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Effects of pairing strength on the nuclear structure and double-β decay
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The low-energy nuclear structure and two-neutrino double-β (2νββ) decay are studied within the interacting
boson model (IBM) that is based on the nuclear energy density functional (EDF). The IBM Hamiltonian de-
scribing the initial and final even-even nuclei, and the interacting boson fermion-fermion Hamiltonian producing
the intermediate states of the neighboring odd-odd nuclei are determined by the microscopic inputs provided
by the self-consistent mean-field (SCMF) calculations employing a relativistic EDF and a separable pairing
force. Sensitivities of the low-lying structure and 2νββ-decay properties to the pairing strength are specifically
analyzed. It is shown that the SCMF calculations with decreased and increased pairing strengths lead to
quadrupole-quadrupole interaction strengths in the IBM that are, respectively, significantly enhanced and reduced
in magnitude. When the increased pairing is adopted, in particular, the energy levels of the excited 0+ states are
lowered, and the predicted 2νββ-decay nuclear matrix elements (NMEs) increase in magnitude systematically.
The mapped IBM employing the increased pairing force generates effective NMEs and half-lives that are in a
reasonable agreement with the experimental data for the 76Ge → 76Se, 82Se → 82Kr, and 100Mo → 100Ru decays
in particular, whereas the calculation with the standard pairing strength is adequate to provide an overall good
description of the effective NMEs in agreement with data.
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I. INTRODUCTION

The double-β (ββ) decay is a rare nuclear process by
which the neutron N and proton Z numbers decrease (or
increase) and increase (or decrease) by two, emitting two elec-
trons (positrons) and some light particles such as neutrinos.
Since this nuclear decay process, especially the one that does
not emit neutrinos (neutrinoless ββ decay: 0νββ) concerns
several conservation laws required for the electroweak funda-
mental interactions in the standard model, and the nature and
masses of neutrinos, a number of underground experiments
aimed to detect the ββ decay have been running and proposed
all over the world [1–9]. See also, e.g., Refs. [10–12] for a
review on the related experimental investigations.

Theoretical studies on the ββ decay in the context of
low-energy nuclear physics mainly consist in the calculations
of the corresponding nuclear matrix elements (NMEs). The
predicted ββ NMEs currently available are, however, largely
at variance with different theoretical approaches by a factor of
2 to 3. Reducing the theoretical uncertainties arising in a given
nuclear model is, therefore, a crucial step toward the consis-
tent understanding of the ββ decay. Accurate computations of
the NMEs would be, in turn, a stringent test for the model, as
the nuclear wave functions used to compute the NMEs should
be sensitive to the model’s assumptions, parameters, etc. The
two-neutrino ββ (2νββ) decay, in particular, is an allowed
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decay, and a number of experimental data are available (see,
e.g., [13–17]) to compare with theoretical calculations. For the
calculations of the 2νββ decay, the so-called closure approx-
imation, which is considered valid for the 0ν modes, is not a
good approximation, but the intermediate states of the neigh-
boring odd-odd nuclei should be explicitly taken into account.
Theoretical predictions on the 2νββ-decay NMEs that do not
assume the closure approximation have been reported, such
as in the quasiparticle random phase approximation (QRPA)
[5,18,19], nuclear shell model (NSM) [20–25], and interacting
boson model (IBM) [26].

Recently, a calculation of the two-neutrino ββ decay
(2νββ) NMEs of a number of candidate nuclei was reported
[27], employing the neutron-proton IBM (IBM-2) [28,29] that
is based on the self-consistent mean-field (SCMF) calculation
within the framework of the nuclear energy density functional
(EDF) [30–34]. In that study, the IBM-2 Hamiltonians pro-
ducing the low-lying states of the initial even-even nuclei
including 48Ca to 198Pt, and those of the final ones including
48Ti to 198Hg, were completely determined so that the triaxial
quadrupole potential energy surface (PES), which is obtained
from the constrained relativistic Hartree-Bogoliubov (RHB)
[32,33] SCMF calculation employing the density-dependent
point-coupling (DD-PC1) [35] EDF and the separable pairing
force of finite range [36], is mapped onto that of the bo-
son system. The calculation for the 2νββ-decay NMEs was
made without the closure approximation, and the intermediate
odd-odd nuclei were treated in terms of the particle-
core coupling scheme within the neutron-proton interacting
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boson-fermion-fermion model (IBFFM-2) [37,38], with the
building blocks being also determined by the same SCMF
calculation.

The mapped IBM-2 study of Ref. [27] has shown that the
calculated 2νββ-decay NMEs with mass-dependent quench-
ing factors generally fell into the spectrum of various
theoretical values available in the literature, and were more
less consistent with the experimental systematic [13]. The
amounts of the quenching were, however, shown to be also
different among the decay processes. For instance, the NME
for the 76Ge → 76Se decay was calculated to be substantially
small to such an extent that does not require a quenching,
whereas a too large NME was obtained for the 150Nd →
150Sm decay, for which a much larger quenching than the
former, approximately by a factor of 5, was needed. The fact
that the quenching of the NMEs was required, and that it
was at variance with the decay processes indicated a need
for further investigating possible uncertainties in the mapped
IBM-2 descriptions. Indeed, dependencies of the 2νββ-decay
NMEs on several model assumptions and parameters within
this framework were studied in Ref. [27], and it was suggested
that a possible refinement of the model could be made, for
instance, at the level of the SCMF calculations and/or the em-
ployed EDF, on which the IBM-2 and IBFFM-2 Hamiltonians
and the 2νββ-decay operators were built.

It is the aim of the present article to pursue further the
last point, that is, to explore the sensitivities of the mapped
IBM-2 predictions on the 2νββ-decay NMEs, along with the
properties of the low-lying states of the relevant even-even
and odd-odd nuclei, to the underlying SCMF calculations.
Among those controllable parameters in the SCMF model,
in the present study the effects of the pairing strength in the
RHB-SCMF calculations on the mapped IBM-2 predictions
are specifically analyzed for those candidate nuclei, 48Ca,
76Ge, 82Se, 96Zr, 100Mo, 116Cd, 128Te, 130Te, 136Xe, and 150Nd,
where experimental data are available.

In previous applications of the mapped IBM-2 to a number
of nuclear structure phenomena, there has been a problem that
the microscopically derived quadrupole-quadrupole boson in-
teraction strength in the IBM-2 Hamiltonian, responsible for
deformation, is considerably larger in magnitude than those
used in the conventional IBM fits, and this leads to substan-
tial deviations from the observed low-lying energy spectra,
such as that of the excited 0+ states, which are generally
predicted to be too high as compared to the experimental
data. On one hand, this has been handled on the IBM’s side,
that is, either by incorporating the effects of configuration
mixing [39], i.e., the mixing between several configurations
associated with particle-hole excitations that are different in
boson numbers (see, e.g., Refs. [40–42]), or by introducing
dynamical pairing degree of freedom as additional collective
coordinate to the quadrupole deformations [43,44]. On the
other hand, the discrepancy in the calculation of the excited
0+ states has been, in many cases, attributed to the properties
of the underlying SCMF calculations also, since any of the
representative relativistic and nonrelativistic EDFs appears to
produce PESs that are steep in both β and γ deformations,
and exhibit a too pronounced energy minimum to be used as
an input to the IBM.

Increasing the strength of the pairing correlations would
soften the PES, as the stronger pairing generally favors a less
deformed configuration, so that the quadrupole-quadrupole
strength in the IBM-2 is expected to be reasonably reduced.
The increased pairing strength in both the relativistic and
nonrelativistic EDF frameworks has been shown to provide
a better agreement with the experimental energy spectrum
of the deformed nucleus 168Er in the mapped IBM [45]. It
was shown more recently that the reduction of the bosonic
quadrupole-quadrupole interaction strength allows one to re-
produce the measured log f t values for the single-β decays in
the neutron-rich even-even Zr isotopes [46].

The paper is organized as follows. Section II describes
the theoretical procedure. The results of the nuclear structure
calculations for each even-even and odd-odd nucleus, exci-
tation spectra, and electromagnetic transition properties are
presented in Sec. III. Section IV presents results of the cal-
culated 2νββ-decay NMEs and half-lives resulting from the
different pairing strengths in comparison to the experimental
data. A summary and concluding remarks are given in Sec. V.

II. THEORETICAL FRAMEWORK

A. Self-consistent mean-field calculations

To obtain the microscopic inputs to the IBM-2 and
IBFFM-2 Hamiltonians, the triaxial quadrupole constrained
SCMF calculations are carried out employing the RHB
method [32,33] with the particle-hole channel given by the
DD-PC1 interaction. The particle-particle part is modeled by
the separable pairing force of finite range [36], with the pair-
ing matrix element defined in the coordinate space

V (r1, r2, r′
1, r′

2) = −V δ(R − R′)P(r)P(r′) 1
2 (1 − Pσ ), (1)

where R = (r1 + r2)/2 and r = r2 − r2 are the center-of-
mass and relative coordinates, respectively, and the factor P(r)
a Gaussian function

P(r) = 1

(4πa2)3/2
e−r2/4a2

. (2)

The strength V = 728 MeV fm3 and the parameter a =
0.644 fm are taken to be the same for protons and neu-
trons, and these values were determined in [36] so that the
1S0 pairing gap of infinite nuclear matter resulting from the
Hartree-Fock-Bogoliubov (HFB) model calculation using the
Gogny-D1S EDF [47] should be reproduced. In the present
study, in addition to the default value V = 728 MeV fm3 two
other values are employed for the RHB-SCMF calculations:
655 and 837 MeV fm3, which correspond to the decrease and
increase of the original value V by 10% and 15%, respectively.
The other parameter, a, is here kept constant for the sake of
simplicity.

