, 1d5/2}.
In many-body calculations, 3NF is usually normal-ordered
relative to a reference state, resulting in normal-ordered zero-,
one- and two-body terms with the residual three-body term
being neglected [25,34–37].

The valence-particle effective Hamiltonian and effective
operators are constructed with the MBPT [28,30]. The
Hamiltonian is separated into a zero-order part, H0, and a
perturbative part, H1,

H = H0 + (H − H0) = H0 + H1, (2)

where H0 represents the one-body part of the normal-ordered
Hamiltonian, while H1 is the residual two-body part including
the normal-ordered 3NF at the two-body level [25,37].

In the shell-model calculation, valence single-particle
energies and effective interaction matrix elements can be
obtained using so-called Ŝ-box [38] and Q̂-box folded dia-
grams [31,32], respectively. The Ŝ-box is by definition the
one-body part of the Q̂ box. For the cross-shell shell-model
calculation in which single-particle orbitals are not degener-
ated, the extended Kuo-Krenciglowa solution [39,40] of the
Ŝ-box and Q̂-box folded diagrams can be used to derive the

valence-space effective Hamiltonian Heff by iterating,

H (κ )
eff = PH0P + Q̂(ε) +

∞∑
n=1

1

n!

dnQ̂(ε)

dεn

{
H (κ−1)

eff − ε
}n

, (3)

where κ represents the κth iteration, and ε is the starting
energy.

The Q̂ box is defined as

Q̂(ε) = PH1P + PH1Q
1

ε − QHQ
QH1P, (4)

with derivatives such as

Q̂n(ε) = 1

n!

dnQ̂(ε)

dεn
, (5)

where P and Q represent the projection operators for the
model space and its complementary space (i.e., the excluded
space), respectively, with P + Q = 1. The Ŝ-box and Q̂-box
calculations are approximated up to the third order. With these
MBPT calculations, we have derived the effective Hamilto-
nian for the chosen valence space of π{1p3/21p1/20 f5/2} ⊗
ν{1p3/21p1/20 f5/20g9/21d5/2} with the 56Ni core.

For other observables, the bare operators require to be
renormalized into the valence space, which can be achieved
using the so-called �̂-box folded diagrams within the MBPT
framework, similar to the Q̂-box diagrams. A valence-space
effective operator, denoted by �eff, which takes into account
the contribution from the excluded Q space, can be written as

�eff =
∑
α,β

|ψα〉〈�̃α|�|�β〉〈ψ̃β |, (6)

where the valence-space wave function |ψα〉 obtained from
diagonalizing Heff is the projection of the full-space wave
function |�α〉 onto the valence space, i.e., |ψα〉 = P|�α〉.

In the MBPT, the �̂ box is defined as [29,33]

�̂(ε) = P�P + P�Q
1

ε − QHQ
QH1P (7)

and

�̂(ε1; ε2) = PH1Q
1

ε1 − QHQ
Q�Q

1

ε2 − QHQ
QH1P, (8)

with their derivatives

�̂n = 1

n!

dn�̂(ε)

dεn
(9)

and

�̂mn = 1

m!n!

dm

dεm
1

dn

dεn
2

�̂(ε1; ε2)

∣∣∣∣
ε1=ε2=ε

. (10)

With the identity Q̂Q̂−1 = 1, the final perturbative expansion
of the effective operator �eff can be expressed by the Q̂ box
and the �̂ box as

�eff = (P + Q̂1 + Q̂1Q̂1 + Q̂2Q̂ + Q̂Q̂2 + · · · )Q̂Q̂−1

× (χ0 + χ1 + χ2 + · · · )

= HeffQ̂
−1(χ0 + χ1 + χ2 + · · · ), (11)
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FIG. 1. Calculated (dashed lines) and experimental (solid lines)

[17,42] excitation energies E (2+
1 ) (pink square) and E (4+

1 ) (cyan
star) and their ratio R42 = E (4+

1 )/E (2+
1 ) (black triangle) in even-even

Zn isotopes.

where χn is related to the �̂ box, the Q̂ box, and their deriva-
tives as

χ0 = (�̂0 + H.c.) + �̂00,

χ1 = (�̂1Q̂ + H.c.) + (�̂01Q̂ + H.c.),

χ2 = (�̂1Q̂1Q̂ + H.c.) + (�̂2Q̂Q̂ + H.c.)

