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Shell structure and shape transition in odd-Z superheavy nuclei with proton numbers Z = 117,
119: Insights from applying deformed relativistic Hartree-Bogoliubov theory in continuum
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We present a systematic study on the structural properties of odd-Z superheavy nuclei with proton numbers
Z = 117, 119, and neutron numbers N increasing from N = 170 to the neutron dripline within the framework of
axially deformed relativistic Hartree-Bogoliubov theory in continuum. The results are compared with those of
even-even superheavy nuclei with proton numbers Z = 118 and 120. We analyze various bulk properties of their
ground states, including binding energies, quadrupole deformations, root-mean-square radii, nucleon separation
energies, and α-decay energies. The coexistence of competing prolate and oblate or spherical shapes leads to
abrupt changes in both quadrupole deformations and charge radii as functions of neutron numbers. Compared
to even-even nuclei, the odd-mass ones exhibit a more complicated transition picture, in which the quantum
numbers of Kπ of the lowest-energy configuration may change with deformation. This may result in the change
of angular momentum in the ground-state to ground-state α decay and thus quench the decay rate in odd-mass
nuclei. Moreover, our results demonstrate a pronounced proton shell gap at Z = 120, instead of Z = 114, which
is consistent with the predictions of most covariant density functional theories. Besides, large neutron shell gaps
are found at N = 172 and N = 258 in the four isotopic chains, as well as at N = 184 in the light two isotopic
chains with Z = 117 and Z = 118, attributed to the nearly degenerate 3d and 4p spin-orbit doublet states due to
the presence of bubble structure.
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I. INTRODUCTION

Superheavy nuclei are usually defined as atomic nuclei
with proton number Z � 104 [1]. These transactinide nuclei
are unstable due to the strong electrostatic repulsion force
between protons and are prone to decay through various ra-
dioactive processes, dominated by α-decay and spontaneous
fissions [2,3]. However, some superheavy nuclei can survive
with lifetimes of minutes or even longer due to the large
quantum shell effect arising from the motions of neutrons and
protons governed by nuclear force [4–6]. Considering this ef-
fect in semiempirical theories, the nucleus with Z = 114, N =
184 was predicted to be the next doubly magic nucleus beyond
208Pb [2,4,7]. The study of superheavy nuclei helps us answer
the fundamental questions on the limits of the existence of the
heaviest elements and the borders of the nuclear chart [8], as
well as understand nucleosynthesis processes in the universe.
Therefore, the synthesis of superheavy nuclei and exploration
of their structural properties have been at the forefront of
nuclear physics [1,9–11]. To date, superheavy nuclei with pro-
ton numbers up to Z = 118 have been synthesized in fusion
reactions [6,12–14], and great efforts are being devoted to the
synthesis of elements with Z = 119 and Z = 120 [15–20].

The structural properties of superheavy nuclei have been
studied with different types of nuclear models [9,21,22],
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including microscopic-macroscopic models [3,4,23–26] and
self-consistent mean-field approaches [27,28] based on non-
relativistic [29,30] and relativistic [31–35] energy density
functionals (EDFs). These methods have even been applied
to study hyperheavy nuclei [36–38]. It is noted that stud-
ies on odd-mass and odd-odd superheavy nuclei, especially
the neutron-rich ones, are rather scarce with exceptions in-
cluding studies within the microscopic-macroscopic method
[26,39,40], the Skyrme Hartree-Fock (HF) plus Bardeen-
Cooper-Schrieffer (BCS) approach [41], and the Skyrme
Hartree-Fock-Bogoliubov (HFB) approach [42], where the
polarization effect due to the odd neutron is treated self-
consistently.

Shell structure is crucial for the stability of superheavy
nuclei, and thus has been explored extensively with dif-
ferent approaches. Previous studies based on self-consistent
mean-field approaches indicate that the proton and neutron
numbers with (Z = 114, N = 184), (Z = 120, N = 172), and
(Z = 126, N = 184) are possible magic numbers in super-
heavy nuclei [27,43]. However, the specific values vary with
the employed parametrizations of EDFs [28]. It has been
found that the Z = 114 and Z = 120 shell gaps compete with
each other. For most Skyrme EDFs, the spin-orbit splitting of
the proton 2 f shell is large, leading to a large Z = 114 shell
gap but a small Z = 120 shell gap. In contrast, the Z = 114
gap in the predictions of most relativistic EDFs is slightly
smaller, but with a much larger Z = 120 shell gap. The latter
is also attributed to the weak spin-orbit splitting of proton 3p
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doublet states due to the development of a central depression
in the nuclear density distribution. On the other hand, it has
been demonstrated that shell structure in light- and medium-
mass nuclei may evolve significantly with neutron number
[44], and shell gaps are weakened in neutron-rich nuclei [45].
In superheavy nuclei, nucleon shell gaps are largely affected
by the spin-orbit splittings of neighboring states [28] and
nuclear deformations. Therefore, it would be of great interest
to systematically study the evolution of shell gaps and shape
transition towards neutron dripline in superheavy nuclei.

