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Inclusion of the long-range proton-proton Coulomb force
in the three-nucleon scattering Faddeev calculations
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We propose a simplified approach to incorporate the long-range proton-proton (pp) Coulomb force in
three-nucleon (3N) scattering calculations, based on the exact formulation presented by Witała, Skibiński,
Golak, and Glöckle [Eur. Phys. J. A 41, 369 (2009) and Eur. Phys. J. A 41, 385 (2009)]. It permits us to
get elastic proton-deuteron (pd) scattering and breakup observables relatively simply by performing standard
Faddeev calculations as known for the neutron-deuteron (nd) system. The basic ingredient in that approach is
a three-dimensional screened pp Coulomb t-matrix obtained by numerical solution of the three-dimensional
Lippmann-Schwinger (LS) equation. Based on this t-matrix, pure Coulomb transition terms contributing to
elastic scattering and breakup are calculated without any need for partial-wave decomposition. For elastic
scattering such a term removes the Rutherford amplitude for point deuteron proton-deuteron (pd) scattering.
For breakup it provides contributions which are important in some regions of the breakup phase space. We
demonstrate numerically that the pd elastic observables can be determined directly from the resulting 3N
amplitudes without any renormalization, simply by increasing the screening radius in order to reach the existing
screening limit. However, for pd breakup the renormalization of the contributing on-shell amplitudes is required.
We apply our approach in a wide energy range of the incoming proton for pd elastic scattering as well as for the
pd breakup reaction.

DOI: 10.1103/PhysRevC.110.024005

I. INTRODUCTION

For a long time the problem of how to include the Coulomb
force in the analysis of nuclear reactions with more than two
nucleons has attracted wide attention. The main difficulty is
the long-range nature of the Coulomb force which prevents
the application of the standard techniques developed for short-
range interactions. One possible way to include the Coulomb
force is to use a screened Coulomb interaction and to reach the
pure Coulomb limit through application of a renormalization
procedure [1–4].

The high quality of the available pd data for elastic scat-
tering and for the deuteron breakup reaction below the pion
production threshold requires a theoretical analysis with the
pp Coulomb force included in the calculations performed with
modern nuclear forces. For this three-nucleon (3N) system
using the Faddeev scheme high-precision numerical predic-
tions for different observables in both processes have been
obtained [5], but only under the restriction to short-ranged
nuclear interactions.

First results for elastic pd scattering with modern nuclear
forces and the Coulomb force included were provided in a
variational hyperspherical harmonic approach [6]. The inclu-
sion of the Coulomb force became possible in addition to
elastic pd scattering also for the pd breakup reaction [7]. In
[6] the exact Coulomb force in coordinate representation was
used directly. In contrast to [7] a screened pp Coulomb force
was applied in momentum space and in a partial-wave basis.
In order to get the final predictions which can be compared

to the data, the limit to the unscreened situation was taken
numerically, applying a renormalization to the resulting 3N
on-shell amplitudes [7–9]. This allowed the authors for the
first time to analyze high-precision pd breakup data together
with higher energy pd elastic scattering ones, and provided a
significant improvement of data description in the cases where
the Coulomb force plays an important role, see e.g. [10].