+ (�̂02Q̂Q̂ + H.c.) + Q̂�̂11Q̂. (12)

In our calculations, the χn series are truncated up to the
χ2 order, which has been proved to be sufficient to obtain
convergences [29]. The �̂ box is calculated up to the third
order, which is consistent with the expansions used in the
Ŝ-box and Q̂-box calculations.

In this study, we focus on the analysis of electromagnetic
multipole transitions, characterized by the reduced transition
probability given by

B(σλ; ξiJi → ξ f J f ) = 1

2Ji + 1
|〈ξ f J f ‖Mσλ‖ξiJi〉|2, (13)

where Ji and Jf represent the total angular momenta of the
initial and final states, respectively, and ξ covers additional
quantum numbers required to fully describe these states. The
symbols σλ label the electric (Eλ) or magnetic (Mλ) mul-
tipoles. In this work, we focus on the E2 transition. The
free-space bare E2-transition tensor operator is

ME2 = Q2, (14)

with the tensor components defined by

Q2μ =
A∑

j=1

e jr
2
j Y2μ(r̂ j ), (15)

where e j is the natural (bare) charge of the jth nucleon, i.e.,
e = 1 for the proton and e = 0 for the neutron.

FIG. 2. Calculated and experimental [17,42] B(E2; 2+
1 → 0+

1 )
values in even-even Zn isotopes.

In even-even nuclei, the ratio between E2-transition
strengths can serve as an indicator for mapping the structure
evolution from a noncollective seniority regime to a collective
dynamics [18,41]:

B42 ≡ B(E2; 4+
1 → 2+

1 )

B(E2; 2+
1 → 0+

1 )
. (16)

It is a useful measurement to inspect how a nucleus is close to
a closed shell, while it also offers insight into the underlying
structure of the states [18].

III. CALCULATIONS AND DISCUSSIONS

As mentioned in Sec. I, 74Zn was suggested as a northern
extension of the N = 40 IOI across Z = 28 [15], and a further
IOI around N = 50 was predicted by the LSSM calculation
[14]. This raises an interesting question on the collectivity
of N = 50 (Z > 28) isotones. Using the realistic shell model
based on the chiral 2NF plus 3NF EM1.8/2.0, we have in-
vestigated Z = 30 Zn isotopes and N = 50 (30 � Z � 36)
isotones.

Figure 1 shows the excitation energies of the first 2+ and
4+ states and their ratio R42 = E (4+

1 )/E (2+
1 ) in even-even Zn

isotopes. The present calculations properly reproduce experi-
mental data [17,42], showing a shell gap at the magic number
of N = 50. Figure 2 presents calculated and experimental
[17,42] B(E2; 2+

1 → 0+
1 ) values. Note that the calculated

B(E2) values are plotted by multiplying by a factor of 3.
Ab initio calculations based on realistic nuclear forces usually
give radii of nuclei smaller than those of experimental data
[43], while the B(E2) calculation is sensitive to the radius
as seen in Eq. (15). In Ref. [44], using the EM1.8/2.0 in-
teraction, calculations by ab initio valence-space in-medium
similarity renormalization group give B(E2) values smaller
than those of experimental data. Missing correlations beyond
the model space can also lead to a loss of the E2 strength in the
calculation [45]. In phenomenological calculations, effective
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FIG. 3. Calculated and experimental [17,42] values of
B42 = B(E2; 4+

1 → 2+
1 )/B(E2; 2+

1 → 0+
1 ) in the Zn isotopes of

40 � N � 50.

charges determined by fitting data are usually used to give
better quantitative descriptions of electric transition strengths.

Effective charges can be understood in the ab initio
framework. As done in the present work using the �̂-box per-
turbation, in the ab initio calculation with a truncated model
space, one needs to construct the model-space E2-transition
effective operator starting from the bare E2 operator. The
effective operator is eventually expressed by a matrix in corre-
lated valence single-particle states |ĩ〉 obtained, e.g., by the Ŝ
box in this work. With the obtained effective operator matrix
elements, one can define effective charges as [46,47]

eeff
i j = e

〈ĩ|Q̃2μ| j̃〉
〈i|Q2μ| j〉 , (17)