The particular choices of the pairing strength, i.e., scaling it
with factors 0.9 and 1.15, are here considered as two illustra-
tive cases in which quantitative changes in various calculated
results on the low-lying states and 2νββ decay are clearly
observed. Use of the above two scaling factors is also inspired
by a global systematic study of the separable pairing strength
within the relativistic EDF, that was reported in Ref. [48]. In
that study, global fits of the pairing interaction strength to the
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empirical odd-even mass staggering over the entire mass table
suggest that the strength does depend on nucleon numbers,
and for majority of the studied nuclei the modified pairing
strengths with the scaling factor f , being typically within the
range 0.9 � f � 1.2, were considered for medium-mass and
heavy regions. In addition, the earlier mapped IBM study on
the 168Er energy spectrum [45] reported a generally more rea-
sonable description of the low-lying non-yrast levels including
that of the excited 0+

2 state with the increased pairing by 15%
than with the default strength.

A set of the RHB-SCMF calculations are performed
for each even-even nucleus with constraints on the mass
quadrupole moments that are associated with the triaxial
quadrupole deformations β and γ in the geometrical model
[49]. The RHB-SCMF calculations yield the potential energy
surface (PES), that is, total mean-field energy defined as a
function of the β and γ deformations, and then it is used
as the input to construct the IBM-2 Hamiltonian. The RHB-
SCMF calculations further provide single-particle energies,
and occupation probabilities at spherical configuration for
the neighboring odd-odd nuclei. These quantities are to be
used to construct the IBFFM-2 Hamiltonian, and are obtained
from the standard RHB calculations without blocking, with
constraints to zero deformation and with the particle number
constrained to odd numbers (see Refs. [50,51] for details).

B. IBM-2 Hamiltonian

In order to calculate low-lying states and transition prop-
erties starting from the SCMF calculations, one should go
beyond the mean-field approximation by restoring symmetries
and including quantum fluctuations around the mean-field
solution [30,31,33,34]. These so-called beyond-mean-field ef-
fects are here taken into account by mapping the SCMF results
onto the IBM-2. The IBM-2 comprises the neutron sν and
proton sπ monopole bosons, and neutron dν and proton dπ

quadrupole bosons. The sν (sπ ) and dν (dπ ) bosons are con-
nected to the collective monopole Sν (Sπ ) and quadrupole Dν

(Dπ ) pairs of valence neutrons (protons) with spin and parity
values J = 0+ and J = 2+, respectively [29].

The IBM-2 Hamiltonian employed in this study takes the
form

ĤB = εd
(
n̂dν

+ n̂dπ

) + κQ̂ν · Q̂π + κ ′L̂ · L̂. (3)

n̂dρ
= d†

ρ · d̃ρ (ρ = ν, π ) is the d-boson number operator,
with εd the single d-boson energy relative to the s-
boson one, and d̃ρμ = (−1)μdρ−μ. The second term is the
quadrupole-quadrupole interaction between neutron and pro-
ton bosons, with Q̂ρ = d†

ρsρ + s†
ρ d̃ρ + χρ (d†

ρ × d̃ρ )(2) being
the quadrupole operator in the boson system. The last term
in Eq. (3) is a rotational term with L̂ = √

10
∑

ρ (d†
ρ × d̃ρ )(1)

being the bosonic angular momentum operator.
Since there appears no interaction between unlike-bosons

for those nuclei corresponding either to Nπ = 0 or Nν = 0, the
following Hamiltonian is considered:

ĤB = εdρ n̂dρ
+ κρQ̂ρ · Q̂ρ, (4)

which is nothing but the Hamiltonian in the IBM-1, where no
distinction is made between neutron and proton bosons. The

IBM-1-like Hamiltonian (4) is here employed specifically for
48Ca, 116Sn, and 136Xe, having Nπ = 0, Nπ = 0, and Nν = 0,
respectively.

The strength parameters for the Hamiltonian (3), or (4), are
determined by using the SCMF-to-IBM mapping procedure
[52,53], so that the following approximate equality is satisfied
in the vicinity of the global mean-field minimum:

ESCMF(β, γ ) ≈ EIBM(β, γ ). (5)

Here ESCMF(β, γ ) represents the SCMF PES, and EIBM(β, γ )
on the right-hand side the corresponding PES in the bo-
son system, which is given as the energy expectation value
〈�|ĤB|�〉 / 〈�|�〉, with the wave function |�〉 being a boson
coherent state [54,55] that is defined as

|�〉 =
∏

ρ=ν,π

⎡
⎣s†

ρ +
+2∑

μ=−2

αρμd†
ρμ

⎤
⎦

Nρ

|0〉 , (6)

up to the normalization factor. The amplitudes αρμ are given
as αρ0 = βρ cos γρ , αρ±1 = 0, and αρ±2 = βρ sin γρ/

√
2,

where βρ and γρ are boson analogs of the deformation vari-
ables. |0〉 represents the boson vacuum, i.e., the inert core. Nν

(Nπ ) is the number of neutron (proton) bosons, and is counted
as half the number of valence neutron (proton) particles/holes
with respect to the nearest doubly magic nucleus [28,29].
Only, for the 48Ca and 48Ti nuclei, the inert core is taken to
be 40Ca, in order to have the number of bosons be enough
to produce boson-boson interactions. Furthermore, both the
neutron and proton βρ and γρ deformations are assumed to be
equal to each other, βν = βπ and γν = γπ . As in Ref. [27] it
is also assumed that the βρ deformation is proportional to the
geometrical one, βν = βπ ∝ β, while the γρ is identical to the
geometrical counterpart, γν = γπ ≡ γ [52,55].

The parameter κ ′ for the third term of Eq. (3), L̂ · L̂, is
determined [56] separately from the other parameters, so that
the cranking moment of inertia calculated in the intrinsic
frame of the boson system [57] at the global minimum is equal
to the corresponding Inglis-Belyaev [58,59] moment of iner-
tia obtained from the RHB-SCMF calculation. This term is,
however, neglected for most of the studied even-even nuclei,
since it turns out to have only minor effects on the low-lying
energy levels, except for a few nuclei with specific choices of
the pairing strength. Details are given in Sec. III A 2.

C. IBFFM-2 Hamiltonian

The extension to the IBFFM-2 is made by introducing
unpaired nucleon degrees of freedom and their couplings to
the even-even IBM-2 space. The IBFFM-2 Hamiltonian is
written as

Ĥ = ĤB + Ĥ ν
F + Ĥπ

F + V̂ ν
BF + V̂ π

BF + V̂νπ , (7)

The first term ĤB is the IBM-2 Hamiltonian (3) [or (4)]. The
second and third terms represent the single-nucleon Hamilto-
nians of the form

Ĥρ
F = −

∑
jρ

ε jρ

√
2 jρ + 1

(
a†

jρ
× ã jρ

)(0) ≡
∑

jρ

ε jρ n̂ jρ , (8)
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where ε jρ stands for the single-particle energy of the odd
neutron (ρ = ν) or proton (ρ = π ) orbital jρ . a(†)

jρ
represents

a particle annihilation (or creation) operator, with ã jρ defined
by ã jρmρ

= (−1) jρ−mρ a jρ−mρ
. The operator n̂ jρ stands for the

number operator for the unpaired particle. Within the present
formalism, the single-particle energy ε jρ in Eq. (8) is replaced
with the quasiparticle energy ε̃ jρ .

The fourth (fifth) term of Eq. (7) stands for the interaction
between the odd neutron (proton) and the IBM-2 core, and has
a specific form [38]

V̂ ρ
BF = �ρV̂ ρ

dyn + �ρV̂ ρ
exc + AρV̂ ρ

mon, (9)

where the first, second, and third terms are dynamical
quadrupole, exchange, and monopole interactions, respec-
tively. Expressions for the terms in Eq. (9) are given in the
generalized seniority scheme as [38,60]

V̂ ρ
dyn =

∑
jρ j′ρ

γ jρ j′ρ

(
a†

jρ
× ã j′ρ

)(2) · Q̂ρ ′ , (10)

V̂ ρ
exc = − (s†

ρ ′ × d̃ρ ′ )(2) ·
∑
jρ j′ρ j′′ρ

√
10

Nρ (2 jρ + 1)
β jρ j′ρ β j′′ρ jρ :

× [(
d†

ρ × ã j′′ρ

)( jρ ) × (
a†

j′ρ
× s̃ρ

)( j′ρ )](2)
: +(H.c.),

(11)

V̂ ρ
mon = n̂dρ

n̂ jρ , (12)

Here the factors γ jρ j′ρ = (u jρ u j′ρ − v jρ v j′ρ )Qjρ j′ρ and β jρ j′ρ =
(u jρ v j′ρ + v jρ u j′ρ )Qjρ j′ρ , with Qjρ j′ρ = 〈�ρ

1
2 jρ‖Y (2)‖�′

ρ
1
2 j′ρ〉 the

matrix element of the fermion quadrupole operator in the
single-particle basis. Q̂ρ ′ in (10) is the same boson quadrupole
operator as in the boson Hamiltonian (3). The notation :
(· · · ) : in (11) means normal ordering.

The last term of Eq. (7) corresponds to the odd neutron-
proton interaction that is given as

V̂νπ = 4π (vd + vssdσν · σπ )δ(r)δ(rν − r0)δ(rπ − r0)

− 1√
3
vssσν · σπ + vt

[
3(σν · r)(σπ · r)

r2
− σν · σπ

]
.

(13)

The first term consists of the δ, and spin-spin δ interac-
tions, and the second, and third terms represent the spin-spin
and tensor interactions, respectively. vd, vssd, vss, and vt are
strength parameters. Note that r = rν − rπ is the relative co-
ordinate of the neutron and proton, and r0 = 1.2A1/3 fm.