In this paper, we present a systematic study of odd-Z su-
perheavy nuclei with proton numbers Z = 117 and 119, and
neutron numbers N increasing from N = 170 to the neutron
dripline within the framework of an axially deformed rel-
ativistic Hartree-Bogoliubov theory in continuum (DRHBc)
with emphasis on the evolution of shell structures and shape
coexistence. In the DRHBc theory, the effects of pairing cor-
relations, deformation, as well as the coupling to continuum
states can be treated in a microscopic and self-consistent
manner, making it one of the most suitable nuclear models
for both stable and neutron-rich deformed nuclei [46–51].
This method has achieved great success in providing a uni-
fied description of a total of 4829 isotopes from the proton

dripline to the neutron dripline with 8 � Z � 120, including
even-even nuclei [52–54], even-Z , odd-N nuclei [55,56], and
odd-odd nuclei [57] with proton numbers Z = 106–112. This
success motivates us to study in detail the structural properties
of heavier odd-Z superheavy nuclei with Z = 117, 119 within
the DRHBc theory. The results are compared with those of
even-even superheavy nuclei with proton numbers Z = 118
and 120.

The article is organized as follows. In Sec. II, we present
the main formulas for the DRHBc theory. In Sec. III, we
discuss the results of DRHBc calculations for the ground-state
properties of Z = 117–120 superheavy nuclei, including bind-
ing energies, quadrupole deformation parameters, potential
energy curves, density distributions, root-mean-square (rms)
radii, α-decay energies, and the evolution of nucleon shell
structures with neutron number. Finally, a brief summary and
outlook are given in Sec. IV.

II. THEORETICAL FRAMEWORK

In this work, we employ the DRHBc theory starting from
the following effective Lagrangian density in which nucle-
ons interact effectively via the contact interaction of different
types of vertices,

L = ψ̄ (iγμ∂μ − M )ψ − 1
2αS (ψ̄ψ )(ψ̄ψ ) − 1

2αV (ψ̄γμψ )(ψ̄γ μψ )

− 1
2αTV (ψ̄τγμψ )(ψ̄τγ μψ ) − 1

2αT S (ψ̄τψ )(ψ̄τψ ) − 1
3βS (ψ̄ψ )3

− 1
4γS (ψ̄ψ )4 − 1

4γV [(ψ̄γμψ )(ψ̄γ μψ )]2 − 1
2δS∂ν (ψ̄ψ )∂ν (ψ̄ψ )

− 1
2δV ∂ν (ψ̄γμψ )∂ν (ψ̄γ μψ ) − 1

2δTV ∂ν (ψ̄τγμψ )∂ν (ψ̄τγμψ )

− 1
2δT S∂ν (ψ̄τψ )∂ν (ψ̄τψ ) − 1

4 FμνFμν − eψ̄ 1−τ3
2 γ μψAμ, (1)

where M represents the nucleon mass and τ is for the
isospin vector. The third component of the isospin vec-
tor is τ3 = +1(−1) for neutrons (protons). The symbols
αS, αV , αT S , and αTV denote the coupling constants associated
with four-fermion contact interaction terms, while βS, γS , and
γV represent nonlinear self-interaction terms. Additionally,
δS, δV , δT S , and δTV denote the coupling constants for gra-
dient terms to simulate finite-range effects of nuclear force.
Besides, the electromagnetic interaction between protons is
described with the electromagnetic field Aμ. The field tensor
Fμν of the electromagnetic field is defined as Fμν = ∂μAν −
∂νAμ.

In the mean-field approximation, one obtains a relativistic
EDF from the effective Lagrangian density (1). A Dirac equa-
tion for the single-nucleon wave function is obtained with the
variational principle. The pairing correlation between nucle-
ons can be considered by introducing quasiparticles, the wave
functions (Uk,Vk )T of which are determined by the following
equation [46,58]:

(
hD − λτ3 �

−�∗ −hD + λτ3

)(
Uk

Vk

)
= Ek

(
Uk

Vk

)
, (2)

where Ek, λτ3 , and � are the energy of the k-quasiparticle
state, Fermi energy, pairing potential, respectively. In the
even-even nuclear system with time-reversal symmetry, the
single-particle Hamiltonian hD has the following form:

hD(r) = α · p + V (r) + β(M + S(r)), (3)

where S(r) and V (r) denote scalar and vector potentials,

S(r) = αSρS + βSρ
2
S + γSρ

3
S + δS�ρS, (4)

V (r) = αV ρV + γV ρ3
V + δV �ρV + e

1 − τ3

2
A0

+αTV τ3ρTV + δTV τ3�ρTV (5)

with the scalar, vector, and isovector densities defined as

ρS (r) =
∑
k>0

V †
k (r)γ0Vk (r),

ρV (r) =
∑
k>0

V †
k (r)Vk (r),

ρTV (r) =
∑
k>0

V †
k (r)τ3Vk (r). (6)

Here, the no-sea approximation is adopted, i.e., the summa-
tion runs over the quasiparticle states in the Fermi sea only.
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In order to obtain energy curve as a function of quadrupole
deformation parameter β

(t )
20 , we add a constraint on the

mass quadrupole operator Q̂20 ≡ r2Y20, in which case, the
single-particle Hamiltonian is replaced by

hD − C0
( 〈

�
(
β

(t )
20

)| Q̂20 |�(
β

(t )
20

)〉 − q20
)
Q̂20. (7)

Here, |�(β (t )
20 )〉 represents the mean-field wave function, q20

denotes the quadrupole moment, and C0 stands for the corre-
sponding stiffness constant. The axial quadrupole deformation
β