In spite of the breakthrough in the pd breakup treatment
achieved in [7–9] some important questions concerning data
description remained unanswered. One is the inability to un-
derstand the pp quasi-free-scattering (QFS) and pd space-star
(SST) cross sections (see Introduction in [11]). It motivated
us to reconsider the inclusion of the Coulomb force in mo-
mentum space Faddeev calculations. The main concern in
such type of calculations is the application of a partial-wave
decomposition to the long-ranged Coulomb force. Even when
screening is applied, it seems reasonable to treat from the
beginning the screened pp Coulomb t-matrix without partial-
wave decomposition, because the required limit of vanishing
screening leads necessarily to a drastic increase of the num-
ber of partial-wave states involved, what in consequence
makes the number of 3N partial waves required for con-
vergence extremely large. That fact prompted us to develop
in [11] a novel approach to incorporate the pp Coulomb
force in the momentum space 3N Faddeev calculations. It is
based on a standard formulation for short-range forces and
relies on the screening of the long-range Coulomb interac-
tion. In order to avoid all uncertainties connected with the
application of the partial-wave expansion, inevitable when
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working with long-range forces, we used directly the three-
dimensional pp screened Coulomb t-matrix. We demonstrated
the feasibility of that approach in the case of elastic pd scatter-
ing using a simple dynamical model for the nuclear part of the
interaction. It turned out that the screening limit exists without
the need of renormalization not only for pd elastic scattering
observables but for the elastic pd amplitude itself. In [11] we
demonstrated that the physical pd elastic scattering amplitude
can be obtained from the off-shell solutions of the Faddeev
equation and has a well defined screening limit.

In [12] we extended that approach to pd breakup. Again we
applied directly the three-dimensional screened pp Coulomb
t-matrix without relying on a partial-wave decomposition. In
contrast to elastic scattering, where the amplitude itself does
not require renormalization, in the case of pd breakup the on-
shell solutions of the Faddeev equation are required, which
necessitates renormalization in the screening limit.

In our approach it is possible to obtain the elastic scattering
amplitudes as well as observables without any renormaliza-
tion, in contrast to the method of Refs. [7,8], where the
elastic scattering amplitudes are obtained as a solution of
Alt-Grassberger-Sandhas (AGS) equations and where renor-
malization is unavoidable. The reason is the interplay between
the proton-proton Coulomb interaction and the deuteron
bound-state pole in the AGS equations [13]. In contrast to that,
in our approach we calculate the elastic scattering amplitudes
using solutions of the 3N Faddeev equations, whose structure
guarantees that solutions import properties of the two-nucleon
t-matrices. The fact that elastic pd scattering requires only
off-shell solutions of the Faddeev equations and that the
off-shell two-nucleon t-matrices have well defined screening
limits is the reason why in our method no renormalization
is needed. It should be emphasized that both approaches are
exact and should lead to the same results for observables in
the pd elastic scattering and breakup reactions.

The main purpose of present investigation is to establish
a relatively fast and simple calculational scheme for getting
reliable estimation of the pp Coulomb force effects in pd
reactions, which will be with respect to the required time and
computer resources comparable to the standard nd Faddeev
calculations. In our exact approach of Refs. [11,12] the need
to calculate a number of complex terms, whose determina-
tion is very demanding with respect to the required computer
time and resources, makes this approach difficult. In view of
coming challenges, such as fine tuning of chiral forces by
using high precision pd data, a simpler and faster method for
calculation of pd reactions is required.

In Sec. II for the convenience of the reader we briefly
present the main points of the formalism outlined in detail
in [11,12] and introduce our simplified calculational scheme.
The numerical results for pd elastic scattering are presented
and discussed in Sec. III A and for breakup in Sec. III B. The
summary and conclusions are given in Sec. IV.

II. SCREENED pp COULOMB FORCE
IN FADDEEV EQUATIONS

In the following we describe our simplified treatment,
which arises from the exact formulation of Refs. [11,12].

For the convenience of the reader we repeat the main steps
of [11,12].

We regard the 3N pd system in the isospin basis where
the two-body isospin t together with the isospin 1

2 of the third
particle is coupled to the total isospin T and the corresponding
completeness relation is [the convention assumed is that the
proton (neutron) has the isospin magnetic quantum number
− 1

2 ( 1
2 )]:

∑
tT

|(t1/2)T − 1/2〉〈(t1/2)T − 1/2| = I. (1)

We use the Faddeev equation in the form when nucleons
interact with pairwise forces only [5]:

T |�〉 = tP|�〉 + tPG0T |�〉, (2)

where P is defined in terms of transposition operators, P =
P12P23 + P13P23, G0 is the free 3N propagator, |�〉 the initial
state composed of a deuteron state and a momentum eigen-
state of the proton. The t-matrix t is a solution of the two-body
Lippmann-Schwinger (LS) equation,

t = V + V G0t, (3)

with the interaction V containing the neutron-proton (np)
(V t0

np = 〈t0|V |t0〉) and pp (V 1−1
pp = 〈1 − 1|V |1 − 1〉) poten-

tials [14]. The pp interaction decomposes into the strong
part and the pure Coulomb part (assumed to be screened and
parametrized by some parameter R),

V 1−1
pp = V strong

pp + V cR
pp . (4)

Since the presence of the pp Coulomb force induces large
charge independence breaking, which leads necessarily to
coupling of T = 1/2 and T = 3/2 states [14], the complete
treatment of the Coulomb force requires states with both total
isospin values.

Knowing T |�〉 the breakup as well as the elastic pd scat-
tering amplitudes can be gained by quadratures in the standard
manner [5]. We solve Faddeev equations in our momentum
space partial wave basis |pqα〉,

|pqα〉 ≡ ∣∣pq(ls) j
(
λ 1

2

)
I ( jI )J

(
t 1

2

)
T

〉
, (5)

distinguishing between the partial-wave states |pqα〉 with to-
tal 2N angular momentum j below some value jmax, j � jmax,
in which the nuclear, VN , as well as the pp screened Coulomb
interaction, V R

c (in isospin t = 1 states only), act, and the
states |pqβ〉 with j > jmax, for which only V R

c acts in the
pp subsystem. The states |pqα〉 and |pqβ〉 form a complete
system of states:

∫
p2d p q2dq

⎛
⎝∑

α

|pqα〉〈pqα| +
∑

β

|pqβ〉〈pqβ|
⎞
⎠ = I.

(6)

Projecting Eq. (2) for T |�〉 on the |pqα〉 and |pqβ〉
states one gets the following system of coupled integral
equations (in the following we use a shorthand notation
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∑
α

∫
p2d p q2dq|pqα〉〈pqα| ≡ ∑

α

∫ |α〉〈α|):
〈pqα|T |�〉

= 〈pqα|tR
N+cP|�〉 + 〈pqα|tR

N+cPG0

∑
α′

∫
|α′〉〈α′|T |�〉

+ 〈pqα|tR
N+cPG0

∑
β ′

∫
|β ′〉〈β ′|T |�〉, (7)

〈pqβ|T |�〉
= 〈pqβ|tR

c P|�〉 + 〈pqβ|tR
c PG0

∑
α′

∫
|α′〉〈α′|T |�〉

+ 〈pqβ|tR
c PG0

∑
β ′

∫
|β ′〉〈β ′|T |�〉, (8)

where tR
N+c and tR

c are t-matrices generated by the interactions
VN + V R

c and V R
c , respectively. For states |α〉 with two-nucleon

subsystem isospin t = 1 the corresponding t-matrix element
〈pα|tR

N+c(E − 3
4m q2)|p′α′〉 is a linear combination of the pp,

tR
pp+c, and the neutron-proton (np), tnp, t = 1 t-matrices, which

are generated by the interactions V strong
pp + V R

c and V strong
np , re-

spectively. The coefficients of that combination depend on the
total isospin T and T ′ of states |α〉 and |α′〉 [11,14]:〈

t = 1 T = 1
2

∣∣tR
N+c

∣∣t ′ = 1 T ′ = 1
2

〉 = 1
3 tnp + 2

3 tR
pp+c〈

t = 1 T = 3
2

∣∣tR
N+c

∣∣t ′ = 1 T ′ = 3
2

〉 = 2
3 tnp + 1

3 tR
pp+c〈

t = 1 T = 1
2

∣∣tR
N+c

∣∣t ′ = 1 T ′ = 3
2

〉 =
√

2
3

(
tnp − tR

pp+c

)
〈
t = 1 T = 3

2

∣∣tR
N+c

∣∣t ′ = 1 T ′ = 1
2

〉 =
√

2
3

(
tnp − tR

pp+c

)
. (9)

