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Triaxial rotor modes in finite-N boson systems
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We propose an algebraic approach to elucidate the dynamic characteristics of triaxial rotor modes in nuclei
by mapping a triaxial rotor Hamiltonian to the interacting boson model one within a finite-N framework. Our
method unveils striking features not observed in conventional modes, exemplified by the B(E2) anomaly, char-
acterized by B(E2; 4+

1 → 2+
1 )/B(E2; 2+

1 → 0+
1 ) < 1. Using specific examples, we demonstrate that the peculiar

properties of low-lying states in both neutron-rich and neutron-deficient Os nuclei can be comprehensively
understood through the proposed Hamiltonian, which incorporates both rigid and soft triaxial rotor modes.
This algebraic method not only offers fresh insights into triaxial dynamics but also showcases its capability
in uncovering emergent exotic collective modes in nuclear structure.
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I. INTRODUCTION

The emergence of collective modes stands as a pivotal
characteristic of complex nuclear many-body systems. The
systems with quadrupole deformation, in particular, exhibit
several typical collective modes, such as the spherical vi-
brator, γ -unstable rotor, and deformed rotors (whether axial
or triaxial). These collective modes represent the quantum
mechanical expression of distinct intrinsic deformations in-
herent to nuclear systems [1]. The investigation of rotor modes
in finite-N systems has been a compelling pursuit since El-
liott’s groundbreaking work, which provided a microscopic
elucidation of rotational spectra in light nuclei [2]. Based on
the algebraic relations [3], it was demonstrated that triaxial
rotor dynamics can be microscopically elucidated through
the SU(3) framework of the shell model [4,5]. Similarly, the
algebraic realization of rotor modes has been attained within
the SU(3) limit of the interacting boson model (IBM) [6]. An
exact mapping scheme for the IBM realization [7] has been re-
cently applied to explicate anomalous E2 transitions observed
in neutron-deficient triaxial nuclei [8]. These endeavors un-
derscore the intimate connection between rotor modes and
SU(3) symmetry within nuclei [9].

The IBM [10] exhibits remarkable efficacy in elucidating
collective modes within nuclei. Its notable advantage lies in
its ability not only to encompass a few distinct and fun-
damental collective limits but, more crucially, to employ a
simple Hamiltonian formulation [11] for investigating broader
scenarios involving the mixing or transitions among various
collective modes. However, the description of triaxial rotor
modes, often employed in interpreting nuclear collective ex-
citations [12], presents a challenge within the IBM due in
part to the inability of the model to straightforwardly account
for triaxial deformations via two-body terms. To address this
limitation, one approach involves incorporating higher-order

interactions [13]. For instance, the inclusion of a cubic term
(d† × d† × d†)3 · (d̃ × d̃ × d̃ )3 [13,14] yields a potential sur-
face with a stable triaxial minimum at γ = 30◦, enhancing
the IBM’s description of triaxial nuclei [15,16]. Additionally,
it has been shown [17] that a parameter region of triaxiality
within 0◦ < γ < 60◦ can be accommodated in the extended
consistent-Q formalism, incorporating a cubic term in the
quadrupole operators. Broadly speaking, a scalar polynomial
in the quadrupole operators can be used to generate triaxial
deformation within the IBM at the mean-field level [8,18].
Notably, the rotor image within the IBM [6,7] can be straight-
forwardly constructed using symmetry-conserving operators
from the SU(3) ⊃ SO(3) integrity basis, employing a scalar
polynomial in the quadrupole operators [7,8]. Despite achiev-
ing an algebraic realization within the SU(3) limit of the IBM,
the impact of rotor modes on IBM dynamics remains to be
fully elucidated. Particularly, a model analysis addressing the
interplay between triaxial rotor and other collective modes
is warranted, given that realistic nuclear systems often entail
multiple collective modes.

In this work, we undertake a comprehensive examination
of the IBM formulation of the triaxial rotor mode and its
corresponding dynamics. Through this investigation, we aim
to shed light on the pivotal role of the triaxial rotor in the IBM
depiction of triaxial nuclei, particularly concerning anoma-
lous E2 phenomena. Additionally, we endeavor to identify a
unified framework capable of encompassing all typical col-
lective modes, including the triaxial rotor, thus offering a
cohesive description of nuclear dynamics.

II. COLLECTIVE MODES IN THE IBM

The IBM Hamiltonian is constructed from two kinds of
boson operators, namely, the s boson with lπ = 0+ and the
d boson with lπ = 2+ [10]. The total boson number N is
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taken as the number of valence particle or hole pairs for a
given nucleus. Three dynamical symmetry limits in the IBM
are characterized by three different group chains of the U(6)
group [10]:

U(6) ⊃ U(5) ⊃ O(5) ⊃ O(3), (1)

U(6) ⊃ SU(3) ⊃ O(3), (2)

U(6) ⊃ O(6) ⊃ O(5) ⊃ O(3). (3)

Dynamical symmetry associated with each group chain corre-
sponds to a typical nuclear shape or collective mode, including
the spherical vibration in the U(5) limit, the axially symmetric
rotation in the SU(3) limit, and the γ -unstable motion [19] in
the O(6) limit. To describe these modes, it is convenient to
adopt the consistent-Q Hamiltonian, which is written as [11]

ĤCQ = ε n̂d + κ
N Q̂χ · Q̂χ (4)

with

n̂d = d† · d̃, (5)