(t )
20 (dimensionless) of the total nucleus is defined by

β
(t )
20 = 4π

3R2A

〈
�

(
β

(t )
20

)| Q̂20 |�(
β

(t )
20

)〉
, (8)

where R = 1.2A1/3fm and A is the mass number.
By employing a density-dependent δ force for the isovector

pairing correlation, the pairing potential in the coupled spin
S = 0 and isospin T = 1 channel is simplified as [48]

�(r) = V0

(
1 − ρV (r)

ρsat

)
κ (r) (9)

with the saturation density ρsat = 0.152 fm−3 and the pairing
tensor

κ (r) =
∑
k>0

V †
k (r)Uk (r). (10)

The total energy of an even-even nucleus is given by [46,59]

E =
∑
k>0

(λ − Ek )
∫

d3rV †
k (r)Vk (r)

−
∫

d3r
(

1

2
αSρ

2
S + 1

2
αV ρ2

V + 1

2
αTV ρ2

TV

+ 2

3
βSρ

3
S + 3

4
γSρ

4
S + 3

4
γV ρ4

V + 1

2
δSρS�ρS

+ 1

2
δV ρV �ρV + 1

2
δTV ρTV �ρTV + 1

2
eA0ρ

(p)
V

)

− Epair + Ec.m., (11)

where the pairing energy is

Epair = −1

2

∫
d3rκ (r)�(r) (12)

and the correction from the center-of-mass motion to the en-
ergy

Ec.m. = − 1

2AM
〈P̂2〉. (13)

Here, P̂ is the total momentum for the nucleus.
For odd-Z superheavy nuclei, the blocking effect from

the unpaired proton is considered by exchanging the kbth
quasiparticle wave function (Ukb,Vkb ) with (V ∗

kb
,U ∗

kb
), and its

quasiparticle energy Ekb is replaced by −Ekb [50,60]. By em-
ploying equal-filling approximation (EFA), the time-reversal
invariance is retained, and all spatial components of currents
vanish. In this case, the densities and pairing tensors should
be replaced as follows [50]:

ρ ′
V = ρV + 1

2

(
UkbU

∗T
kb

− V ∗
kb

V T
kb

)
, (14a)

κ ′ = κ − 1
2

(
UkbV

∗T
kb

+ V ∗
kb

U T
kb

)
. (14b)

The total energy for an odd-mass nucleus has the same
expression at that in Eq. (11), provided that the first term
(written in the canonical basis) is replaced by [55]

2
∑
k>0

(λ − Ek )v2
k + (λ + Ekb )u2

kb
− (λ − Ekb )v2

kb
. (15)

The rms radii of neutrons and protons are calculated by

Rτ3 =
√

1

Nτ3

∫
d3rr2ρ

(τ3 )
V (r), (16)

where Nτ3 is the number of neutrons or protons, and ρ
(τ3 )
V (r)

the corresponding vector density. The densities ρi, pairing
tensor κ , and potentials are expanded in terms of the Legen-
dre polynomials for axially symmetric and spatial reflection
symmetric nuclei,

f (r) =
∑
L�0

fL(r)PL(cos θ ) (17)

with L taking the even number truncated up to Lmax. The radial
function is given by

fL(r) = 2L + 1

4π

∫
d� f (r)PL(cos θ ). (18)

The rms charge radius is calculated from the proton radius

Rch =
√

R2
p + 0.64 fm2. (19)

The correction from the restoration of rotational symmetry to
the energy is considered as follows:

Erot = − 〈Ĵ2〉
2IIB

, (20)

where Ĵ is the total angular momentum of the nucleus, and IIB

is the moment of inertia calculated using the Inglis-Belyaev
formula [60].

III. RESULTS AND DISCUSSION

In this work, we adopt the PC-PK1 [61] for the parameters
in the Lagrangian density (1). The pairing strength is chosen
as V0 = −325 MeV fm3 for both neutrons and protons. The
equation (2) for quasiparticle wave functions (Uk,Vk) is solved
by expanding them in a spherical Dirac Woods-Saxon basis
[62,63]. The angular momentum cutoff Jmax = 23h̄/2, the en-
ergy cutoff E+

cut = 300 MeV, the box size Rmax = 20 fm, the
Legendre expansion truncation Lmax = 10, and the mesh size
�r = 0.1 fm are taken for the Dirac Woods-Saxon basis.

A. Bulk properties

Figure 1 displays the binding energies per nucleon for the
ground states of the four isotopic chains with Z = 117–120 as
a function of neutron number. The ground state of each iso-
tope is determined by the lowest-energy state of the DRHBc
calculations starting from 11 different initial states with the
quadrupole deformation parameter β

(t )
20 ranging from −0.4

to +0.6 and a step size of �β
(t )
20 = 0.1. For each odd-mass
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FIG. 1. The average binding energy per nucleon B/A (MeV) of
the ground states of Z = 117–120 isotopes as a function of the neu-
tron number from the DRHBc calculations using the PC-PK1 EDF,
in comparison with the WS4 mass model [26]. In the DRHBc results,
both odd-N and even-N nuclei are considered for Z = 118, 120
isotopic chains, while only even-N nuclei are considered for Z =
117, 119 isotopic chains.