where the numerator 〈ĩ|Q̃2μ| j̃〉 is actually the E2 effective
operator matrix elements (obtained by the �̂ box in this work),
while the denominator 〈i|Q2μ| j〉 is simply calculated by the
proton bare E2 operator in the uncorrelated (unperturbed)
basis |i〉 (e.g., HO or HF basis). The �̂-box evolution of the E2
matrix from free space to valence space also results in a neu-
tron E2 effective operator matrix similar to that of the proton.
With the proton and neutron E2 effective operator matrices,
we obtain the proton and neutron effective charges using
Eq. (17). Therefore, in this picture, we can understand that
effective charges result from the core polarization and virtual
excitations to higher orbitals outside the model space [47].
Equation (17) shows that the matrix elements of the effective
charges are orbital dependent. However, phenomenological
shell-model calculations usually assume orbital-independent
effective charges with the values determined by fitting exper-
imental E2-transition strengths. In the ab initio calculation
with the model space truncated, therefore, the valence effec-
tive operator is usually chosen without effective charges used.
The effective charges are designed to play the similar role as
the effective operator.

FIG. 4. Effective single-particle energies in the Zn isotopes, cal-
culated with the EM1.8/2.0 interaction. The N = 50 neutron magic
shell is clearly seen. Solid and dashed lines represent neutron (ν) and
proton (π ) orbitals, respectively.

A decrease in E (2+
1 ) but an increase in B(E2; 2+

1 → 0+
1 )

indicates a collectivity of the nucleus. The systematics of
E (2+

1 ) in Fig. 1 and B(E2; 2+
1 → 0+

1 ) in Fig. 2 in the Zn
isotopes is similar to that in other Z = 24 − 36 isotopes (with
an exception at Z = 28) [16,17], indicating that the N = 40
shell closure is weakened or even vanishes in the Z = 24–36
chains (except at the proton magic number of Z = 28) [16,17].
The present ab initio calculations give the consistent result.

The B42 ratios defined by Eq. (16) are presented in Fig. 3
for the Zn isotopes of 40 � N � 50. We see that the present
calculations well reproduce the data [17,42] within exper-
imental error bars. It was mentioned in Ref. [18] that a
collective motion of nucleus typically has a B42 value around
1.5. The present calculations give that the even-even 70-78Zn
have their B42 values near 1.5, which is consistent with the
collectivity in those nuclei. However, the situation is different
in 80Zn at N = 50, which we discuss later.

Calculating effective single-particle energies (ESPEs) [48]
is useful to analyze the shell structure of nuclei. Figure 4
presents the ESPEs in the Zn isotopes. The N = 50 shell
clearly appears. The N = 40 shell gap between 0g9/2 and
1p1/20 f5/2 is weakened with increasing the neutron number.
The orbitals ν1p1/2 and ν0 f5/2 are close to each other par-
allelly, which increases the configuration mixing involving
these two orbitals in many-body calculations.

As seen in Fig. 4, the proton 0 f5/2 orbit drops significantly
as the neutron number increases, lower than the π1p3/2 orbital
after N = 46. This is because of the tensor force. As the
neutron occupation number in ν0g9/2 increases, the tensor
force attracts the π0 f5/2 orbit more, and repulses the π0 f7/2

orbit more, leading to the drop of the π0 f5/2 orbit.
The LSSM calculation [14] with a phenomenological in-

teraction obtained based on the CD-Bonn potential predicts a
deformation region and a new IOI around N = 50. Indeed, the
present ab initio calculations show the collectivity in the Zn
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FIG. 5. Similar to Fig. 4, but for N = 50 isotones.

isotopes of 40 � N � 48, exhibited through E (2+
1 ), E (4+

1 ),
R42, B(E2), and B42 in Figs. 1–3. The collectivity had also
been found in the N = 50 isotones with the proton numbers
lower than the magic Z = 28, i.e., 20 � Z � 26 [14].

With the 56Ni core, we have also investigated the N = 50
(Z = 30–36) isotones heavier than the doubly magic isotone
78Ni. Figure 5 displays the calculated ESPEs at N = 50. The
N = 50 neutron magic shell between ν1d5/2 and ν0g9/2 is
clearly seen in the N = 50 isotones. As mentioned, the B42

value is an indicator of the collectivity. Figure 6 displays the
calculated B42 values of the N = 50 (Z = 30–36) isotones,
compared with the data available, showing a noncollectivity
in the N = 50 isotones heavier than 78Ni. The noncollectivity
indicates that the N = 50 IOI does not extend to the Z > 28
region.