Q̂χ
u = (d†s + s†d̃ )(2)

u + χ (d† × d̃ )(2)
u , (6)

where ε, κ, χ are real parameters, and N is the total number
of the bosons. The three dynamical symmetry limits of the
consistent-Q Hamiltonian (4) can be characterized as: the
U(5) limit for ε > 0 and κ = 0; the O(6) limit for ε = 0,
κ < 0, and χ = 0; and the SU(3) limit for ε = 0, κ < 0, and
χ = ±√

7/2. To elucidate the geometric aspects of the IBM,
one can examine its classical limit by employing the coherent
state defined by [10]

|β, γ , N〉 = NA

[
s† + βcosγ d†

0 + 1√
2
βsinγ (d†

2 + d†
−2)

]N

|0〉

(7)

with NA = 1/
√

N!(1 + β2)N . The classical potential corre-
sponding to ĤCQ is thus given by

VCQ(β, γ ) = 1

N
〈β, γ , N |ĤCQ|β, γ , N〉|N→∞

= ε
β2

1 + β2
+ κ

1

(1 + β2)2

×
[

4β2 − 4

√
2

7
χβ3cos3γ + 2

7
χ2β4

]
. (8)

To extract the mean-field-type deformation, one can minimize
the potential function by varying β and γ for the given param-
eters ε, κ , and χ . The resulting optimal values are denoted by
βe and γe, with which one gets the ground state energy per
boson, Eg = V (ε, κ, χ, βe, γe ). Using this procedure, one can
not only extract deformations (shapes) of the IBM systems
but also identify the associated shape phase transitions [10].
To illustrate the dynamical symmetry limits in the IBM, the
corresponding potential surfaces are provided in Fig 1. It
is clearly shown from Fig. 1 that the U(5) potential has its
minimum at βe = 0 indicating the spherical shape, while the
SU(3) ones have their minima at either γe = 0◦ or γe = 60◦,
which correspond to the prolate [SU(3)] and oblate [SU(3)],
respectively. Clearly, triaxial minimum with 0◦ < γmin < 60◦

(a) (b)

(d)(c)

FIG. 1. Potentials surfaces extracted from Eq. (8) with nonzero
parameters taken as ε = 1.0 for U(5), κ = −1.0 and χ = 0 for O(6),
and κ = −1.0 together with χ = ∓√

7/2 for SU(3) (prolate and
oblate shapes).

cannot be generated by these potentials even for the O(6) one
with nonzero β as shown in Fig. 1(d), in which the poten-
tial, instead, manifests a γ -unstable picture with the potential
minimum being independent of the γ variable. In short, the
triaxial rotor mode widely used to interpret nuclear excitations
[12] cannot be produced from any IBM Hamiltonian up to
two-body interactions [13].

In addition to variations in potential surfaces, different
modes may present distinct spectral patterns, which can be
alternatively identified through specific characteristic quan-
tities. The simplest ones may be the energy ratios, R4/2 ≡
E (4+

1 )/E (2+
1 ) and R2/2 ≡ E (2+

2 )/E (2+
1 ), in which E (2+

2 ) is
the band head energy of the γ or quasi-γ band sensitive to
the γ deformation. Typically, R4/2 ≈ R2/2 ≈ 2.0 for the U(5)
mode; R4/2 ≈ R2/2 ≈ 2.5 for the O(6) mode; and R4/2 ≈ 3.3
but with R2/2 � R4/2 for the SU(3) or SU(3) mode [20]. The
trajectories of R4/2 vs R2/2 calculated from ĤCQ with N = 9
are provided in Fig. 2. In the calculation, the parameters have
been expressed as ε = (1 − η) and κ = −2η for convenience,
with which the evolution among different modes in the IBM
is described by the control parameter η ∈ [0, 1] and χ ∈
[0,−√

7/2] [21]. Here, we only discuss the cases with χ � 0
as the Hamiltonian possesses the Z2 symmetry with χ ↔ −χ

[21]. It is shown in Fig. 2 that there is a monotonic change in
R2/2 as a function of R4/2 in between any two modes. Such
a monotonic evolution of R2/2 against R4/2 may be kept for
any given χ . Particularly, the narrow region surrounded by the
dashed curve is produced from the consistent-Q Hamiltonian.
Moreover, it is shown that the area below the consistent-Q
region with small R2/2 but large R4/2 as typically marked by
the experimental values of 190,192Os is beyond the scope of the
consistent-Q Hamiltonian. Interestingly, this scenario aligns
well with the characteristics of triaxial rotor modes, providing
strong impetus for the development of the IBM representation
of such modes. This endeavor promises to enhance our under-
standing of the intricate interplay among different collective
modes within a unified framework.
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FIG. 2. Trajectories of R2/2 vs R4/2 obtained from the consistent-
Q (CQ) Hamiltonian with N = 9. The red stars represent the
experimental values of the ratios for 190,192Os [22,23]. No nucleus
is observed to exist in the upper left “unphysical” region above the
CQ region surrounded by the dashed curve.

III. THE IBM REALIZATION
OF TRIAXIAL ROTOR MODES

The algebraic approach established in the shell model de-
scription of a quantum rotor [4,5] was employed to construct
the triaxial rotor mode in the IBM [6] with the Hamiltonian
constructed from the symmetry-conserving operators of the
SU(3) ⊃ SO(3) integrity basis [24]. From a group (algebra)
theory point of view [3], the su(3) algebraic relation in the
large-N limit will contract to the Lie algebra t5 ⊕ so(3) of
a quantum rotor. Based on the early works [4–6], an exact
mapping between the triaxial rotor and its IBM image was
then established in the SU(3) limit of the IBM [7].