The strength parameters for the IBFFM-2 Hamiltonian
(7) are obtained by using the procedure developed in
Refs. [50,61]: (i) The quasiparticle energies ε̃ jρ , occupation
v jρ , and unoccupation u jρ amplitudes provided by the RHB-
SCMF calculations are input to Ĥρ

F (8) and V̂ ρ
BF (9); (ii) the

coupling constants �ρ , �ρ , and Aρ are fit to reproduce a few
low-lying levels of each of the neighboring odd-N and odd-Z
nuclei, separately for positive- and negative-parity states; (iii)
the parameters for V̂νπ (13) are determined so as to repro-
duce the ground-state spin and a few energy levels of each
odd-odd nucleus. The employed parameters for the IBFFM-2
Hamiltonian are given in Tables VI, VII, and VIII in the Ap-
pendix. Single-particle spaces taken for the odd nucleons are

given in Tables VI and VII. The even-even boson core nuclei
and neighboring odd-N and odd-Z nuclei are summarized in
Table I of Ref. [27].

D. 2νββ decay operators

The 2νββ-decay NME requires to calculate the Gamow-
Teller (GT) and Fermi (F) transitions for the single-β decay
from the initial even-even to intermediate odd-odd, and that
from the intermediate odd-odd, to final even-even nuclei. The
corresponding GT and F operators take the forms

T̂ GT =
∑
jν jπ

ηGT
jν jπ

(
P̂jν × P̂jπ

)(1)
, (14)

T̂ F =
∑
jν jπ

ηF
jν jπ

(
P̂jν × P̂jπ

)(0)
, (15)

where the coefficients ηGT
jν jπ and ηF

jν jπ are, to the lowest order,

ηGT
jν jπ = − 1√

3

〈
�ν

1

2
; jν

∥∥∥∥σ

∥∥∥∥�π

1

2
; jπ

〉
δ�ν�π

, (16)

ηF
jν jπ = −

√
2 jν + 1δ jν jπ . (17)

P̂jρ is here given by one of the one-particle creation operators

A†
jρmρ

= ζ jρ a†
jρmρ

+
∑

j′ρ

ζ jρ j′ρ s†
ρ

(
d̃ρ × a†

j′ρ

)( jρ )

mρ
, (18a)

B†
jρmρ

= θ jρ s†
ρ ã jρmρ

+
∑

j′ρ

θ jρ j′ρ

(
d†

ρ × ã j′ρ

)( jρ )

mρ
(18b)

and annihilation operators

Ã jρmρ
= (−1) jρ−mρ Ajρ−mρ

, (18c)

B̃ jρmρ
= (−1) jρ−mρ Bjρ−mρ

. (18d)

The operators in Eqs. (18a) and (18c) conserve the boson
number, whereas those in Eqs. (18b) and (18d) do not. The
GT (14) and Fermi (15) operators are formed as a pair of the
above operators, depending on the particle or hole nature of
bosons in the even-even IBM-2 core. Coefficients ζ j , ζ j j′ , θ j ,
and θ j j′ are dependent on the v jρ and u jρ amplitudes, for which
the same values as those used in the IBFFM-2 calculations for
the odd-odd nuclei are employed. The expressions for these
coefficients are found, e.g., in Appendix D of Ref. [27]. A
more detailed description of the derivation of the one-particle
transfer operator within the generalized seniority scheme is
found in Refs. [38,62,63].

The GT and F matrix elements that enter the 2νββ NME
are calculated via the formulas

MGT
2ν =

∑
N

〈0+
F ‖T̂ GT‖1+

N 〉 〈1+
N ‖T̂ GT‖0+

1,I〉
EN − EI + 1

2 (Qββ + 2mec2)
, (19)

MF
2ν =

∑
N

〈0+
F ‖T̂ F‖0+

N 〉 〈0+
N ‖T̂ F‖0+

1,I〉
EN − EI + 1

2 (Qββ + 2mec2)
, (20)

respectively. In the denominators EI (EN ) stands for the en-
ergy of the initial (intermediate) state, Qββ is the Q value
for the 2νββ decay, and me is the electron mass, i.e., me =
0.511 MeV/c2. The sums in Eqs. (19) and (20) are taken
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TABLE I. Calculated electric quadrupole Q(I ) (in eb) and magnetic dipole μ(I ) (in μN ) moments, and the B(M1) transition strengths (in
W.u.) of the intermediate odd-odd nuclei, obtained from the RHB-SCMF mapped IBFFM-2 with the reduced (0.9V ), default (V ), and increased
(1.15V ) pairing strengths. The experimental values are taken from Refs. [64,66].

IBFFM-2

Nucleus Property 0.9V V 1.15V Experiment

48Sc μ(6+
1 ) 3.100 3.098 3.091 +3.737 ± 0.012

76As μ(1+
1 ) −0.095 0.388 2.235 +0.559 ± 0.005

96Nb μ(6+
1 ) −0.479 4.547 −0.874 4.976 ± 0.004

B(M1; 4+
1 → 5+

1 ) 0.0039 1.2298 0.0263 >0.021
B(M1; 2+

1 → 3+
1 ) 0.0030 0.2426 0.0025 >0.00017

116In μ(1+
1 ) 2.958 2.478 2.996 +2.7876 ± 0.0006

Q(1+
1 ) 0.126 0.213 0.110 0.11

μ(5+
1 ) 0.870 0.177 0.505 4.435 ± 0.015

Q(5+
1 ) −0.764 −0.813 −0.747 +0.802 ± 0.012

B(M1; 4+
1 → 5+

1 ) 0.0002 0.0072 0.0054 >0.18
B(M1; 2+

1 → 1+
1 ) 0.1236 0.2249 0.0549 >0.016

B(M1; 4+
2 /5+

2 → 4+
1 ) 0.0010/0.1709 0.0621/0.0060 0.0616/0.0687 0.00013 ± 0.00006

B(M1; 4+
2 /5+

2 → 5+
1 ) 0.0013/0.0085 0.0002/0.0275 0.0148/0.0044 0.00013 ± 0.00006

B(M1; 3+
1 → 4+

1 ) 0.0014 0.0090 0.0005 >0.0080
B(M1; 3+

1 → 2+
1 ) 0.0232 0.1079 0.0505 >0.0066

128I B(M1; 3+
2 → 3+

1 ) 0.0002 0.0068 0.0034 >0.0017
B(M1; 3+

2 → 2+
1 ) 0.0088 0.0011 0.0005 >0.011

B(M1; 1+
2 /2+

2 → 2+
1 ) 0.6268/0.0090 0.0022/0.0223 0.0170/0.0166 >0.0026

B(M1; 1+
2 /2+

2 → 1+
1 ) 0.1847/0.0085 0.0004/0.0006 0.0002/0.0044 >0.0046

B(M1; 3+
3 → 2+

2 ) 0.0036 0.0041 0.0092 >0.0095
B(M1; 3+

3 → 3+
1 ) 0.0000 0.0087 0.0002 >0.00011

B(M1; 3+
3 → 2+

1 ) 0.0000 0.0021 0.0185 >0.00051
B(M1; 4+

2 → 3+
1 ) 0.0267 0.0542 0.0105 >0.0027

B(M1; 4+
2 → 3+

2 ) 0.4234 0.0733 0.1520 >0.0019
B(M1; 4+

2 → 4+
1 ) 0.0048 0.0045 0.0855 >0.00050

130I μ(5+
1 ) 2.606 3.900 2.845 3.349 ± 0.007

136Cs μ(5+
1 ) 2.381 3.570 2.379 +3.711 ± 0.005

Q(5+
1 ) 0.196 0.267 0.191 +0.225 ± 0.010

over all the intermediate states 1+
N and 0+

N obtained from
the IBFFM-2 Hamiltonian below the excitation energy of
30 MeV. For the Qββ value, experimental data available at
NNDC database [64] are adopted. Using MGT

2ν (19) and MF
2ν

(20) transition matrix elements, the 2νββ-decay NME is ob-
tained through

M2ν = g2
Amec2

[
MGT

2ν −
(

gV

gA

)2

MF
2ν

]
, (21)

with gV = 1 and gA = 1.269 the vector and axial vector
coupling constants, respectively. The corresponding half-life,
denoted τ

(2ν)
1/2 , can be readily calculated by [4]

[
τ

(2ν)
1/2

]−1 = G2ν |M2ν |2, (22)

where G2ν is the phase-space factor in year−1 for the 0+ →
0+ 2νββ decay. The G2ν values calculated in Ref. [65] are
used.

III. LOW-ENERGY NUCLEAR STRUCTURES

A. Even-even nuclei

1. Potential energy surfaces

Figures 1 and 2 display the PESs in terms of the quadrupole
triaxial (β, γ ) deformations for the even-even initial and
final nuclei, obtained from the constrained RHB-SCMF cal-
culations employing the DD-PC1 EDF, combined with the
reduced (0.9V ), default (V ), and increased (1.15V ) strengths
of the separable pairing force (1). The PESs with the default
pairing strength are taken from Ref. [27] without any change,
and their properties were discussed there. A general effect of
reducing the pairing strength is that the potential becomes
steeper in both β and γ deformations, and in some cases
the global minimum occurs at a larger β deformation. If one
increases the pairing strength with respect to the default one,
on the other hand, the PES generally looks even softer in β and
γ deformations, and the location of the global minimum shifts
in the direction to the origin, hence disfavoring the strong
deformation.
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FIG. 1. Triaxial quadrupole (β, γ ) potential energy surfaces for the even-even nuclei from 48Ca to 100Ru obtained from the constrained
SCMF calculations within the RHB method using the DD-PC1 EDF and the separable pairing force with strengths 0.9V = 655 MeV fm3

(first and fourth columns), V = 728 MeV fm3 (second and fifth columns), and 1.15V = 837 MeV fm3 (third and sixth columns). The energy
difference between neighboring contours is 0.3 MeV, and the global minimum is indicated by the open triangle.