nucleus, the so-called ”automatic blocking” procedure [55]
is employed to find out the lowest-energy state. Since there
are no experimental data on these isotopes, we compare our
results with the WS4 mass model [26]. It is shown that the B/A
of each isotopic chain has a peak at either N = 174 or 176.
Beyond this nucleus, it decreases smoothly with the increase
of neutron number. These features are observed in the results
of both the DRHBc theory and WS4 model. The system-
atic behavior of B/A is mainly governed by the cancellation
between the volume contribution and those from Coulomb
energy and asymmetry energy. To see it more clearly, we carry
out a linear regression for the total binding energies of totally
460 isotopes by the DRHBc theory based on the formula of a
liquid drop model (LDM) with six unknown coefficients:

BLDM6(A, Z ) = aV A − aSA2/3 − aC
Z (Z − 1)

A1/3

−aasym
(A − 2Z )2

A

+δN [1 + (−1)N ] + δZ [1 + (−1)Z ]

A1/2
, (21)

where the values of the coefficients ai and δN,Z are given in
Fig. 2(a). The results of the linear regression are labeled as
”LDM6” with the rms error of 2.63 MeV. The discrepancies
between the total energies of the superheavy nuclei by the
LDM6 and DRHBc are plotted in Fig. 2(a). Those between the
total energies by the WS4 and DRHBc are plotted in Fig. 2(b)
for comparison. It is observed that the energy difference be-
tween the DRHBc and LDM6 is oscillating with the neutron
number in the four isotopic chains, attributed to the missing
shell effects in the LDM6. In contrast, the discrepancy in the
total energies of nuclei by the DRHBc and WS4 is monoton-
ically decreasing with the neutron number. In other words,

FIG. 2. The discrepancy of the total energies of the ground states
of Z = 117–120 isotopes, (a) between the DRHBc and LDM6 model
and (b) between the DRHBc and WS4 mass model.

the neutron-rich superheavy nuclei by the DRHBc are more
and more bound towards neutron dripline, compared to the
WS4 model. Since Coulomb energy increases quadratically
with proton number, heavy and superheavy nuclei tend to have
more neutrons than protons for a given mass number. The
most tightly bound superheavy nuclei, corresponding to the
peak position in Fig. 1 for a given proton number Z , fulfilling
approximately the relation1

ZA2/3

(N − Z )
� 3

aasym

aC
, (22)

are thus determined by the balance between Coulomb energy
and asymmetry energy. Moreover, it is clearly shown in Fig. 3
that the decrease of the Coulomb energy (due to the increase
of proton radii) and the increase of the asymmetry energy are
responsible for the decrease of the average binding energy
with the increase of neutron number in each isotopic chain,
cf. Fig. 1.

Figure 4(a) shows the variation of quadrupole deforma-
tion of the ground states in the Z = 117–120 isotopes from
the DRHBc calculation as a function of neutron number.
The results of calculations in the WS4 model are plotted in
Fig. 4(b) for comparison. It is shown that the ground states
of the four isotopic chains with N < 186 are spherical or
weakly deformed. With the increase of neutron number, the

1The contribution from the surface term is dropped out. This term
is minor in the LMD6 model for the superheavy nuclei of concerned.
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FIG. 3. The various terms (21) contributing to the average bind-
ing energies of Z = 117 isotopes in the LDM6 model, as a function
of neutron number, where the total average binding energy is given
by the cancellation of the volume term with other terms. The pairing
term (about 0.04 MeV per nucleon) is too small to be seen in the
figure. See text for details.

FIG. 4. The quadruple deformation parameters β
(t )
20 of the

energy-minimal states in Z = 117–120 isotopes, as a function of
the neutron number, from (a) the DRHBc calculation, in comparison
with (b) the WS4 mass model.

ground state is shifted to the large prolate deformed state with
β2 � 0.6 which corresponds to the second energy minimum
in the light isotopes with N < 186. When the neutron number
N increases up to about 194, the ground states of isotopes with
Z = 119, 120 are shifted to the oblate state with β2 � −0.4.
A similar shape evolution has been found, for instance, in
the isotopes with Z = 52–56 [64]. When the neutron number
increases up to N = 206, the ground state is shifted back
to the prolate deformed state with β � 0.3. In contrast, the
Z = 117, 118 isotopes remain prolate states. When increasing
further the neutron number up to N = 248, the quadrupole
deformations of the ground states for all the four isotopic
chains decrease smoothly to zero. The systematical behavior
of Z = 119 isotopic chain is clearly shown in Fig. 5. The
evolution of the quadrupole deformation of the ground state
with neutron number in the WS4 mass model is somewhat
different from that of the DRHBc theory. In the WS4 model,
the quadrupole deformation decreases from zero to −0.5 as
neutron number increases from 184 to 204 in the four isotopic
chains. In the isotopes with N � 200, the WS4 model pre-
dicts all the nuclei in the four isotopic chains to have oblate
deformed shapes. When N > 208, the isotopes are mainly
prolate deformed, with the quadruple deformation decrease
from 0.2 to zero. Generally, the evolution behaviors of the
quadrupole deformations predicted by the two methods are
similar, but quantitatively different, which might be correlated
to the observed discrepancy in their predicted binding ener-
gies, cf. Fig. 2(b). Since these two methods are significantly
different, many factors may contribute to the discrepancy and
needs further studies. The investigation of the origin of this
discrepancy is beyond the scope of this work.