The Hamiltonian of a rigid quantum rotor is given
by [12,25]

Ĥrot = A1L̂2
1 + A2L̂2

2 + A3L̂2
3, (9)

where Lα is the projection of the angular momentum onto
the αth body-fixed principal axis and Aα (α = 1, 2, 3) is the
corresponding inertia parameter. On the other hand, one can
construct three frame-independent scalars [4,5],

L̂2 = L̂2
1 + L̂2

2 + L̂2
3, (10)

X̂ c
3 =

∑
αβ

L̂αQ̂c
αβ L̂β = λ1L̂2

1 + λ2L̂2
2 + λ3L̂2

3, (11)

X̂ c
4 =

∑
αβγ

L̂αQ̂c
αβQ̂c

βγ L̂γ = λ2
1L̂2

1 + λ2
2L̂2

2 + λ2
3L̂2

3, (12)

where the expressions shown on the right-hand side of
Eqs. (10)–(12) are obtained in the body-fixed principal axes
system. The rotor model operator L̂α and Q̂c

αβ are the cartesian
form of L̂u and Q̂c

u defined as

L̂u =
∫

ρ(�r)(�r × �v)u dτ, (13)

Q̂c
u =

√
16π/5

∫
ρ(�r)r2Y2u() dτ, (14)

where ρ(�r) represents nuclear mass density and the integra-
tion is over the whole nuclear volume. With the spherical
tensor formulas,

L̂0 = L̂z, (15)

L̂±1 = ∓ 1√
2

(L̂x ± iL̂y), (16)

Q̂c
0 = 3Q̂c

zz, (17)

Q̂c
±1 = ∓

√
6
(
Q̂c

xz ± iQ̂c
yz

)
, (18)

Q̂c
±2 =

√
3

2

(
Q̂c

xx − Q̂c
yy ± 2iQ̂c

xy

)
, (19)

the scalars given in Eqs. (10)–(12) can be re-expressed as

L̂2 =
√

5(L̂ × L̂)(0), (20)

X̂ c
3 =

√
30

6
(L̂ × Q̂c × L̂)(0), (21)

X̂ c
4 = 5

18
(L̂ × Q̂c)(1) · (L̂ × Q̂c)(1). (22)

Based on Eqs. (10)–(12), one can derive that

L̂2
α = [

(λ1λ2λ3)L̂2 + λ2
αX̂ c

3 + λαX̂ c
4

]
/
(
2λ3

α + λ1λ2λ3
)
, (23)

where λα with α = 1, 2, 3 (or x, y, z) are the expectation val-
ues of the quadrupole matrix in the principal-axes system with
〈Q̂c

αβ〉 = λαδαβ satisfying λ1 + λ2 + λ3 = 0. Thus, the rotor
Hamiltonian (9) can be exactly rewritten as

Ĥrot = aL̂2 + bX̂ c
3 + cX̂ c

4 (24)

with

a =
∑

α

aα Aα, aα = λ1λ2λ3/Dα,

b =
∑

α

bα Aα, bα = λ2
α/Dα, (25)

c =
∑

α

cα Aα, cα = λα/Dα,

and

Dα = 2λ3
α + λ1λ2λ3. (26)

Since the rotor Hamiltonian (24) is frame independent,
an SU(3) algebraic realization of the triaxial rotor can be
achieved by replacing L̂ and Q̂c in the Hamiltonian with the
SU(3) group generators, L̂ and Q̂ [4,5]. Accordingly, the val-
ues of λα can be evaluated from the linear relations suggested
in [5] with

λ1 = −(λ − μ)/3,

λ2 = −(λ + 2μ + 3)/3, (27)

λ3 = (2λ + μ + 3)/3.

Here, the quantum numbers (λ,μ) are the labels of the irre-
ducible representations (IRREPS) of the SU(3) group, with
which the deformation parameter γ can be expressed as [5]

γS = tan−1

( √
3(μ + 1)

2λ + μ + 3

)
. (28)
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With the mapping shown above, the rotor image can be
established in any nuclear model with the SU(3) symmetry.
However, the Hamiltonian (24) does not contain any informa-
tion of the nuclear ground-state deformation, which will be
produced by adding a static (intrinsic) part to the Hamiltonian
[6]. As a result, the full IBM Hamiltonian for triaxial rotor can
be constructed with two parts [7,8],

ĤTri = ĤS + ĤD (29)

with

ĤS = a1

N
Ĉ2[SU(3)] + a2

N3
Ĉ2[SU(3)]2 + a3

N2
Ĉ3[SU(3)],

(30)

ĤD = t1L̂2 + t2(L̂ × Q̂ × L̂)(0) + t3(L̂ × Q̂)(1) · (L̂ × Q̂)(1),

(31)

where ai and ti (i = 1, 2, 3) are real parameters, L̂ and Q̂
denote the angular momentum and quadrupole momentum
operators defined in the SU(3) basis with

L̂u =
√

10(d† × d̃ )(1)
u , (32)

Q̂u = 2
√

2

[
(d† × s̃ + s† × d̃ )(2)

u −
√

7

2
(d† × d̃ )(2)

u

]
. (33)

Clearly, the dynamical part ĤD is just taken from the rotor
image Ĥrot given in Eq. (24) with the parameters

t1 = a, t2 =
√

30

6
b, t3 = 5

18
c, (34)

while the static (intrinsic) part ĤS is employed to deter-
mine the ground-state deformation, which involves the SU(3)
Casimir operators defined by

Ĉ2[SU(3)] = 1
4 Q̂ · Q̂ + 3

4 L̂2, (35)

Ĉ3[SU(3)] = −
√

70
72 (Q̂ × Q̂ × Q̂)(0) −

√
30
8 (L̂ × Q̂ × L̂)(0).