Figure 3 shows the energies (a) Edef , defined as the dif-
ference between the mean-field energies at the origin and at
the global minimum, and (b) Eγ , defined as the difference in
energy between the global minimum and saddle point along
axial deformation, i.e., the γ = 0◦ and 60◦ axes. The for-
mer quantity represents an energy gained by the deformation,
while the latter can be used as a measure of the γ softness. It is
seen from Fig. 3 that the quantity Edef is reduced (increased)
by a few MeV when the increased 1.15V (reduced 0.9V ) pair-
ing strength is used. The increased pairing strength generally
leads to a lower Eγ energy, implying that the PES becomes
softer in γ deformation.

The corresponding IBM-2 PES in the case of the default
pairing strength V were presented in Ref. [27]. It was shown
[27] that the basic features of the SCMF PESs in the neighbor-
hood of the global minimum are reproduced by the IBM-2.
Discrepancies between the SCMF and IBM-2 PESs in their
topology were shown to arise such that the latter is in most
cases flatter in the region of large β deformations, and that
triaxial minima found in the SCMF PESs for 96Zr, 96Mo,

100Mo, 128Xe, and 130Xe cannot be reproduced in the IBM-2
surfaces. These discrepancies can be attributed to the limited
degrees of freedom and form of the Hamiltonian in the IBM-2.
Similar observations hold for the mapped IBM-2 PESs both
with the reduced and increased pairing strengths.

2. Derived IBM-2 parameters

Figure 4 shows the derived parameters for the IBM-2
Hamiltonian (3) for the even-even nuclei. What is worth notic-
ing are the facts that the derived single-d boson energy εd

[Figs. 4(a) and 4(b)] is basically larger when a larger pairing
strength is considered, and that the quadrupole-quadrupole
interaction strength κ derived in the case of a stronger pairing
force is systematically reduced in magnitude, most notably, by
approximately a factor of 4 for 136Ba [Figs. 4(c) and 4(c)].

In addition, the ratio of these parameters, |κ|/εd , is
systematically lowered for the increased pairing strength, rep-
resentative cases being 76Ge, 128Te, 100Ru, 128Xe, and 130Xe.
In the case of 76Ge, for instance, the ratios corresponding
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FIG. 2. Same as Fig. 1, but for the even-even nuclei from 116Cd to 150Sm.

to 0.9V , V , and 1.15V pairing strengths are 1.1, 0.88, and
0.47, respectively. Since the n̂d term favors a spherical shape
and the Q̂ν · Q̂π term gives rise to deformation, the ratio of
their strength parameters |κ|/εd provides an implication for
the degree of deformation and collectivity. The reduction of
the ratio with the increased pairing strength is reasonable,
as the pairing correlations generally prefer a less deformed
shape, and indeed the SCMF PES tends to be softer with
enhanced pairing strength (cf. Fig. 3).

From Figs. 4(e) to 4(h) the derived parameters χν and
χπ do not depend much on the pairing strengths. A few ex-
ceptions are perhaps the χν values for 116Cd, and 76Se, for
which the values corresponding to the pairing strengths of
0.9V and 1.15V are quite large and small, respectively. This
reflects the fact that the SCMF PESs for these nuclei exhibit a
more pronounced potential valley on the oblate side with the
reduced pairing strength (see Figs. 1 and 2).

As noted, in the present IBM-2 calculations the L̂ · L̂
term is considered only for 150Nd, 150Sm, 96Zr, and 76Se
when particular pairing strengths are considered. For these
nuclei, this term has certain influences on the energy spec-
tra, and the corresponding strength parameter κ ′ are also

appreciable: for 150Nd the values κ ′ = −0.0082 MeV (with
V ) and −0.024 MeV (with 0.9V ); for 150Sm κ ′ = 0.0095
MeV (with V ) and 0.022 MeV (with 1.15V ); for 96Zr κ ′ =
0.021 MeV (with V ) and 0.063 MeV (with 1.15V ); and for
76Se κ ′ = 0.021 MeV (with V ) are employed.

The parameters for the like-boson interactions in Eq. (4)
specifically considered for the semimagic nuclei are as fol-
lows. εdν = 1.5 MeV and κν = −0.057 MeV (48Ca, and
116Sn); χν = 0.8 (116Sn) and 0 (48Ca); and εdπ = 1.5 MeV,
κπ = −0.057 MeV, and χπ = −0.8 for 138Xe. These values
are taken to be the same between the IBM-2 calculations
based on the different pairing strengths.

Concerning the 2νββ decays of 48Ca, 116Cd, and 150Nd,
the boson core nuclei for the odd-odd intermediate nuclei
48Sc, 116In, and 150Pm are taken to be 46Ca, 118Sn, and 148Nd,
respectively, which are different from either of the initial and
final nuclei. The IBM-2 parameters used for these boson core
nuclei are shown in Table IX of Ref. [27] in the case of the
default pairing strength, and the same parameters are here
employed. As for the 46Ca and 118Sn nuclei, the same IBM-2
parameters are used for the calculations with the modified
pairing strengths 0.9V and 1.15V . Regarding 148Nd, however,
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FIG. 3. Energies Edef (a) and Eγ extracted from the SCMF PESs
for the different pairing strengths. See the main text for the defini-
tions of the above quantities.

εd and κ parameters are here changed with respect to those
with the default V : εd = 0.21 (0.48) MeV and κ = −0.265
(−0.21) MeV, for the strength of 0.9V (1.15V ).

3. Low-lying states

Figures 5 and 6 show the excitation energies of the 2+
1 ,

4+
1 , 0+

2 , and 2+
2 states of the initial and final even-even nuclei

resulting from the mapped IBM-2, respectively. One sees that
the description of the energies for the yrast states 2+

1 and 4+
1

is not strongly affected by changing the pairing strength in
the underlying RHB-SCMF calculations, except perhaps for
the 96Zr and 116Cd nuclei. For the 96Zr nucleus, in particular,
there is observed a certain improvement of the description
of the 4+

1 excitation energy. Also for 96Zr, the measured 2+
1

energy level is particularly high, which is due to the filling
of the neutron d5/2 subshell. The present IBM-2 cannot re-
produce it, since the SCMF PESs for this nucleus with the
three pairing choices all suggest a well deformed minimum
(see Fig. 1).

As one can see in Figs. 5(c), 5(d), 6(c), and 6(d), depen-
dence of the calculated excitation energies on the choice of
the pairing strength is even more visible for the non-yrast
states 0+

2 and 2+
2 . For almost all the even-even nuclei con-

sidered, by the increase of the separable pairing force, both
the 0+

2 and 2+
2 energy levels are generally lowered, and are in

some cases in a better agreement with the experimental data
[64]. This result is an immediate consequence of the reduced
quadrupole-quadrupole interaction strength in the IBM-2 [cf.

FIG. 4. Derived parameters for the IBM-2 Hamiltonian (3) for
the even-even nuclei with the reduced (0.9V ), default (V ), and in-
creased (1.15V ) strengths of the separable pairing force.

Figs. 4(c) and 4(d)], and further confirms the effect of in-
creasing the pairing strength in the SCMF calculations, which
produce the PESs with a potential valley that is much less
pronounced.

Significant deviations of the calculated 0+
2 energy levels

from the experimental data are still present, e.g., for 100Mo
and 150Nd [Fig. 5(c)], and 96Mo, 100Ru, and 150Sm [Fig. 6(c)],
even though the increased pairing strength is considered.
Given the fact that these are all predicted to have a well
deformed ground state (cf. Figs. 1 and 2), characterized by
the large Edef energies, perhaps an even larger pairing strength
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FIG. 5. Excitation energies of the 2+
1 , 4+

1 , 0+
2 , and 2+

2 states
calculated with the mapped IBM-2 for the initial even-even nuclei
with the reduced (0.9V ), default (V ), and increased (1.15V ) pairing
strengths in the RHB-SCMF SCMF calculations. Experimental val-
ues are taken from the NNDC database [64].

would be required so the PES becomes much more softer,
leading to a much weaker quadrupole-quadrupole interaction
strength κ for the IBM-2 Hamiltonian. The low-energy 0+

2
levels, which are supposed to play a part especially in the
76Ge → 76Se, 100Mo → 100Mo, and 150Nd → 150Sm decays,
could be adequately handled by the version of the IBM-
2 that includes configuration mixing between the normal
and intruder states [39]. Within the version of the mapped
IBM-2 with a single (normal) configuration as considered
here, increasing the pairing strength does not lower the 0+

2
energy level as dramatically as with the configuration-mixing
IBM-2. A more realistic calculation would, therefore, re-
quire one to incorporate in the mapping procedure effects of
the intruder states by using the configuration-mixing IBM-2,
which would be of particular importance for the 100Mo →
100Mo(0+

2 ) and 150Nd → 150Sm(0+
2 ) decays.

4. E2 transitions

The B(E2) transition rates for the even-even nuclei are
computed in the IBM-2 by using the E2 operator

T̂ (E2)
B = eB

ν Q̂ν + eB
π Q̂π , (23)

FIG. 6. Same as Fig. 5, but for the final even-even nuclei.

where Q̂ρ are the same quadrupole operators used in the
Hamiltonian (3) with the same value of the χρ parameter.
The effective boson charges eB

ρ are here assumed to be the
same between neutron and proton systems, eB

ν = eB
π ≡ eB,

which is then determined so as to reproduce the experimen-
tal B(E2; 2+

1 → 0+
1 ) value [64] for each nucleus. Figures 7

and 8 display the calculated and experimental B(E2; 2+
1 →

0+
1 ), B(E2; 4+

1 → 2+
1 ), B(E2; 0+

2 → 2+
1 ), and B(E2; 2+

2 →
2+

1 ) transition strengths for the even-even nuclei. The cal-
culated B(E2; 4+

1 → 2+
1 ) values are, in general, in a good

agreement with experiment, and the results from the different
pairing strengths are strikingly similar to each other. The
B(E2; 0+

2 → 2+
1 ) and B(E2; 2+

2 → 2+
1 ) transition rates are,

however, at variance between the calculations with different
pairing strengths. A significant improvement of the descrip-
tion of the B(E2; 2+

2 → 2+
1 ) transition rate due to the increase

of the pairing force is observed for 76Se. The modification
of the separable pairing strength thus appears to affect the
wave functions for the even-even nuclei, especially those of
the non-yrast states.