The energy curve for each isotope in Fig. 5 corresponds the
lowest-energy state from the automatic blocking calculation.
Different energy-minimal states in the energy surface may
have different quantum numbers Kπ , where K is the third
component of the total angular momentum and π is the par-
ity of the state. For axially deformed mean-field states, Kπ

are conserved. We take the nucleus with Z = 119, N = 246
as an example to illustrate this point, where the energies of
states with Kπ = 7/2−, 11/2+ are plotted as a function of
the quadrupole deformation in Fig. 6. It is observed that the
global energy-minimum state is found for the configuration
with Kπ = 7/2− at β20 � 0.15. The second energy minimum
is located at β20 � −0.10 with Kπ = 11/2+ whose energy
is slightly higher than that of the global minimum. Figure 7
displays the changes in the quadrupole deformations and
quantum numbers Kπ of the two lowest-energy-minimum
states in the Z = 119 isotopes. One can clearly observe the
exchange of configurations of these two states in the nuclei
with N = 194 and N = 268, where the Kπ of the global
energy minimum state is switched from 5/2− to 13/2− and
from 5/2− to 1/2−, respectively. This may has a significant
impact on their α-decay properties which will be discussed
in detail later. It illustrates the complexity and challenge in
describing the low-energy structure of odd-mass nuclei [65].

Both neutron and charge radii are sensitive to the shape of
ground state. Figure 8 shows the variations of neutron rms ra-
dius Rn and charge radius Rch of the ground state as a function
of neutron number. The empirical formula Rn = r0N1/3 with
r0 = 1.140 fm [56] is plotted for comparison. It is shown that
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FIG. 5. The total energies of states in Z = 119 isotopes as a func-
tion of the intrinsic quadrupole deformation parameter β

(t )
20 , where the

neutron numbers are (a) N = 170, 174, 176, 178, (b) N = 184–206,
(c) N = 242–250, and (d) N = 258–268, respectively. All energies
are normalized to their ground states (indicated with bullets), but
with an additional energy shift of 1 MeV between two neighboring
isotopes.

FIG. 6. The total energies of states with Kπ = 7/2− (red solid
line) and 11/2+ (blue dotted line) in 365119 as a function of
the intrinsic quadrupole deformation parameter β

(t )
20 . The energies

of the lowest-energy states (magenta dashed-dotted line) at each
quadrupole deformation are also plotted for comparison.

the global behavior of the neutron radii follows the empirical
formula. However, a sudden increase of both neutron and
charge radii in the ground state around N = 186, followed by
a decrease at N = 206 are found in all the four isotopic chains.
The onset of large radii in these isotopes is related to the shape
transition from spherical or weakly deformed shapes to large
prolate or oblate ones as seen in Figs. 4 and 5. It is shown
that the second energy minimum with β20 � 0.55 in 289119 is
higher than the global energy minimum with β20 = 0.05 by
1.15 MeV. When the neutron number N increases up to N =
186, the prolate energy minimum state becomes the ground
state, responsible for the sudden increase of radii. A similar
phenomenon is observed in the isotopes with neutron number
between N = 268 and N = 286, attributed to the onset of
large prolate deformed shape with quadrupole deformation
β2 � 0.3–0.4. Quantitatively, the charge radii of the four iso-
topic chains are slightly different, i.e., the nuclei with Z =
119, 120 and N � 200 possess charge radii approximately 0.1
fm greater than those of their isotones with Z = 117 and 118,
where quadrupole deformation also contributes.

B. Shell structure and spin-orbit interaction

The nucleus exhibiting shape coexistence is characterized
by the coexistence of different intrinsic shapes at low exci-
tation energy. The onset of shape coexistence is a common
phenomenon in superheavy nuclei [30], and it is responsible
for the observed abrupt shape transitions. The presence of
sizable shell gaps in the Nilsson diagram and large barriers
between minima on the energy surface are two necessary con-
ditions for nuclei exhibiting shape coexistence. Additionally,
intruder states with different parity are important for prevent-
ing shape mixing [66]. A quantitative study of the low-energy
structure of nuclei with shape coexistence requires beyond
mean-field approximation which is beyond the scope of this
work.

Figure 9 displays the Nilsson diagram of neutron and pro-
ton single-particle energies in 304120 as a function of the
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FIG. 7. The quadrupole deformation parameters β
(t )
20 of the first

two lowest-energy minima states (indicated with filled red circles and
open blue circles, respectively) in Z = 119 isotopes from the DRHBc
calculations with PC-PK1, where the neutron numbers are (a) N =
184–206, (b) N = 242–250, and (c) N = 258–268, respectively.

dimensionless quadrupole deformation parameter β
(t )
20 . It is

seen that for protons, there is a large spherical shell gap at
Z = 120, below the 3p3/2 level, and a relatively smaller spher-
ical shell gap at Z = 114, formed by the spin-orbit splitting
of the 2 f states. The evolution of these two shell gaps with
neutron number is displayed in Fig. 10(a). It is shown that the
shell gap at Z = 120 decreases globally with neutron number
due to the intruder orbital 1i11/2. This shell gap is labeled as
δε and displayed quantitatively in Fig. 11. For comparison, we
also plot the two-proton shell gap �S(sph.)

2p which is defined as
the derivative of the two-proton separation energy

�S(sph.)
2p (A, Z ) = S(sph.)