(36)

Eigenvalues of the Casimir operators can be expressed in
terms of the SU(3) IRREP with

〈Ĉ2[SU(3)]〉 = λ2 + μ2 + 3λ + 3μ + λμ, (37)

〈Ĉ3[SU(3)]〉 = 1
9 (λ − μ)(2λ + μ + 3)(λ + 2μ + 3) .

(38)

The ground-state energy of the triaxial Hamiltonian (29) is
then obtained by Eg = 〈ĤS〉g = f (λ,μ) evaluated at the op-
timal values (λ0, μ0), which is in turn determined by the
parameters ai, as ĤD contributes nothing to the ground-state
energy with L = 0. Accordingly, the static triaxiality is deter-
mined from (λ0, μ0) via Eq. (28).

To examine the validity of the designed IBM realization of
the rotor model, the results obtained directly from the rotor
Hamiltonian (9) with A1 : A2 : A3 = 3 : 1 : 4, which corre-
sponds to a very asymmetric situation [25], are provided as
examples to compare with those obtained from its IBM image
described by Eq. (29). In the IBM calculation, two cases with
N = 36 and N = 9 are considered, respectively. In addition,

it is assumed that the asymmetric rotor dynamics is produced
from an N-boson system with γ S = 30◦ deformation, which
requires (λ0, μ0) = (2N/3, 2N/3) according to Eq. (28). To
yield the corresponding ground-state IRREP, the IBM param-
eters are set by choosing a1 : a2 : a3 = − 27+10N

3N : 1 : 1. The
other parameters are then determined by the mapping scheme
described above with t1 = 3.0, t2 = 0.0548, t3 = −0.00022
for N = 36 and t1 = 3.0, t2 = 0.1956, t3 = −0.00283 for
N = 9. The E2 operator in the IBM image is simply chosen
as the quadrupole operator Q̂ defined in Eq. (33), while that in
the rotor model is given as

T E2
u =

√
5

16π
Q0

[
cosγ Du,0 + 1√

2
sinγ

(
D(2)

u,2 + D(2)
u,−2

)]
,

(39)

where Q0 represents the intrinsic charge quadrupole moment.
Form Fig. 3, one can find that the spectral pattern generated by
the triaxial rotor model can be well reproduced by its the IBM
image for both N = 36 and N = 9. The results confirmed that
the rotor modes can indeed be produced in the IBM frame-
work. Meanwhile, one can observe that the B(E2) anomaly
characterized by B4/2 < 1.0 appears in the IBM image at
relatively small N as shown in Fig. 3(c), which means that
the finite-N effect on the triaxial rotor modes may bring some
unconventional feature that is never seen in other collective
modes. It will be shown that such a novel feature can be
applied to explain the anomalous E2 transition phenomena in
the neutron-deficient nuclei.

To further understand the IBM image of the rotor model at
the mean-filed level, one may work out the potential function
corresponding to ĤS using the coherent state method [13],
which is given by

VS(β, γ ) = 1

N
〈β, γ , N |ĤS|β, γ , N〉|N→∞

= a1
β2

(1 + β2)2
[8 + 4

√
2βcos(3γ ) + β2]

+ a2
β4

(1 + β2)4
[64 + 32β2 + β4 + 16β2cos(6γ )

+ 8
√

2(8β + β3)cos(3γ )]

+ a3
2β3

9(1 + β2)3
[24β + 16

√
2cos(3γ )

+ 6
√

2β2cos(3γ ) + β3cos(6γ )]. (40)

The potential VS(β, γ ) simultaneously describes the classical
limit of both ĤS and ĤTri, because the potential for the dy-
namic part Hamiltonian ĤD disappears in the large-N limit
through setting an N-dependent parameter form [8]. With
parameters a1 : a2 : a3 = − 27+10N

3N : 1 : 1 for the IBM image,
the obtained classical potential surface with N → ∞ is shown
in Fig. 4, which clearly shows that the potential surface is
completely different from those presented in Fig. 1. Specif-
ically, it is shown that the potential minimum appears near
γ ∼ 40◦. This value is close to the one for γ S solved from
the formula (28), which is more convenient to quantify tri-
axiality for finite-N systems. Hence, it is clearly shown that
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(a) (b) (c)

FIG. 3. (a) The level pattern solved from the rotor Hamiltonian (9) with A1 : A2 : A3 = 3 : 1 : 4 is shown, where all the levels have been
normalized to E (2+

1 ) = 1.0. (b) The corresponding results solved from the IBM image described by Eq. (29) with the boson number N = 36

and other parameters illustrated in the text. (c) The same as in (b) but for N = 9. In addition, the typical ratios are defined as R4/2 = E (4+
1 )

E (2+
1 )

and

B4/2 = B(E2;4+
1 →2+

1 )

B(E2;2+
1 →0+

1 )
.

large triaxial deformation can be produced at the mean-field
level under the given parameters. In fact, the emergent triaxial
deformation can be directly understood from the potential
function (40), in which the terms like cos(6γ ), which may
lead to an asymmetric minimum [13], are involved in contrast
to that given in (8). It is thus confirmed that the IBM image
of the rotor model indeed yields the novel modes that are dif-
ferent from those described by the consistent-Q Hamiltonian.
Therefore, the IBM description can be extended in this way
to the triaxial rotor region corresponding to the lower right
region of Fig. 2.