IV. SUMMARY

We have performed ab initio calculations for the Z = 30
Zn isotopes located in the northwest of the exotic doubly
magic nucleus 78Ni and the N = 50 isotones in the north of
78Ni. With a chiral two- plus three-nucleon force from the
effective field theory, the cross-shell valence-space effective
Hamiltonian and other effective operators were derived using
the Q̂-box and �̂-box folded diagrams, respectively, with the
56Ni core. As the main goal, we have investigated the collec-
tivity or noncollectivity of nuclei in the 78Ni region.

We focus on excitation spectra and electromagnetic tran-
sitions in the Z = 30 even-even Zn isotopes and N = 50

30 32 34 36

0

1

2
Expt.
Calc.

Proton number Z

B 4
2

FIG. 6. Calculated and experimental [17,42] B42 values of the
N = 50 isotones.

(Z = 30–36) isotones. The 2+
1 and 4+

1 excitation energies and
their electric quadrupole transitions are good indicators of
the collectivity. Our calculations reproduce reasonably ex-
perimental data for the neutron-rich nuclei. The systematics
of E (2+

1 ), E (4+
1 )/E (2+

1 ), B(E2; 2+
1 → 0+

1 ), and B(E2; 4+
1 →

2+
1 )/B(E2; 2+

1 → 0+
1 ) in the Zn isotopes indicates a collec-

tivity in 70-78Zn. The N = 40 shell closure that is usually
thought to exist vanishes in the neutron-rich Zn isotopes,
supported also by the calculations of effective single-particle
energies. Calculations presented by the ratio of B(E2; 4+

1 →
2+

1 )/B(E2; 2+
1 → 0+

1 ) indicate a noncollectivity in the N =
50 isotones heavier than 78Ni. Next to the discovered four
islands of inversion located around N = 8, 20, 28, and 40, the
large-scale shell-model calculations based on an phenomeno-
logical interaction predicted the fifth island of inversion
around N = 50 (20 � Z � 28) [14]. The present ab initio
calculations show that the N = 50 fifth island of inversion
does not extend into the Z > 28 region.
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[4] P. E. Garrett, M. Zielińska, and E. Clément, Prog. Part. Nucl.
Phys. 124, 103931 (2022).

[5] K. Heyde and J. L. Wood, Rev. Mod. Phys. 83, 1467 (2011).
[6] R. R. Rodríguez-Guzmán, J. L. Egido, and L. M. Robledo,

Phys. Rev. C 62, 054319 (2000).
[7] R. Rodríguez-Guzmán, J. L. Egido, and L. M. Robledo, Phys.

Rev. C 65, 024304 (2002).
[8] R. Rodríguez-Guzmán, J. Egido, and L. Robledo, Nucl. Phys.

A 709, 201 (2002).
[9] R. Rodríguez-Guzmán, J. Egido, and L. Robledo, Eur. Phys. J.

A 17, 37 (2003).
[10] K. Sieja and F. Nowacki, Phys. Rev. C 81, 061303(R) (2010).
[11] K. Sieja and F. Nowacki, Phys. Rev. C 85, 051301(R) (2012).
[12] A. Gottardo, D. Verney, C. Delafosse, F. Ibrahim, B. Roussière,

C. Sotty, S. Roccia, C. Andreoiu, C. Costache, M.-C. Delattre,
I. Deloncle, A. Etilé, S. Franchoo, C. Gaulard, J. Guillot, M.
Lebois, M. MacCormick, N. Marginean, R. Marginean, I. Matea
et al., Phys. Rev. Lett. 116, 182501 (2016).

[13] X. F. Yang, C. Wraith, L. Xie, C. Babcock, J. Billowes, M. L.
Bissell, K. Blaum, B. Cheal, K. T. Flanagan, R. F. Garcia Ruiz,
W. Gins, C. Gorges, L. K. Grob, H. Heylen, S. Kaufmann, M.
Kowalska, J. Kraemer, S. Malbrunot-Ettenauer, R. Neugart, G.
Neyens et al., Phys. Rev. Lett. 116, 182502 (2016).

[14] F. Nowacki, A. Poves, E. Caurier, and B. Bounthong, Phys. Rev.
Lett. 117, 272501 (2016).

[15] M. Rocchini, P. E. Garrett, M. Zielińska, S. M. Lenzi, D. D.
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