For isospin t = 0, where T = T ′ = 1
2 ,

〈
t = 0 T = 1

2

∣∣tR
N+c

∣∣t ′ = 0 T ′ = 1
2

〉 = tnp. (10)

In the case of tR
c only the screened pp Coulomb force V R

c acts.
The third term on the right-hand side of (8) is propor-

tional to 〈pqβ|tR
c PG0|p′q′β ′〉〈p′q′β ′|tR

c . A direct calculation
shows that it vanishes, independently of the value of the total
isospin T .

Inserting 〈pqβ|T |�〉 from (8) into (7) and using (6) one
gets

〈pqα|T |�〉 = 〈pqα|tR
N+cP|�〉 + 〈pqα|tR

N+cPG0tR
c P|�〉

− 〈pqα|tR
N+cPG0

∑
α′

∫
|α′〉〈α′|tR

c P|�〉

+ 〈pqα|tR
N+cPG0

∑
α′

∫
|α′〉〈α′|T |�〉

+ 〈pqα|tR
N+cPG0tR

c PG0

∑
α′

∫
|α′〉〈α′|T |�〉

− 〈pqα|tR
N+cPG0

∑
α′

∫
|α′〉〈α′|tR

c PG0

×
∑
α′′

∫
|α′′〉〈α′′|T |�〉. (11)

This is a coupled set of integral equations in the space of only
the states |α〉, which exactly incorporates the contributions of
the pp Coulomb interaction from all partial-wave states up to
infinity. It can be solved by iteration and Padé summation.
However, the very time consuming and complicated calcu-
lation of contributing terms containing the three-dimensional
screened Coulomb t-matrix (the second and fifth terms) pre-
vents solution of that equation for the practically interesting
case of sufficiently large partial-wave basis. It is our aim in the
present investigation to simplify (11) without losing its physi-
cal content, so that the resulting equation will be manageable
as for the nd system.

Actually a glimpse at Eq. (11) reveals a possibility to avoid
completely a calculation of these complicated terms with a
three-dimensional Coulomb t-matrix and to omit the second,
third, as well as the fifth and sixth terms altogether. Namely,
at a specific value of the screening radius R, a finite set of
partial waves provides an exact reproduction of the three-
dimensional Coulomb t-matrix tR

c . Extending the set |α〉 to
such a set of states by adding a finite number of channels
with higher angular momenta, in which only the pp Coulomb
interaction is present, permits one to completely neglect the
above mentioned four terms due to their mutual cancellation:
the second term with the third, and the fifth term with the
sixth. The set (11) is then reduced to the identical form as
in the nd case

〈pqα|T |�〉
= 〈pqα|tR

N+cP|�〉 + 〈pqα|tR
N+cPG0

∑
α′

∫
|α′〉〈α′|T |�〉.

(12)

With an increasing R value the above cancellation requires
more and more partial waves, so generally for a finite set
|α〉 only a partial cancellation is expected, making (12) only
an approximation to the exact formulation (11). In the fol-
lowing we will refer to (12) as “simplified approach (12)”
[SA(12)].

Even in the case when channels |α〉 are those in which nu-
clear and pp Coulomb forces act and only partial cancellation
occurs, an additional argument prompts one to simplify the
set (7)–(8). Namely, in Eqs. (7) and (8) the strength of the
coupling between amplitudes 〈pqα|T |�〉 and 〈pqβ|T |�〉 is
determined by matrix elements of the permutation operator
〈pqα|P|p′q′β〉. Since channels |β〉 have values of the total
two-body subsystem angular momentum j larger than those
of the channels |α〉, the matrix element of the permutation op-
erator between these states is smaller than between |α〉 states.
One can thus argue that the third term in Eq. (7) and second in
(8) are small compared to the leading terms. Neglecting them
would lead again to the set (12).