IV. DYNAMICAL MIXING OF DIFFERENT MODES

Besides the finite-N corrections, another advantage of the
IBM is that the competition or mixing among different collec-
tive modes can be easily handled. To analyze the competition
between the triaxial rotor and the other modes as well as its in-
dications to the experiments, we adopt the model Hamiltonian
with

Ĥ = ε n̂d + κ ′ Ĥχ

Tri, (41)

where ε and κ ′ are two parameters. For the convenience of
the subsequent the theoretical discussion, the parameters are
reset with ε = 1 − η and κ ′ = −η/a1, in which η is a control
parameter with η ∈ [0, 1] and a1 is the parameter as same
as that adopted in Eq. (30). In Eq. (41), Ĥχ

Tri is just the
rotor mode Hamiltonian ĤTri defined in Eq. (29) except that
the Q̂ operator defined in Eq. (33) has been replaced in by

FIG. 4. The potential surface produced from (40) with
a1 : a2 : a3 = − 27+10N

3N : 1 : 1 corresponding to the IBM image
shown in Fig. 3 but for N → ∞.

2
√

2Q̂χ as defined in Eq. (6). In this way, both the L̂ and Q̂
operators are still the SU(3) group generators for χ = −√

7/2
but become to be the O(6) group generators for χ = 0, which
means that the effect of the SU(3) symmetry breaking on
the triaxial rotor modes can be examined by varying χ with
χ ∈ [−√

7/2, 0]. Similarly, the competition between the U(5)
mode (spherical vibrator) and triaxial rotor can be described
by the Hamiltonian (41) through changing η with η ∈ [0, 1]
but fixing χ = −√

7/2. To provide a parallel comparison, the
transitional situations described by the consistent-Q Hamilto-
nian as a function of η or χ are also considered by resetting
the parameters in (4) with ε = (1 − η) and κ = −2η. Then,
both the U(5)-SU(3) and the U(5)-O(6) transitional cases
can be realized through varying η with η ∈ [0, 1] but fixing
χ = −√

7/2 and χ = 0, respectively, while the SU(3)-O(6)
transition is described by fixing η = 1 but varying χ with
χ ∈ [−√

7/2, 0]. Note that the factor 1
a1

added in Eq. (41)
is just used to be consistent with the parametrization in the
consistent-Q formalism (4).

In the following, we focus on the typical ratios, R4/2, R2/2,
and B4/2 defined previously, since these ratios can be used not
only to characterize the evolution between different modes,
but also to signify the occurrence of the B(E2) anomaly. The
calculated results as a function of η or χ are shown in Fig. 5.
In the calculation for the rotor image described by Ĥχ

Tri, we
select two sets of parameters: one is taken as the same as
that adopted for Fig. 3(c), namely, a1 : a2 : a3 = − 27+10N

3N :
1 : 1, which will generate the ground-state SU(3) IRREP
(λ0, μ0) = (6, 6) corresponding to γ S = 30◦; another one is
set by choosing a1 : a2 : a3 = − 27+10N

3N : 1 : 0.9, which yields
(λ0, μ0) = (10, 4) corresponding to γ S = 17.8◦. In contrast to
the former case yielding B4/2 < 1.0, the latter case generates
B4/2 > 1.0, which means no B(E2) anomaly occurring in the
latter case.

As seen from Fig. 5(a), the ratio R4/2 increases with in-
creasing of η in all the cases except for a small fluctuation
appearing near one of the rotor images. Nonetheless, the ratio
is always kept within a normal range with 2.0 � R4/2 � 3.33.
However, the ratio B4/2 in the transitional case involving the
rotor mode (denoted by Image) corresponding to γ S = 30◦
reaches an unexpectedly low value with B4/2 ∼ 0.5 as shown
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FIG. 5. Upper: The R4/2 (a), R2/2 (b), and B4/2 (c) values solved from Eq. (41) as a function of η after fixing χ = −√
7/2 are shown to

compare with those for the U(5)-SU(3) and U(5)-O(6) transitions described by the consistent-Q Hamiltonian. Lower: The R4/2 (d), R2/2 (e), and
B4/2 (f) values solved from Eq. (41) as a function of χ after fixing η = 1 are shown to compare with the results for the O(6)-SU(3) transition
described by the consistent-Q Hamiltonian. The curves denoted by Image and Image∗ represent the results solved from the rotor image with
γ S = 30◦ (a1 : a2 : a3 = − 27+10N

3N : 1 : 1) and γ S = 17.8◦ (− 27+10N
3N : 1 : 0.9), respectively. The total boson number adopted in the calculations

is N = 9. O(6) in each case indicates that the values are obtained for χ = 0 and the grey color in (c) and (f) is used to symbolize B4/2 = 1.0.

in Fig. 5(c). It means that the competition from the U(5) mode
will enhance the B(E2) anomaly feature emerging from the
triaxial rotor mode. In contrast, another case involving the
rotor mode with less triaxial deformation (γ S = 17.8◦) still
keeps B4/2 > 1.0 within η ∈ [0, 1]. Meanwhile, the ratio R2/2

in different cases maintains to be small as shown in Fig. 5(b)
except in the U(5)-SU(3) transition case, in which the ratio
R2/2 increases drastically with increasing of η as expected.