B. Intermediate odd-odd nuclei

Figure 9 depicts the calculated excitation energies of low-
spin positive-parity states of the intermediate odd-odd nuclei
resulting from the IBFFM-2 with the three different pairing
strengths. The correct ground-state spin is reproduced by any
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FIG. 7. B(E2) values [in Weisskopf units (W.u.)] for the E2
transitions (a) 2+

1 → 0+
1 , (b) 4+

1 → 2+
1 , (c) 0+

2 → 2+
1 , and (d) 2+

2 →
2+

1 calculated for the initial even-even nuclei by using the reduced
(0.9V ), default (V ), and increased (1.15V ) pairing strengths. Experi-
mental data are adopted from the NNDC database. Note that since the
effective boson charges are fit to the experimental B(E2; 2+

1 → 0+
1 )

values [64], the calculated values for this transition are not included
in the plot.

FIG. 8. Same as Fig. 7, but for the final even-even nuclei.

FIG. 9. Excitation energies of the 0+
1 , 1+

1 , 2+
1 , 3+

1 , 4+
1 , 5+

1 , 6+
1 ,

and 1+
2 states calculated with the IBFFM-2 for the intermediate

odd-odd nuclei with the pairing strengths of 0.9V , V , and 1.15V .
Experimental data are taken from the NNDC database [64].

of the three IBFFM-2 calculations, except for the 136Cs nu-
cleus. One can see that the IBFFM-2 descriptions based on the
three choices of the pairing strength are rather different from
each other. There appears to be, however, no general tendency
of reaching a better agreement with the experimental data by
changing the pairing strength in either way. The differences in
the calculated energy levels due to the choices of the pairing
strength are primarily attributed to the differences between the
respective IBFFM-2 parameters, which, e.g., in 96Nb, 128I, and
130I, differ significantly from each other (see Table VIII in the
Appendix).

Furthermore, the E2 and M1 transition properties for the
odd-odd nuclei are studied. The E2 operator is given by

T̂ (E2) = T̂ (E2)
B + T̂ (E2)

F , (24)
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TABLE II. GT and F matrix elements obtained from the mapped IBM-2 based on the separable pairing strengths of 0.9V , V , and 1.15V in
the RHB-SCMF calculations for the 0+

1 → 0+
1 2νββ decays of the candidate nuclei.

MGT
2ν MF

2ν

0+
1 → 0+

1 decay 0.9V V 1.15V 0.9V V 1.15V

48Ca → 48Ti 0.060 0.031 0.077 0.029 0.016 −0.018
76Ge → 76Se 0.024 0.036 −0.128 0.000 −0.002 0.059
82Se → 82Kr 0.024 −0.052 0.131 0.000 0.011 −0.045
96Zr → 96Mo −0.087 0.175 −0.159 −0.000 0.001 −0.000
100Mo → 100Ru 0.465 0.483 0.574 −0.005 −0.000 −0.000
116Cd → 116Sn −0.225 0.275 0.337 −0.000 0.000 −0.001
128Te → 128Xe 0.035 −0.102 0.073 −0.007 0.005 −0.041
130Te → 130Xe 0.008 −0.038 −0.118 −0.006 0.023 0.076
136Xe → 136Ba −0.091 −0.102 −0.232 −0.004 0.029 0.099
150Nd → 150Sm 0.299 −0.369 −0.501 −0.000 0.000 0.000

with the boson operator T̂ (E2)
B defined in Eq. (23), and the

fermion one

T̂ (E2)
F = − 1√

5

∑
ρ=ν,π

∑
jρ j′ρ

(
u jρ u j′ρ − v jρ v j′ρ

)

×
〈
�ρ

1

2
jρ

∥∥∥∥eF
ρr2Y (2)

∥∥∥∥�′
ρ

1

2
j′ρ

〉(
a†

jρ
× ã j′ρ

)(2)
. (25)

The neutron and proton effective charges, eF
ν = 0.5 eb and

eF
π = 1.5 eb, are taken from Ref. [27]. The M1 transition

operator T̂ (M1) reads

T̂ (M1) =
√

3

4π

∑
ρ=ν,π

[
gB

ρ L̂ρ − 1√
3

∑
jρ j′ρ

(
u jρ u j′ρ + v jρ v j′ρ

)

× 〈 jρ‖gρ

l � + gρ
s s‖ j′ρ〉

(
a†

jρ
× ã j′ρ

)(1)

]
, (26)

where L̂ρ is the angular momentum operator in the boson
system (3), and the empirical g factors for the neutron and
proton bosons, gB

ν = 0μN and gB
π = 1.0μN , respectively, are

considered. For the neutron (or proton) g factors, the free
values gν

� = 0μN and gν
s = −3.82μN (gπ

� = 1.0μN and gπ
s =

5.58μN ) are employed, with gρ
s quenched by 30%.

Table I gives the calculated electric quadrupole Q(I ) and
magnetic dipole μ(I ) moments and B(M1) transition proba-
bilities in the cases of the three different pairing strengths in
the RHB-SCMF calculations in comparison with the available
experimental data [64,66]. The transition properties appear
to be sensitive to the choice of the pairing strength. Notable
difference is found in the μ(1+

1 ) and μ(6+
1 ) moments for

the 76As and 96Nb nuclei, respectively, since not only their
magnitudes but also signs are different between the pairing
strengths considered.

The IBFFM-2 wave function for the 1+
1 ground state of

76As is here accounted for by the mixture of the neutron-
proton pair components [νp1/2 ⊗ π p3/2](J=1+ ) (45%), and
[νp1/2 ⊗ π f5/2](J=5+ ) (38%) when the default (V ) and re-
duced (0.9V ) pairing strengths are employed in the RHB-
SCMF calculations. For the increased pairing (1.15V ), the

dominant configuration is of the type [νp1/2 ⊗ π p3/2](J=1+ )

(72%), and there are numerous minor contributions from other
pair components. Since the compositions of the 1+

1 wave func-
tion and the employed boson-fermion and fermion-fermion
interaction parameters are similar between the IBFFM-2
calculations with V and 0.9V , the difference between the
μ(1+

1 ) values from the two calculations probably arises from
the difference between the even-even boson-core (76Ge) pa-
rameters. Concerning the 96Nb nucleus, the IBFFM-2 wave
function of the 6+

1 ground state is mostly (86%) com-
posed of the pair configuration [νd5/2 ⊗ πg9/2](J=6+ ) in the
case of the default pairing strength (V ). In those calcula-
tions in which reduced (0.9V ) and increased (1.15V ) pairing
strengths are employed, however, the pair component of
the type [νh11/2 ⊗ π p1/2](J=6+ ) makes a dominant (89%,
and 87%, respectively) contribution to the the IBFFM-2 6+

1
wave functions.

The differences in the nature of the wave functions and
the calculated electromagnetic transition properties for the
odd-odd nuclei among the three cases of the pairing strength
arise from the differences in the parameters involved in the
IBFFM-2 Hamiltonian, which are especially dependent on the
strength parameters for the even-even boson core. One cannot
draw any definite conclusion from Table I that increasing or
reducing the pairing strength in the RHB-SCMF model is
particularly good for describing many of the electromagnetic
transition properties of the odd-odd nuclei studied. It appears
to be rather reasonable to use the standard pairing strength V ,
since only in that case is a reasonable description obtained for
the μ(1+

1 ) and μ(1+
6 ) moments of 76As and 96Nb, respectively

(cf. Table I).

IV. 2νββ DECAY

A. GT and F transitions

Tables II and III present the calculated MGT
2ν (19) and

MF
2ν (20) for the ground-state-to-ground-state (0+

1 → 0+
1 ), and

for the ground-state-to-first-excited state (0+
1 → 0+

2 ) decays,
respectively. As can be seen in Tables II and III, by the in-
crease of the pairing strength the predicted MGT

2ν value for the
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TABLE III. Same as Table II, but for the 0+
1 → 0+

2 2νββ decay.

MGT
2ν MF

2ν

0+
1 → 0+

2 decay 0.9V V 1.15V 0.9V V 1.15V

48Ca → 48Ti 0.037 0.069 0.024 −0.103 −0.068 −0.068
76Ge → 76Se −0.056 0.064 −0.100 0.032 −0.036 0.094
82Se → 82Kr −0.074 0.090 0.168 0.039 −0.055 −0.092
96Zr → 96Mo 0.038 −0.068 0.052 0.000 −0.001 0.001
100Mo → 100Ru 0.269 0.154 0.054 −0.001 0.000 −0.000
116Cd → 116Sn 0.106 −0.035 0.118 0.001 −0.001 −0.003
128Te → 128Xe −0.027 0.032 −0.134 0.024 0.002 0.112
130Te → 130Xe 0.092 0.037 0.363 −0.052 −0.018 −0.232
136Xe → 136Ba 0.045 0.009 −0.027 0.022 −0.000 −0.000
150Nd → 150Sm 0.095 −0.207 0.156 0.000 −0.000 0.000

0+
1 → 0+

1 decay generally increases in magnitude. This is also
true for the MF

2ν values. For some of the studied 2νββ decays,
the absolute value |MF

2ν | is so large as to be in the same order
of magnitude as |MGT

2ν |. This was already pointed out in the
previous mapped IBM-2 study of Ref. [27], and appears to
occur irrespective of which pairing strength is considered in
the present analysis. This is so for those 2νββ decays in which
the neutrons and protons are in the same major oscillator shell
so that the Fermi transitions are allowed. For the 48Ca → 48Ti
decay in particular, the |MF

2ν | value is equal to or even larger
than |MGT

2ν |. The large |MF
2ν |/|MGT

2ν | ratio indicates that there
is a spurious isospin symmetry breaking that is not expected
in the 2νββ decay. Effective ways to restore the isospin
symmetry would be, for instance, to simply discard MF

2ν in
the calculations of M2ν , and to make some modifications to
the Fermi transition operator (15) so that the Fermi matrix
elements should vanish in the closure approximation (see
Refs. [67,68] for detailed discussions). In the present study, no
such treatment is made to restore the isospin symmetry broken
in the employed model.