2p (A, Z ) − S(sph.)
2p (A + 2, Z + 2)

= 2B(sph.)(A, Z ) − B(sph.)(A − 2, Z − 2)

−B(sph.)(A + 2, Z + 2), (23)

FIG. 8. (a) The rms radii Rn of neutrons and (b) charge radii Rch

in the nuclei of the Z = 117–120 isotopic chains as a function of
neutron number. The empirical formula Rn = 1.141N1/3 [56] is also
given for comparison.

where B(sph.)(A, Z ) is the binding energy of the nucleus (A, Z )
at the spherical shape from the DRHBc calculation. The
two-proton shell gap reflects the underlying nuclear shell
structure in the assumption that there is no dramatic rearrange-
ments of the mean field between the three adjacent nuclei.
Indeed, one can see that the evolution trends of the two quan-
tities δε and �

(sph.)
2p for Z = 120 are similar, even though they

are quantitatively different. Moreover, large spherical shell
gaps are also found at Z = 92 and 138 in Fig. 10. The former
seems to be in contradiction with the indication from the data
on the proton separation energy and α-decay width [67]. In
contrast, the proton shell gap Z = 126 is generally small in all
the isotopes.

In Fig. 10(a), we observe that the size of the Z = 120
shell gap in light isotopes and the Z = 138 gap in neutron-
rich isotopes are influenced by the splitting of the proton 3p
states. Smaller splittings correspond to larger shell gaps. The
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FIG. 9. Nilsson diagram for (a) protons and (b) neutrons in
304120 as a function of the axial deformation parameter β

(t )
20 . All

single-particle energy levels are labeled with Kπ , where positive
parity states are represented by solid lines and negative parity with
dashed lines. The Fermi energies are indicated with black filled
square.

changes of the energy splittings �εnl j of the proton 3p, 2 f ,
and 1i states as a function of neutron number is displayed in
Fig. 12, where the energy splitting of spin-orbit doublet states
is defined as

�εnl j = εnl j< − εnl j>

2l + 1
, j≷ = l ± 1/2. (24)

It is demonstrated that the energy splitting �εnl j of the 3p
doublet states is generally small and can even change sign
in the Z = 120 isotopes with N = 250, 252, attributed to the
formation of evident central depression (also known as bubble
structure) in their proton densities, as depicted in Fig. 13.
The formation of bubble structure induces a significant spin-
orbit potential around the nuclear center, which cancels out
the contribution around the nuclear surface [28] and mainly
affects the spin-orbit splitting of low orbital angular momen-
tum states. These bubble structures also develop in the light

FIG. 10. The single-particle energy levels of (a) protons and
(b) neutrons in the spherical states of Z = 120 isotopes as a function
of neutron number. An evident discontinuity occurs at N = 258,
where pairing correlation between neutrons collapses.

Z = 120 isotopes with N = 172–182, explaining the observed
weak spin-orbit splittings of the proton 3p states in Fig. 12.

It is also shown in Fig. 9 that there are two large spher-
ical neutron shell gaps at N = 172 and N = 184 in 304120.
However, with the increase of neutron number, the N = 184
shell gap decreases significantly, while N = 172 shell gap is
rather robust, as shown in Fig. 10. Moreover, the N = 172
shell gap extends from sphericity to an oblate shape with β20

values down to −0.15, explaining the finding in Fig. 4 that
the isotopes with neutron number around 172 are spherical or
weakly deformed. On the prolate side, it is seen from Fig. 9
that there is a large neutron N = 184 shell gap at β20 � 0.5,
where one also finds a large proton Z = 120 shell gap. It
explains the onset of large prolate deformation in the ground
state of 304120. With the increase of neutron number up to
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FIG. 11. Comparison of the two-proton shell gap �S(sph.)
2p (blue

solid lines) and the energy gap δεp (gray dashed lines) between
two proton energy levels around Z = 120 as a function of neutron
number.

N = 196, the neutron shell gap shows up around β20 = 0.4,
cf. Fig. 9, explaining the decrease trend of the quadrupole
deformation in the Z = 120 isotopes from 304120 to 316120 in
Fig. 4. In the meantime, a large shell gap around N = 194 is
developed in the oblate side with β20 � −0.4, cf. Fig. 9. This

FIG. 12. The spin-orbit splitting of (a) neutrons and (b) protons
in the spherical states of Z = 120 isotopes as a function of neutron
number.

FIG. 13. The L = 0 component (17) of the proton density in Z =
120 isotopes with neutron number (a) N = 170–186 and (b) N =
252–260, respectively.

explains the development of competing prolate and oblate
deformed energy minimum in the isotopes around N = 194.
With the neutron number increases further up to N = 258, a
large spherical neutron shell gap shows up, cf. Fig. 10. Con-
sequently, the isotopes with N � 258 become spherical again.
In short, our results indicate that N = 172, 258 are the next
two magic numbers for neutrons in superheavy nuclei beyond
N = 126. This conclusion can also be drawn from the sys-
tematic behavior of two-neutron separation energy S2n(A, Z ),
which is defined as

S2n(A, Z ) = B(A, Z ) − B(A − 2, Z ). (25)

Here, B(A, Z ) is the binding energy of the nucleus (A, Z ) from
the DRHBc calculation. With the separation energies of two
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FIG. 14. (a) The two-neutron separation energies S2n and
(b) their differences �S2n in the Z = 117–120 isotopic chains as a
function of neutron number. The results of calculations for the states
restricted to have spherical shape are also plotted for comparison.