An even more striking feature shown in Figs. 5(d)–5(f)
is that the B4/2 ratio may drop to very low value for a wide
range of χ during the O(6)-SU(3) transition, while R4/2 � 2.5
is kept. The results indicate that the symmetry breaking can
drive a less γ -deformed system (such as that denoted by
Image*) from B4/2 > 1.0 to B4/2 < 1.0, while the ratio R2/2

maintains to be small except in the axial SU(3) symmetry
case. In short, small B4/2 ratio is relatively easier to be pro-
duced in a soft triaxial system, which thus provides a new
clue to explain the B(E2) anomaly phenomena observed in
experiment. Here, a soft triaxial system means that deviating
from the SU(3) symmetry because the exact SU(3) realization
of a triaxial rotor may yield specific γ S value via Eq. (28)
corresponding to γ rigid deformation.

V. APPLICATIONS TO Os NUCLEI

As a preliminary application of the triaxial rotor de-
scription, two neutron-rich isotopes 190,192Os are chosen to
be considered and compared with the two neutron-deficient
counterparts 168,170Os, which possesses the same number of
bosons (the number of valence nucleon pairs) as the former
two nuclei with N = 8, 9. The former two Os nuclei with
large R4/2 but small R2/2 as indicated in Fig. 2 were sug-
gested to be the good candidates for triaxial nuclei [26], while
the latter two Os nuclei were observed with R4/2 > 2.5 but
B4/2 < 1.0 [27,28]. Undoubtedly, the spectral features in these
Os nuclei can not be explained from the traditional modes
in the IBM [10], which thus provides a chance to test the
present theoretical scheme. The model Hamiltonian is given
by Eq. (41). In experiments, the available data for the neutron-
rich Os nuclei are relatively more abundant as shown in Fig. 6
and Table I, where the level patterns and some B(E2) values in
190,192Os are provided in comparison with the corresponding
theoretical results. In the model calculation, it is assumed
that triaxial deformation is built from the maximally triaxial
IRREP of SU(3), which are (λ0, μ0) = (6, 6) for N = 9 and
(λ0, μ0) = (4, 6) for N = 8. Accordingly, γS = 30◦ and γS =
35◦ are yielded from the two ground-state IRREPs, which
can be generated by Ĥχ

Tri through setting the parameters a1 :
a2 : a3 = −4.0 : 1.0 : 1.0 and −4.46 : 1.0 : 1.0, respectively.
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FIG. 6. The level patterns of 190,192Os [22,23] with all the levels
normalized to E (21) = 1.0 are shown to compare with those obtained
from the model Hamiltonian (41) with the parameters as illustrated
in the text.

In fact, the γ values extracted from the present model are
in good qualitative agreement with those obtained from the
proxy-SU(3) scheme [29] using the shell model IRREPs for
the highest weight states as given in [30], where the results
indicate γ = 30◦ for 190Os and γ = 40.4◦ for 192Os, respec-
tively. Here, we have fixed χ = −1.32 in the calculation for
the two neutron-rich Os nuclei. The other parameters in Ĥχ

Tri
for 190Os (192Os) can be evaluated via Eqs. (25)–(27) with the
inertial parameters set by A1 : A2 : A3 = 51 : 17 : 136 (18 :
16 : 96), which are roughly estimated from the low-lying
energies in experiments. Based on the mapping scheme, t1 :
t2 : t3 = 0.0357 : 0.0054 : 0.0001 (0.0432 : 0.0063 : 0.0001)
for 190Os (192Os) is obtained. After fixing the triaxial rotor
mode based on the mapping scheme, the two parameters (in
keV) in the model Hamiltonian are determined in fitting to
the experimental data with ε = 327.1 (291.1) and κ ′ = 218.1
(264.6) for 190Os (192Os).

Similarly, the model parameters for 168,170Os can be de-
termined from the mapping scheme in the same way. Due
to the same boson numbers given to them, the maximal tri-
axial IRREPs for the two neutron-deficient nuclei are also
obtained as (λ0, μ0) = (6, 6) for N = 9 and (λ0, μ0) = (4, 6)
for N = 8, which means that the obtained γ values would be
as same as those for 190,192Os. However, the γ deformations in

TABLE I. The model fits for the B(E2) transitions (unit in W.u.)
in 190Os and 192Os with the effective charges (in

√
W.u.) adopted as

e = 2.479 and e = 2.464, respectively.