It should be mentioned that the results in the case of the
default pairing strength V are found in Table III of Ref. [27],
and that one can notice slight deviations of the present MGT

2ν

and MF
2ν values from those in the previous study [27] in some

instances. This is mainly due to the following differences
between the present calculation and that of [27]. First, as
already mentioned, in some of the even-even and odd-odd
nuclei modifications to the IBM-2 as well as IBFFM-2 pa-
rameters are made in the present calculation employing the
same default pairing strength as in Ref. [27]. Second, in
the present IBFFM-2 calculation the maximum number of
iterations in the numerical (Lanczos) diagonalization of the
IBFFM-2 Hamiltonian is set to be 200 000 times for all the
odd-odd nuclei and in all the three cases of the separable
pairing strength, whereas in Ref. [27] the number of iterations
was much less and also at variance with the nuclei. Third,
the truncation of the maximum energy for the intermediate
states for the calculations of MGT

2ν and MF
2ν is here set to be

30 MeV, while in [27] it was 10 MeV. These modifications,
especially the second and third ones, could have affected the
predictions of the MGT

2ν , as well as MF
2ν , and hence M2ν values

since these quantities require to include contributions from
higher-lying intermediate states, which should be sensitive
to the convergence of the IBFFM-2 eigenvalues and to the
truncation to their energy range.

Figure 10 depicts the running sums of the MGT
2ν (19) and

MF
2ν (20) matrix elements for the 0+

1 → 0+
1 2νββ decays as

functions of the excitation energies E (1+
N ) and E (0+

N ) of the
intermediate states, respectively. The GT sums in most cases
appear to be accounted for by the contributions from the
lower-lying 1+ states, typically below E (1+

N ) ≈ 3 MeV. This
result is consistent with the so-called single-state dominance
(SSD) [69,70] or low-lying-state dominance (LLSD) [71] hy-
potheses drawn from the pnQRPA studies for the 2νββ decay.
The behaviors of the GT sums are also at variance with the
calculations employing the different pairing strengths in the
RHB-SCMF input, with representative cases being the 116Cd
and 150Nd decays. Among the three IBM-2 results, the GT
running sums resulting from the increased pairing strength
1.15V exhibit the strongest dependence on the 1+ excitation
energies so that they continue to increase in magnitude, im-
plying that contributions from higher-lying intermediate states
are more important than in the calculations with weaker pair-
ing forces.

Regarding the Fermi transitions, in the majority of the con-
sidered decay processes the contributions from the low-lying
0+

N states, with typically up to E (0+
N ) ≈ 5 MeV, determine

most of the MF
2ν matrix element. The Fermi running sums

seem to show a stronger dependence on the intermediate en-
ergies than the GT sums. Peculiar behaviors of the calculated
Fermi sums are found for the 128Te, 130Te, and 136Xe decays,
where especially the sums obtained with the reduced pairing
strength 0.9V decrease in magnitude with E (0+

N ).

B. 2νββ NMEs

Figure 11 displays the calculated M2ν (21) for the 0+
1 →

0+
1 2νββ decay for the considered nuclei. The M2ν values

calculated for the 0+
1 → 0+

1 2νββ decays, and those for
the 100Mo(0+

1 ) → 100Ru(0+
2 ) and 150Nd(0+

1 ) → 150Sm(0+
2 )

decays are listed from the second to fourth columns of Ta-
ble IV. The experimental data [13] included both in the
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FIG. 10. Running sums of the GT (19) (first and third columns) and F (20) (second and fourth columns) transition strengths for the 2νββ

decay of the candidate even-even nuclei as functions of the excitation energies of the 1+
N and 0+

N intermediate states. The calculated results with
the reduced, default, and increased pairing strengths employed in the RHB-SCMF calculations are compared.

figure and table are those extracted from the measured half-
lives with the phase-space factors G2ν taken from Ref. [65],
and are referred to as “Recommended Value” in Table III of
Ref. [13].

As is evident from Fig. 11, the predicted |M2ν | values with
the bare (unquenched) gA factor are, in most cases, substan-
tially larger than the experimental values regardless of which
pairing strength is used in the RHB-SCMF calculations, illus-
trative cases being the 100Mo → 100Ru, 116Cd → 116Sn, and
150Nd → 150Sm decays. For the 48Ca → 48Ti, 76Ge → 76Se,
and 82Se → 82Kr decays, in contrast, the predicted |M2ν | with
the default pairing strength V are approximately equal to or
even lower than the experimental |Meff

2ν | values. A remark-
able finding in Fig. 11 is that, when the increased pairing

strength is adopted, the |M2ν | values systematically become
larger.

In the last two rows of Table IV the 0+
1 → 0+

2 decay
|M2ν | values are also shown for the 100Mo and 150Nd, for
which experimental data [13] are available. As compared
to the |M2ν (0+

1 → 0+
1 )| values, which exhibit an increase

with the enhanced pairing force, one can hardly see a gen-
eral trend of the |M2ν (0+

1 → 0+
2 )| values for the 100Mo

and 150Nd decays due to the modification of the pairing
strength.

To make a more reasonable comparison with experiment,
effective gA factors, denoted as geff

A , are considered. As in the
previous mapped IBM-2 study [27], while both gV and ratio
gV/gA in Eq. (21) remain unchanged, only the gA factor is
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TABLE IV. Predicted |M2ν | obtained from the mapped IBM-2 employing the separable pairing force with the reduced (0.9V ), default (V ),
and increased (1.15V ) strengths. From the second to fourth columns are |M2ν | values obtained with the bare gA factor, and from the fifth to
seventh columns are those with the effective geff

A factor defined in Eq. (28). The effective |Meff
2ν | extracted from the experimental 2νββ half-lives

[13] are shown in the eighth column.

|M2ν | with gA |M2ν | with geff
A

Decay 0.9V V 1.15V 0.9V V 1.15V |Meff
2ν |

48Ca → 48Ti 0.068 0.033 0.142 0.067 0.030 0.069 0.035 ± 0.003
76Ge → 76Se 0.038 0.060 0.265 0.027 0.032 0.083 0.106 ± 0.004
82Se → 82Kr 0.038 0.095 0.256 0.025 0.046 0.072 0.085 ± 0.001
96Zr → 96Mo 0.140 0.281 0.256 0.078 0.107 0.058 0.088 ± 0.004
100Mo → 100Ru 0.754 0.778 0.925 0.401 0.275 0.197 0.185 ± 0.002
116Cd → 116Sn 0.361 0.442 0.543 0.159 0.117 0.089 0.108 ± 0.003
128Te → 128Xe 0.063 0.169 0.159 0.024 0.036 0.022 0.043 ± 0.003
130Te → 130Xe 0.020 0.083 0.265 0.007 0.017 0.035 0.0293 ± 0.0009
136Xe → 136Ba 0.141 0.194 0.472 0.049 0.036 0.056 0.0181 ± 0.0006
150Nd → 150Sm 0.482 0.594 0.808 0.141 0.085 0.077 0.055 ± 0.003
100Mo → 100Ru(0+

2 ) 0.434 0.248 0.086 0.231 0.088 0.018 0.151 ± 0.004
150Nd → 150Sm(0+

2 ) 0.153 0.333 0.251 0.045 0.048 0.024 0.044 ± 0.005

modified in such a way that

M2ν → Meff
2ν =

(
geff

A

gA

)2

M2ν . (27)

The quenching factor q is also extracted from the above re-
lation, q = geff

A /gA. The geff
A is here assumed to be a smooth

function of the mass number A, and the following functional
form was shown [27] to give an overall good description of
the experimental NMEs:

geff
A = ce−dA, (28)

FIG. 11. Calculated NMEs M2ν for the considered 2νββ decays,
obtained from the mapped IBM-2 employing the three different
pairing strengths (0.9V , V , and 1.15V ) in the RHB-SCMF calcula-
tions. The bare gA factor is employed, hence no quenching is made.
Experimental M2ν , extracted from the measured half-lives, are taken
from Ref. [13].

with c and d being numerical constants that are fitted to the
experimental Meff

2ν values [13]. Note the constant c = gA in
Ref. [27].

Figure 12 exhibits those geff
A values (shown as solid sym-

bols connected by thin solid lines) that would be required
so that the calculated Meff

2ν ’s agree with the data. The geff
A

values corresponding to the pairing strengths of 0.9V and

FIG. 12. Effective geff
A factors that are required to reproduce

the experimental |Meff
2ν | values (denoted by “expt.”), and the mass-

dependent geff
A factors (denoted by “fit”) obtained by using the

formula Eq. (28), for the different pairing strengths in the RHB-
SCMF calculations. The free-nucleon value gA is indicated by the
sold horizontal line.
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FIG. 13. Effective NMEs |Meff
2ν | calculated by using the geff

A fac-
tors defined in Eq. (28) in the cases of the three different pairing
strengths.

V appear to be significantly at variance with the different
decay processes, and those for 76Ge, 82Se, and 130Te decays
are particularly large, being close to or much larger than the
bare value, gA = 1.269, represented by the horizontal solid
line in the figure. On the other hand, the geff

A values that
are expected for the calculated M2ν result with the increased
pairing strength 1.15V change smoothly as functions of the
mass A.