neighboring nuclei, one can define the two-neutron shell gap

�S2n(A, Z ) = S2n(A, Z ) − S2n(A + 2, Z ). (26)

Figure 14 shows the evolution of S2n and �S2n in the four
isotopic chains as a function of neutron number. An abrupt
drop of S2n(A, Z ) is found at N = 172 in the Z = 119, 120
isotopic chains, at N = 184 in the Z = 117, 118 isotopic
chains, and at N = 258 in all the four isotopic chains. These
drops correspond to the peaks in the two-neutron shell gap
�S2n(A, Z ). As shown Fig. 10, the spherical neutron shell gap
N = 258 decreases monotonically with neutron number due
to intruder state 1k15/2. In addition, we note that the size of
the N = 172 shell gap and N = 258 shell gap are determined
by the energy splitting of the neutron 3d and 4p states, re-
spectively, which are generally small, as shown in Fig. 12(b).
This is also related to the formation of evident bubble structure

FIG. 15. Same as Fig. 13, but for neutrons.

in corresponding nuclei, as shown in Fig. 15. Moreover, it is
interesting to see the sudden increase of the S2n at N = 266
in Fig. 14, which is attributed to the onset of large prolate de-
formation, cf. Fig. 4. In contrast, the S2n from the calculation
restricted to have the spherical shape decreases smoothly with
neutron number, except for N = 258. Besides, it is shown that
in the results of DRHBc calculations, the last bound nuclei
of the four isotopic chains are 421117, 424118, 435119, 438120,
respectively. In contrast, the neutron dripline is much more
extended if the nuclei are restricted to be spherical in the
DRHBc calculation. A similar phenomenon has also been
found in Er isotopes [68].

C. α-decay energies

The α-decay energy Qα provides a valuable insight into
nuclear shell structure [70]. Figure 16 displays the Qα values
of the four isotopic chains with Z = 117–120 as a function of
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FIG. 16. The Qα values of the four isotopic chains with Z = 117–120 as a function of neutron number from the DRHBc calculations,
in comparison with the results of WS4 model. The values of two neighboring isotopic chains are shifted by 4 MeV. The isotopes with only
even neutron numbers are considered. (a) and (b) show the results of DRHBc calculations without and with the energy correction from the
restoration of rotational symmetry, respectively. The data are taken from Refs. [12,13].

neutron number from the DRHBc calculations, where the α

decay energies Qα are calculated as

Qα (A, Z ) = B(A − 4, Z − 2) + B(4, 2) − B(A, Z ). (27)

The observed irregular behavior of the Qα values in each
isotopic chain is attributed to shell effects and shape tran-
sition. It is shown in Fig. 16(a) that there is a pronounced
peak at the neutron number immediately after N = 258 in the
four isotopic chains and an additional peak after N = 184 in
the Z = 117, 118 isotopes, consistent with the finding in the
Z = 108 isotopes [71]. It is also consistent with the behav-
iors in the two-neutron separations and their differences, as
seen in Fig. 14, confirming the large shell gaps at N = 258
and N = 184. A similar jump at N = 184 is also observed
in the WS4 model for the Z = 117, 118 isotopes. With the
inclusion of rotational correction energies in the DRHBc cal-
culation, one observes more oscillations in the Qα values in
the isotopes around N = 180. It can be understood from the
observation that most of these nuclei are either spherical or
weakly deformed. The rotational correction energies are eval-
uated with the Inglis-Belyaev formula, the validity of which
for weakly deformed nuclei and odd-mass nuclei needs to
be examined in the future, against the results from the exact
angular-momentum projection calculations [72] based on the
same EDF. One may anticipate that the inclusion of beyond
mean-field dynamical correlations associated with symmetry
restoration and shape mixing will smooth the systematic be-
havior of the Qα as a function of the neutron number. In
particular, a new dip shows up at N = 190. Since there is no

data for most of the isotopes, it is difficult to draw a solid
conclusion about the underlying shell structure.

Figure 17 displays the deviation of the Qα values by the
LDM6 model (21) from the DRHBc theory for the Z =
119, 120 isotopes, which is mainly attributed to the shell ef-
fects that are missing in the LDM6 model. In other words, this
deviation provides information on the predicted shell structure
from the DRHBc theory. Indeed, it is seen that the deviation
as a function of neutron number is similar for Z = 119, 120,
where the largest deviations are found around N = 172 and
N = 258, consistent with the locations of the peaks in the
�S2n and Qα values, cf. Figs. 14 and 16, respectively.

FIG. 17. The deviation �Qα of the α-decay energies by the
LDM6 model from the DRHBc theory (without Erot) for the Z =
119, 120 isotopes as a function of neutron number.

024302-11



ZHANG, LIU, ZHANG, AND YAO PHYSICAL REVIEW C 110, 024302 (2024)

FIG. 18. The α-decay chains originating from the ground states of 293,295,297119 from the DRHBc calculation. The lowest-energy state of
each nucleus along the chain, together with the state with Kπ = 5/2−, is shown. The black arrows indicate the favored α decays. The energy
difference between two energy levels is given near each arrow. The possible energy levels in between are not concerned. All energies are in
MeV. The superheavy nuclei that have already been produced by the 249Bk + 48Ca reaction [69] are indicated with light yellow. See main text
for details.