Transition 190Os This model Transition 192Os This model

2+
1 → 0+

1 71.9(21) 71.90 2+
1 → 0+

1 62.1(7) 62.10

4+
1 → 2+

1 105(6) 98.90 4+
1 → 2+

1 75.6(20) 83.15

6+
1 → 4+

1 113(10) 105.36 6+
1 → 4+

1 100(+5
−3 ) 89.86

6+
1 → 4+

2 6(4) 6.80 6+
1 → 4+

2 – 4.51

8+
1 → 6+

1 137(20) 99.93 8+
1 → 6+

1 115(6) 82.07

0+
2 → 2+

1 2.2(5) 0.12 0+
2 → 2+

1 0.57(12) 0.30

0+
2 → 2+

2 23(7) 57.54 0+
2 → 2+

2 30.4(+30
−23 ) 45.02

2+
2 → 0+

1 5.9(6) 7.76 2+
2 → 0+

1 5.62(+21
−12 ) 5.33

2+
2 → 2+

1 33(4) 51.00 2+
2 → 2+

1 46(+26
−12 ) 58.30

4+
2 → 2+

1 0.68(6) 0.12 4+
2 → 2+

1 0.29(3) 0.08

4+
2 → 4+

1 30(4) 38.25 4+
2 → 4+

1 30.9(+36
−18 ) 32.48

4+
2 → 2+

2 53(5) 45.14 4+
2 → 2+

2 45.2(+14
−18 ) 39.17

4+
2 → 3+

1 65(13) 38.15 4+
2 → 3+

1 – 11.03

6+
2 → 4+

1 <0.8 0.04 6+
2 → 4+

1 – 0.077

6+
2 → 4+

2 65(13) 59.59 6+
2 → 4+

2 52(+3
−6 ) 42.60

6+
2 → 6+

1 31(8) 24.23 6+
2 → 6+

1 26(+55
−21 ) 17.78

4+
3 → 2+

1 0.001(4) 0.02 4+
3 → 2+

1 0.22(+21
−10 ) 0.17

4+
3 → 4+

1 0.084(17) 0.001 4+
3 → 4+

1 – 0.081

4+
3 → 2+

2 7.6(15) 10.77 4+
3 → 2+

2 10.6(+18
−21 ) 3.57

4+
3 → 3+

1 27(6) 38.73 4+
3 → 3+

1 56(+14
−15 ) 42.02

4+
3 → 4+

2 14(6) 49.61 4+
3 → 4+

2 24(+6
−7 ) 78.75

2+
3 → 2+

2 – 3.91 2+
3 → 2+

2 0.41(4) 3.41

2+
3 → 3+

1 – 31.25 2+
3 → 3+

1 1.1(10) 20.71

the two neutron-deficient Os nuclei are supposed to be much
softer [27,28] than in the neutron-rich ones. This point in the
present model will be additionally reflected from the param-
eter |χ | < 1.32 [see Fig. 5(f)]. Specifically, the parameters
for 168Os (170Os) are adopted by ε = 66.1 (93.2) keV, κ ′ =
82.6 (66.6) keV together with a1 : a2 : a3 = −4.46 : 1.0 : 1.0
(−4.0 : 1.0 : 1.0) and t1 : t2 : t3 = 0.5159 : 0.0606 : −0.0001
(0.5400 : 0.0493 : −0.0003). In addition, χ = −0.8 and χ =
−1.0 are taken for 168Os and 170Os, respectively, correspond-
ing to softer triaxial rotor images. By contrast, 168Os (170Os)
with ten (12) valence neutron particles in the proxy-SU(3)
scheme has the shell model IRREP for the highest weight
state being very different from that for its neutron-rich partner
192Os (190Os) with ten (12) valence neutron holes, thus giv-
ing the relatively smaller triaxial deformations with γ � 20◦
(γ � 14◦). In comparison with the neutron-rich Os nuclei, the
low-lying data for the neutron-deficient Os nuclei are scarce,
and only those for the yrast states in 168,170Os are provided in
comparison with the model results.

It is shown in Fig. 6 that the level patterns of 190Os and
192Os are well reproduced by the model. Especially, the lowest
excitation energy in the two nuclei with E (21) = 186.7keV
and 205.8keV, respectively, is well reproduced. As further
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FIG. 7. The level patterns of 168,170Os [27,28] will all the levels
normalized to E (21) = 1.0 are shown to those solved from the model
Hamiltonian (41) with the parameters as mentioned in the text.

shown in Table I, the consistency between experimental
and theoretical results is evident, particularly in the calcu-
lated B(E2) values, notably for strong intraband transitions
and weak interband transitions. The only discrepancy arises
from the overestimated B(E2; 2+

3 → 3+
1 ) for 192Os, which

could potentially be rectified by incorporating other modes
into the model Hamiltonian. The low-lying properties of the
neutron-rich Os nuclei seem to find reasonable explanation
through the mixing of triaxial rotor mode with the vibra-
tional U(5) mode, expanding the IBM descriptions beyond the
traditional modes, as depicted in Fig. 2. For the neutron-
deficient nuclei, 168Os and 170Os, the theoretical results
successfully reproduce the yrast levels and the B(E2) anomaly
characterized by B4/2 < 1.0, as illustrated in Fig. 7. Addi-
tionally, theoretical calculations predict very low β and γ

bands for these nuclei, mirroring the neutron-rich cases as
depicted in Fig. 6. It is noteworthy from Table II that the

TABLE II. The calculated B(E2) values normalized to
B(E2; 2+

1 → 0+
1 ) = 1.0 are shown to compare with those available

for 168Os [27] and 170Os [28].