The function (28) is then fitted to those effective gA val-
ues extracted from the data for each nucleus, giving rise to
the numerical constants c and d as (c, d ) = (1.69, 0.006),
(1.86, 0.009), and (1.30, 0.008) for the calculations with
the pairing strengths of 0.9V , V , and 1.15V , respectively.
Note that the free nucleon value gA = 1.269 at A = 1 is
included in the fit. The fitted geff

A ’s (depicted as the thick
lines in Fig. 12) do exhibit smoothly decreasing systematic
as functions of A for all the three pairing strengths, with the
corresponding values for the masses A = 48 to 150 changing
within the ranges geff

A = 1.26–0.69 (with 0.9V ), 1.20–0.48
(with V ), and 0.89–0.39 (with 1.15V ). The quenching fac-
tors q estimated for the masses A = 48 to 150 also decrease
monotonously in the intervals q = 1.00−0.54, 0.95−0.38,
and 0.70−0.31, for the calculations with the reduced (0.9V ),
default (V ), and increased (1.15V ) pairing strengths, respec-
tively. Figure 13 depicts the resultant |Meff

2ν | values, which
are computed by using the effective geff

A (28) determined
by the aforementioned procedure, and compare them with
the experimental data [13]. As one can see, while certain
improvements appear to be made by using the increased
pairing strength 1.15V , particularly for the 76Ge, 82Se, and
100Mo decays, the calculations with the original pairing
strength V provide an overall good description of the observed
|Meff

2ν | values. The calculated results with the reduced pairing
strength 0.9V seem to be, in many cases, rather far from the
experimental data.

The predicted |Meff
2ν | with the effective geff

A , which are
shown in Fig. 13, are also listed from the fifth to seventh
columns of Table IV. The table also gives results for the
|Meff

2ν (0+
1 → 0+

2 )| NMEs for the 100Mo and 150Nd decays, for
which the same geff

A values as those used for the |Meff
2ν (0+

1 →
0+

1 )| ones are employed. Smaller |Meff
2ν (0+

1 → 0+
1 )| are ob-

tained with the stronger pairing interaction, reflecting that the
larger quenching is expected from the systematic of the un-
quenched |M2ν | calculated with the increased pairing strength.
Note, however, that the use of the same geff

A values for the
0+

1 → 0+
1 and 0+

1 → 0+
2 decays may not be entirely justified,

that is, some different quenching may need to be made for the
decays to the different final states.

C. Half-lives

The calculated 2νββ-decay half-lives τ
(2ν)
1/2 (22), with the

NMEs |M2ν | given in Table IV, are listed in Table V. The ex-
perimental data [13], shown in the eighth column, correspond
to those that are referred to as “Average (or Recommended)
value” in Table I of Ref. [13], which are based on the mea-
sured 2νββτ

(2ν)
1/2 from the 1990s till 2020. As in the case

of the |Meff
2ν | results in Fig. 13, the calculations with the

default pairing strength V provide an overall good descrip-
tion of the τ

(2ν)
1/2 data, with M2ν quenched with the effective

geff
A factors of Eq. (28). Increasing the pairing strength to

1.15V leads to some improvements in specific cases of the
76Ge → 76Se, 82Se → 82Kr, and 100Mo → 100Ru decays. As
for the τ

(2ν)
1/2 ’s for the 136Xe → 136Ba and 100Mo → 100Ru(0+

2 )
decays, however, enhancing the pairing does not seem to work
well, as the predicted τ

(2ν)
1/2 ’s are here by about one and two

orders of magnitude shorter and longer, respectively, than the
experimental ones. It should be worth mentioning more re-
cent measurements of the 2νββ-decay τ

(2ν)
1/2 concerning some

of the candidate nuclei: a GERDA experiment for the 76Ge
decay [14] obtained τ

(2ν)
1/2 = (2.022 ± 0.018stat ± 0.038syst ) ×

1021 yr, CUPID-Mo experiments on the 100Mo decay reported
τ

(2ν)
1/2 = [7.07 ± 0.02(stat) ± 0.11(syst)] × 1018 yr for the

0+
1 → 0+

1 transition [15], and [7.5 ± 0.8(stat)+0.4
−0.3] × 1020 yr

for the 0+
1 → 0+

2 transition [16], and a CUORE measurement
on 130Te [17] provided τ

(2ν)
1/2 = [7.71+0.08

−0.06(stat)+0.12
−0.15(syst)] ×

1020 yr. All these new entries present crucial updates on
the 2νββ-decay τ

(2ν)
1/2 data with high accuracy, and are more

or less close to the average values of Ref. [13] listed in
Table V.

Concerning the 100Mo and 150Nd decays, ratios of the mea-
sured τ

(2ν)
1/2 values for the 0+

1 → 0+
1 to 0+

1 → 0+
2 decays are

computed as

τ
(2ν)
1/2 [100Mo(0+

1 ) →100 Ru(0+
2 )]

τ
(2ν)
1/2 [100Mo(0+

1 ) →100 Ru(0+
1 )]

= 94.9+7.4
−5.9, (29)

while the predicted ratios in the present calculation are much
larger: 165, 536, and 6279, obtained for the pairing strengths
of 0.9V , V , and 1.15V , respectively. The experimental ratio
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TABLE V. Calculated 2νββ-decay τ
(2ν )
1/2 ’s (22) (in year) with the unquenched gA factor (from the second to fourth columns), and with

the effective geff
A factors defined in Eq. (28) (from the fifth to seventh columns) obtained from the mapped IBM-2 with the different pairing

strengths 0.9V , V , and 1.15V . The experimental τ
(2ν )
1/2 [13] are included in the eighth column.

τ
(2ν )
1/2 (yr), with gA τ

(2ν )
1/2 (yr), with geff

A

Decay 0.9V V 1.15V 0.9V V 1.15V Experiment

48Ca → 48Ti 1.41 × 1019 5.79 × 1019 3.20 × 1018 1.42 × 1019 7.14 × 1019 1.34 × 1019 5.3+1.2
−0.8 × 1019

76Ge → 76Se 1.42 × 1022 5.85 × 1021 2.97 × 1020 2.82 × 1022 1.98 × 1022 3.05 × 1021 (1.88 ± 0.08) × 1021

82Se → 82Kr 4.34 × 1020 6.97 × 1019 9.59 × 1018 9.95 × 1020 2.92 × 1020 1.19 × 1020
(
0.87+0.02

−0.01

)× 1020

96Zr → 96Mo 7.50 × 1018 1.86 × 1018 2.23 × 1018 2.40 × 1019 1.29 × 1019 4.35 × 1019 (2.3 ± 0.2) × 1019

100Mo → 100Ru 5.32 × 1017 5.00 × 1017 3.53 × 1017 1.88 × 1018 4.01 × 1018 7.82 × 1018
(
7.06+0.15

−0.13

)× 1018

116Cd → 116Sn 2.77 × 1018 1.85 × 1018 1.23 × 1018 1.44 × 1019 2.64 × 1019 4.53 × 1019 (2.69 ± 0.09) × 1019

128Te → 128Xe 9.28 × 1023 1.31 × 1023 1.48 × 1023 6.41 × 1024 2.87 × 1024 8.03 × 1024 (2.25 ± 0.09) × 1024

130Te → 130Xe 1.67 × 1021 9.48 × 1019 9.29 × 1018 1.21 × 1022 2.24 × 1021 5.37 × 1020 (7.91 ± 0.21) × 1020

136Xe → 136Ba 3.49 × 1019 1.86 × 1019 3.13 × 1018 2.93 × 1020 5.44 × 1020 2.20 × 1020 (2.18 ± 0.05) × 1021

150Nd → 150Sm 1.18 × 1017 7.78 × 1016 4.21 × 1016 1.39 × 1018 3.77 × 1018 4.61 × 1018 (9.34 ± 0.65) × 1018

100Mo → 100Ru(0+
2 ) 8.78 × 1019 2.68 × 1020 2.22 × 1021 3.10 × 1020 2.15 × 1021 4.91 × 1022 6.7+0.5

−0.4 × 1020

150Nd → 150Sm(0+
2 ) 9.84 × 1018 2.08 × 1018 3.66 × 1018 1.15 × 1020 1.01 × 1020 4.01 × 1020 1.2+0.3

−0.2 × 1020

TABLE VI. Strength parameters for the boson-fermion interaction V̂ ν
BF (9) for the odd-odd nuclei obtained for the single-particle spaces

corresponding to the positive- and negative-parity states in the cases of the reduced (0.9V ), default (V ), and increased (1.15V ) pairing
strengths in the RHB-SCMF calculations. Note that the single-neutron space for 48Sc does not include orbitals of positive parity, so the
strength parameters corresponding to positive parity are taken to be the same as those determined for the negative-parity (2p1/2,3/2, 1 f5/2,7/2)
configuration.

�ν (MeV) �ν (MeV) Aν (MeV)

Nucleus Single-particle space 0.9V V 1.15V 0.9V V 1.15V 0.9V V 1.15V

48Sc 2p1/2,3/2, 1 f5/2,7/2 0.30 0.30 0.30 1.00 1.00 1.00
76As 1g9/2 0.30 0.30 0.60 1.20 1.00 1.00 −0.60 −0.50 −0.50

2p1/2,3/2, 1 f5/2 0.30 0.30 0.60 0.80 0.80 1.00 −0.50 −0.50 −0.40
82Br 1g9/2 0.30 0.30 0.30 2.10 2.10 1.70

2p1/2,3/2, 1 f5/2 0.30 0.30 0.30 0.80 0.80 0.80
96Nb 3s1/2, 2d3/2,5/2, 1g7/2 0.30 0.30 0.30 0.40 0.40 0.40

1h11/2 0.30 0.30 0.30 −1.50 −1.50 −0.80
100Tc 3s1/2, 2d3/2,5/2, 1g7/2 0.30 0.30 0.30 0.35 0.35 0.35

1h11/2 0.30 0.30 0.30
116In 3s1/2, 2d3/2,5/2, 1g7/2 0.30 0.30 0.30 0.20 0.20 0.20 −0.15 −0.15 −0.15

1h11/2 0.30 0.30 0.30 0.20 0.20 0.20 −0.15 −0.15 −0.15
128I 3s1/2, 2d3/2,5/2, 1g7/2 0.30 0.30 0.30 6.50 6.50 6.50

1h11/2 0.30 0.30 0.30 0.90 0.90 0.90 −0.20 −0.20 −0.20
130I 3s1/2, 2d3/2,5/2, 1g7/2 0.30 0.30 0.30 7.60 7.60 5.00

1h11/2 0.30 0.30 0.30 0.90 0.90 0.90 −0.50 −0.50 −0.50
136Cs 3s1/2, 2d3/2,5/2, 1g7/2 0.30 0.30 0.30 0.20 0.20 0.20 −0.15 −0.15 −0.15

1h11/2 0.30 0.30 0.30 0.20 0.20 0.20 −0.15 −0.15 −0.15
150Pm 1i13/2 0.30 0.30 0.30 16.00 10.00 6.00 −0.80 −0.80

3p1/2,3/2, 2 f5/2,7/2, 1h9/2 0.30 0.30 0.30 0.50 0.60 0.50 −0.80 −0.80
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TABLE VII. Same as Table VI, but for V̂ π
BF.