It is worth noting that the nonzero angular momenta of
the low-lying states of the odd-mass nuclei open more decay
channels than those of even-even nuclei. If the angular mo-
menta of the initial and final nuclei during the α decay are
different, the emitted α particle will carry a nonzero orbital
angular momentum �. The decay rate of this process will be
quenched due to the additional centrifugal barrier between the
emitted α and daughter (D) nucleus. For the mass number
A � 300, and distance Rα−D � 10 fm, the centrifugal barrier
is approximately given by

V�(Rα−D) = �(� + 1)h̄2

2μR2
α−D

� �(� + 1)

20
(MeV). (28)

According to the estimated formula above, a change of an-
gular momentum by 1h̄ in the α decay increases the barrier
height by about 0.1 MeV, which may be comparable to the
excitation energies of low-lying states in certain daughter
nuclei. See, for instance, the excitation energy of 5/2− state

in 291,293Ts in Fig. 18. In such cases, various decay channels
may compete with each other. Achieving a quantitative anal-
ysis of the branch ratios for decaying into different channels
necessitates precise knowledge of the low-lying states of odd-
mass nuclei. Describing these states accurately requires going
beyond the mean-field approximation [72]. For simplicity, the
energies of states with Jπ = Kπ are taken as the energies
of the energy-minimal states on the energy curves from the
DRHBc calculation. Figure 18 illustrates the α-decay chain
of 293,295,297119, which could be produced in the reactions
54Cr + 243Am, 51V + 248Cm, and 50Ti + 249Bk [20]. Accord-
ing to the DRHBc calculation, the ground state of 297119 has
Kπ = 5/2−. Thus, we plot all the states of the nuclei along the
α-decay chain with Kπ = 5/2−. Moreover, the ground state
of each nucleus is also provided. It can be observed that the
ground state of 293Ts has Kπ = 3/2−, different from that of
297119. If the angular momentum of the ground state has the
same value as the K value, the relative angular momentum
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of the α to the daughter nucleus 293Ts will be 1h̄ for the
ground-state to ground-state α decay of 297119. Compared to
the ground state to the excited state with Kπ = 5/2−, the cen-
trifugal barrier increases by 0.1 MeV, which is much smaller
than the excitation energy (0.45 MeV) of the 5/2− state in
293Ts. It indicates that 297119 will still be dominated by the
ground-state to ground-state α decay, even though their
ground states have different angular momenta. A similar con-
clusion also applies to other nuclei along the decay chain of
297119. In short, the α decay of odd-mass nuclei is generally
much more complicated than that of even-even nuclei, par-
ticularly in the presence of rapid shape transitions along the
decay chain.

IV. SUMMARY

In this study, we present a comprehensive investigation
of neutron-rich odd-Z superheavy nuclei with proton num-
bers Z = 117 and 119, and neutron numbers N ranging from
N = 170 to the neutron dripline. We employ the axially de-
formed relativistic Hartree-Bogoliubov theory in continuum,
which has achieved significant success in the global study
of atomic nuclei across the nuclear chart. The treatment of
unpaired valence nucleons utilizes the ”automatic blocking”
procedure under the equal filling approximation. The ground
state is determined as the state with the lowest energy after
the self-consistent calculation, even though several states with
competing energies may coexist in some nuclei. The obtained
results are compared to neighboring isotopic chains with Z =
118 and 120.

We extensively explore the evolution of shell structure and
shape transition in the four isotopic chains at the mean-field
level. The examination of shape evolution is based on the
bulk properties of the energy-minimal states on the potential-
energy curves. Our investigation reveals that the ground states
of the majority of these superheavy nuclei are prolate de-
formed, except for nuclei with proton numbers Z = 119, 120,
and neutron numbers around N = 200, where nearly degener-
ate oblate deformed states are observed. Specifically, we find
that the ground states of nuclei in the four isotopic chains
are spherical or weakly deformed with neutron numbers N <

186. Beyond this neutron number, the isotopes exhibit signif-
icant prolate or oblate deformation with β20 � 0.6 or β20 �

−0.4. This quadrupole deformation gradually decreases to
zero as the neutron number increases up to N = 248. At
N = 268, the ground states of the four isotopic chains become
prolate deformed again with β20 � 0.4, which then slowly
decreases to 0.2 towards the neutron dripline. This evolution
trend with neutron number is also reflected in the systematic
behaviors of the neutron radii and charge radii. Comparatively,
the low-energy structure of odd-Z superheavy nuclei is shown
to be more intricate. This is evidenced by significant changes
in the quantum numbers Kπ of the ground state of odd-mass
nuclei as the predominant shape evolves with neutron number.
Such variations may lead to changes in angular momentum in
α decay, thereby affecting the decay rate.

The results of the DRHBc calculations, including Nils-
son diagrams, quadrupole deformations, rms radii, and Qα

values, suggest that Z = 120 is the next proton magic num-
ber and N = 172 as a neutron magic number. Additionally,
N = 258 is identified as a potential neutron magic number
in the neutron-rich region. The emergence of these neutron
shell gaps is attributed to the presence of nearly degenerate
neutron 3d and 4p spin-orbit doublet states, facilitated by the
bubble structure. It is noteworthy that the potential energy
curves of many nuclei near Z = 120 and N = 184 display
softness, with variations in quadrupole deformation, suggest-
ing potential significant influences of dynamical correlations
on the ground-state properties of these superheavy nuclei. The
impact of these correlations on nuclear structural properties
warrants further investigation in future studies.
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