Transition 168Os This model Transition 170Os This model

2+
1 → 0+

1 1.0 1.0 2+
1 → 0+

1 1.0 1.0
4+

1 → 2+
1 0.34(18) 0.372 4+

1 → 2+
1 0.38(11) 0.409

6+
1 → 4+

1 − 0.694 6+
1 → 4+

1 − 0.709

2+
2 → 0+

1 − 0.007 2+
2 → 0+

1 − 0.008

0+
2 → 2+

1 − 0.0001 0+
2 → 2+

1 − 0.067

B(E2) anomaly, B(E2; L+
1 → (L − 2)+1 )/B(E2; 2+

1 → 0+
1 ) <

1.0, persists to the yrast states of higher spins. While a
more quantitative prediction requires further experimental
constraints, the current analysis strongly suggests the possi-
bility of a soft triaxial deformation in these neutron-deficient
nuclei exhibiting the B(E2) anomaly, given that the model
parameters are fully constrained by the mapping from the
triaxial rotor. This finding is consistent with the mean-field
calculations [28,31]. Moreover, collective modes with B4/2 <

1.0 are observed not only in intermediate-mass nuclei [32], but
also in light nuclei [33]. For instance, no-core symplectic shell
model (NCSpM) calculations [33] suggest that small SU(3)
irreducible representations, such as (λ,μ) = (4, 2) and (6,
2), may significantly contribute to the low-lying yrast states
of 20Mg and 20O. Based on this analysis, it can be inferred
that small triaxial (λ,μ) may induce triaxial deformation
associated with B4/2 < 1.0. This conclusion is supported not
only by the NCSpM description [33] but also by the possible
triaxiality in 20Mg analyzed in [34].

It is worth noting that the B4/2 < 1.0 phenomenon was re-
cently explained in [35] from the prohibition of E2 transitions
between different SU(3) irreducible representations using an
IBM Hamiltonian similar to the extended consistent-Q for-
mula [17], which actually allows for soft triaxial deformations
in a narrow parameter region. Further extensions of the study
in [35] were recently made to analyze nuclear spectra related
to the prolate-oblate shape transition [36] and the associated
emergent O(5)-like γ -soft modes [37–39], showing the rich
SU(3) dynamics in the IBM after involving the high-order
terms. In these studies, the second- and third-order SU(3)
symmetry-conserving terms as defined in Eqs. (35)–(36) are
particularly addressed. Since the leading SU(3) IRREPs gen-
erated by Ĉ2[SU(3)] and Ĉ3[SU(3)] are (λ,μ) = (2N, 0) and
(0, N ), respectively, it is not surprising that these SU(3) terms
may play the central role in demonstrating the spectral evo-
lution in the prolate-oblate shape transition [40]. In contrast,
the high-order SU(3) symmetry terms in the present scheme
are introduced in a compact way via the SU(3) mapping of a
quantum rotor. In particular, it is shown that the fourth-order
term is necessary to generate an algebraic image of the triaxial
rotor, which can not only be applied to yield a soft triaxial ro-
tor mode associated with B4/2 < 1.0 as revealed in the recent
study [8] and even earlier work [7] [see Fig. 2(b)], but also
generate a relatively rigid rotor mode like that occurring for
190,192Os as discussed above. Another point worth mentioning
is the asymmetry between prolate and oblate in the SU(3) IBM
scheme [36,40], which is mainly caused by the difference be-
tween the eigenvalues of Ĉ2[SU(3)] (prolate) and Ĉ3[SU(3)]
(oblate). The resulting asymmetric structural evolutions agree
well with the realistic situations like the prolate-oblate shape
transitions occurring in the A = 190 mass region [36,40].
Nonetheless, the IBM cannot tell which nucleus is prolate,
oblate or triaxial solely based on the boson number N . An
answer to such a kind of asymmetry between prolate and
oblate undoubtedly needs a microscopic model such as the
proxy-SU(3) shell model scheme [29], by which one can
predict not only the locus of the prolate-oblate shape transition
but also the dominance of prolate shapes in experiments [30].
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It is thus highly expected to find a suitable way to extend the
current IBM-based analysis into the proxy-SU(3) scheme.

VI. SUMMARY

In summary, we propose a scheme for describing triax-
ial dynamics in finite-N systems by constructing the IBM
image of the rotor model Hamiltonian using the SU(3)
mapping procedure. The resulting model dynamics are metic-
ulously analyzed, revealing novel features not anticipated in
traditional collective modes. Particularly noteworthy is the
emergence of the B(E2) anomaly feature, characterized by
R4/2 > 2 and B4/2 < 1, which naturally arises from the IBM
image of the triaxial rotor and is significantly enhanced in
soft triaxial cases such as in the U(5)-SU(3) and O(6)-SU(3)
transitions, as observed in Fig. 5. As applications, the model
Hamiltonian involving triaxial rotor modes is employed to
describe four Os nuclei, all presumed to be triaxially de-
formed. The results demonstrate that the triaxial model not
only excellently reproduces the low-lying structures of the
two neutron-rich Os isotopes (190,192Os with relatively rigid
triaxial deformation) but also provides a satisfactory descrip-

tion of the yrast levels and the suppressed B4/2 ratios in the
two neutron-deficient Os isotopes (168,170Os with soft triaxial
deformation) [27,28]. This characteristic is noteworthy and
merits further examination in microscopic models such as the
large-scale shell and beyond mean field/generator coordinate
method, which have yet to explain the anomalous B4/2 feature.

It is notable that all typical nuclear modes, including the tri-
axial rotor, can be treated on equal footing within the proposed
algebraic scheme. Additionally, similar B(E2) anomalies in
yrast states have been observed in adjacent odd Os nuclei,
169,171Os [41]. For future research, it would be intriguing to
explore the influence of odd neutrons by extending our for-
malism to odd-A systems.
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