�π (MeV) �π (MeV) Aπ (MeV)

Nucleus Single-particle space 0.9V V 1.15V 0.9V V 1.15V 0.9V V 1.15V

48Sc 2p1/2,3/2, 1 f5/2,7/2 0.30 0.30 0.30
76As 1g9/2 1.00 1.00 1.00

2p1/2,3/2, 1 f5/2 0.30 0.30 0.60 1.60 1.60 0.35 −0.80 −0.80
82Br 1g9/2 2.50 2.50 2.00 1.30

2p1/2,3/2, 1 f5/2 0.30 0.30 0.30 0.80 0.80 0.80
96Nb 1g9/2 0.30 0.30 0.30 0.90 0.90 0.90 −0.50 −0.50

2p1/2,3/2, 1 f5/2 0.30 0.30 0.30 1.60 1.60 1.60 −0.30 −0.30 −0.30
100Tc 1g9/2 0.30 0.30 0.30 0.90 0.90 0.60

2p1/2,3/2, 1 f5/2 0.30 0.30 0.30 5.00 5.00 5.00 −1.00 −1.00 −1.00
116In 1g9/2 0.30 0.30 0.30

2p1/2,3/2, 1 f5/2 1.00 1.00 1.00
128I 3s1/2, 2d3/2,5/2, 1g7/2 0.30 0.30 0.30 0.60 0.60 0.60 −1.00 −1.00 −1.00

1h11/2 0.30 0.30 0.30 −1.05 −1.05 −1.05
130I 3s1/2, 2d3/2,5/2, 1g7/2 0.30 0.30 0.30 0.80 0.80 0.80 −0.75 −0.75 −0.50

1h11/2 0.30 0.30 0.30 −1.05 −1.05 −1.05
136Cs 3s1/2, 2d3/2,5/2, 1g7/2 0.30 0.30 0.30

1h11/2 1.00 1.00 1.00
150Pm 3s1/2, 2d3/2,5/2, 1g7/2 0.30 0.30 0.30 0.40 0.40 0.40 −0.70 −1.00 −0.70

1h9/2,11/2 1.00 1.00 1.00 2.80 3.00 2.80

for the 150Nd decay,

τ
(2ν)
1/2 [150Nd(0+

1 ) →150 Sm(0+
2 )]

τ
(2ν)
1/2 [150Nd(0+

1 ) →150 Sm(0+
1 )]

= 12.8+3.3
−2.3, (30)

is reproduced reasonably well by the present calculation, with
the predicted values being 83, 27, and 87, for the pairing
strengths of 0.9V , V , and 1.15V , respectively. These ratios are
independent of the effective gA factors if the same geff

A values
are used in the calculations of the NMEs for the 0+

1 → 0+
1

and 0+
1 → 0+

2 decays. The description of the ratio for the
100Mo decays (29) could be improved if different geff

A values
are considered between the 0+

1 → 0+
1 and 0+

1 → 0+
2 decays.

V. CONCLUDING REMARKS

The low-energy nuclear structure and 2νββ-decay NMEs
without the closure approximation have been investigated
within the mapped IBM-2 that is based on the SCMF
calculation employing the relativistic EDF DD-PC1 and
separable pairing force of finite range. The IBM-2 Hamil-
tonian describing the initial and final even-even nuclei has
been completely determined by mapping the RHB-SCMF
PES onto the bosonic counterpart. The particle-boson and
particle-particle interactions in the IBFFM-2 Hamiltonian
used to compute intermediate states of the neighboring
odd-odd nuclei have also been determined by using the
results of the RHB-SCMF calculations. In the present anal-
ysis, the effects of changing the pairing strength in the
RHB calculations on the spectroscopic properties of low-
lying states and 2νββ-decay NMEs have been specifically
studied.

When the increased pairing with respect to the default
one by 15% is chosen, the SCMF PESs for the candidate
even-even nuclei have been shown to be substantially softer
in both the axial β and triaxial γ deformations, and the
potential valley becomes less pronounced. With the pair-
ing strength reduced by 10% from the default one, on the
other hand, a PES with a much more pronounced potential
valley has been obtained which is steep in the β and γ

directions. The derived strength parameters for the pairing-
like term (n̂d ) and quadrupole-quadrupole interaction (Q̂ν ·
Q̂π ) in the IBM-2 have been shown to be significantly at
variance with the different IBM-2 calculations using the
reduced, default, and increased pairing strengths in the RHB-
SCMF calculations.

The calculated energy spectra for the even-even nuclei
indicated that with the increased pairing strength 1.15V , the
energy levels for the non-yrast states 0+

2 and 2+
2 are generally

lowered, being in better agreement with experiment than in
the cases of the weaker pairing strength 0.9V and V . An
even more accurate description of the excited 0+

2 states in
the even-even nuclei and its influence on the ββ-decay NMEs
would be better investigated within the version of the IBM-2
that incorporates the configuration mixing between the normal
and intruder states. The energy levels for the intermediate
odd-odd nuclei have been shown to be more or less sensitive
to the choice of the pairing strength. The electromagnetic
transition properties for both the even-even and odd-odd nu-
clear systems have exhibited certain sensitivities to the pairing
strengths. A notable consequence is that the calculation with
the default pairing strength has given the best agreement with
the experimental transition properties for many of the odd-odd
nuclei.
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TABLE VIII. Strength parameters used for the residual neutron-
proton interaction V̂νπ (13) in the IBFFM-2 Hamiltonian for the
intermediate odd-odd nuclei for the calculations with the three dif-
ferent pairing strengths. Note that the spin-spin interaction strength
vss = 0 MeV for all the nuclei.

Nucleus Pairing vd (MeV) vssd (MeV) vt (MeV)

48Sc 0.9V 0.60
V 0.60

1.15V 0.60 −0.02
76As 0.9V 0.80 0.15

V 0.80 0.15
1.15V 0.80 0.02

82Br 0.9V −0.23 0.10
V −0.23 0.10

1.15V −0.23 0.10
96Nb 0.9V 0.80 0.25

V 0.80
1.15V 0.40 0.10

100Tc 0.9V −0.08 0.12
V −0.08 0.05

1.15V −0.08 0.20
116In 0.9V −0.80 0.40

V −0.80 0.40
1.15V −0.80 0.43

128I 0.9V −0.05
V −0.51

1.15V −0.30
130I 0.9V −0.02 0.01

V −0.08 0.01
1.15V 0.01 0.01

136Cs 0.9V −0.08 0.15
V −0.08 0.09

1.15V −0.08 0.04
150Pm 0.9V −0.08 0.20

V −0.08 0.14
1.15V −0.08 0.18

An effect of modifying the pairing strength in the
RHB-SCMF calculation on 2νββ decay is that with the in-
creased strength, resultant 2νββ-decay NMEs, |M2ν |, become

systematically larger. A quenching of the NMEs with the
effective geff

A factor that is a smooth function of the mass
A has been introduced as in Ref. [27]. In the calculation
employing the increased pairing strength 1.15V , the effective
NMEs turned out be in a fairly good agreement with the ex-
perimental |Meff

2ν | values for the 76Ge, 82Se, and 100Mo decays
in particular. In many other decays, however, the calculated
results with the default V pairing strength have been shown
to be adequate to provide an overall good agreement with
the data.

Of several assumptions, and approximations introduced
in the employed theoretical approach, the uncertainties in
the 2νββ NME predictions could arise, to a larger extent,
from the SCMF models and properties of the employed EDF,
which underlie the mapped IBM-2 study. The present study
indicates that the strength of the pairing interaction is con-
sidered among the most important parameters that may affect
both low-lying states and decay processes. In the meantime,
it remains an open question to investigate thoroughly how
relevant other building blocks involved in the model are in the
predictions of the NMEs, as well as the low-lying structures,
such as those related to the parametrizations of the EDF, to
the single-particle properties, to other missing correlations at
the SCMF level, and to the forms of the IBM-2 and IBFFM-2
Hamiltonians.

APPENDIX: PARAMETERS FOR THE IBFFM-2
HAMILTONIAN

The strength parameters adopted for the boson-fermion
interactions V̂ ν

BF and V̂ π
BF, and the residual neutron-proton

interaction V̂νπ in the IBFFM-2 Hamiltonian in the three
cases of the separable pairing strength in the RHB-SCMF
calculations are listed in Tables VI, VII, and VIII, respec-
tively. Some updates have been made to the adopted IBFFM-2
parameters since the previous study of Ref. [27] concern-
ing the parameters �ν , Aν , for both parities, and the tensor
strength vt , for the nucleus 76As, when the default pairing
strength V is used. New parameters are here also employed
for some other nuclei: vt for 82Br, boson-fermion inter-
actions for 136Cs and 150Pm. For details, compare entries
in Tables VI, VII, and VII, with those in Table XVI of
Ref. [27].
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