For a restricted basis |α〉 ( j � 3) it is possible to compute
the second term in (11) with the three-dimensional Coulomb
t-matrix within a reasonable amount of computer time and
resources. Therefore we would also like to look at these can-
cellations in a more direct way. By omitting only the second
term in Eq. (8) one reduces (11) to a form containing the
first pair of leading terms with the three-dimensional and its
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partial-wave decomposed counterpart Coulomb t-matrix:

〈pqα|T |�〉 = 〈pqα|tR
N+cP|�〉 + 〈pqα|tR

N+cPG0tR
c P|�〉

− 〈pqα|tR
N+cPG0

∑
α′

∫
|α′〉〈α′|tR

c P|�〉

+ 〈pqα|tR
N+cPG0

∑
α′

∫
|α′〉〈α′|T |�〉. (13)

We will solve both Eqs. (12) and (13) and demonstrate how
cancellation effects between the second and third terms in (11)
affect the elastic scattering and breakup observables and how
they justify the use of (12) and omission of the term with the
three-dimensional t-matrix.

After solving 3N Faddeev equations the transition ampli-
tude for elastic scattering is given by [5,15]

〈�′|U |�〉 = 〈�′|PG−1
0 + PT |�〉. (14)

The first contribution is independent of the pp Coulomb force
and can be calculated without partial-wave decomposition
using the expression given in Appendix C of Ref. [11]. To
calculate the second contribution in (14) one needs 〈 �p�q|T |�〉
composed of low (α) and high (β) partial-wave contributions
for T |�〉. Using the completeness relation (6) and Eq. (8) one
gets

〈 �p�q |T |�〉
= 〈 �p�q |

∑
α′

∫
|α′〉〈α′|T |�〉

− 〈 �p�q |
∑
α′

∫
|α′〉〈α′|tR

c P|�〉 + 〈 �p�q |tR
c P|�〉

− 〈 �p�q |
∑
α′

∫
|α′〉〈α′|tR

c PG0

∑
α′′

∫
|α′′〉〈α′′|T |�〉

+ 〈 �p�q |tR
c PG0

∑
α′

∫
|α′〉〈α′|T |�〉. (15)

It follows that in addition to the amplitudes 〈pqα|T |�〉
also the partial-wave projected amplitudes 〈pqα|tR

c P|�〉 and
〈pqα|tR

c PG0|α′〉〈α′|T |�〉 are required. The expressions for
the contributions of these three terms to the transition am-
plitude for elastic scattering (and breakup) are given in
Appendix B of Ref. [11]. The third and fifth terms in (15) must
be calculated using directly the three-dimensional screened
Coulomb t-matrices. Expressions for 〈 �p�q |tR

c P|�〉 (breakup)
and 〈� ′|PtR

c P|�〉 (elastic scattering) are given in Appendix C
of Ref. [11]. The term 〈� ′|PtR

c P|�〉 for large values of the
screening radius R is the contribution from the pp Coulomb
force to the pd scattering, which corresponds to the Ruther-
ford amplitude for point deuteron Coulomb pd scattering. The
analogous term for breakup is 〈 �p�q |tR

c P|�〉. The expression
for the last matrix element 〈 �p�q|tR

c PG0|α′〉〈α′|T |�〉 is given
in Appendix D of Ref. [11]. It provides a correction to the
pure Coulomb term in pd elastic scattering and breakup due
to the strong interactions between nucleons. It is interesting
to note that all terms containing a three-dimensional Coulomb
t-matrix, both for elastic scattering and breakup, can be cal-
culated using analytical expressions for the screening limit of
that matrix.

Since we restrict ourselves to SA(12) and approach (13),
it would seem validated to omit the fourth and fifth terms in
Eq. (15), reducing it to

〈 �p�q |T |�〉
= 〈 �p�q |

∑
α′

∫
|α′〉〈α′|T |�〉

− 〈 �p�q |
∑
α′

∫
|α′〉〈α′|tR

c P|�〉 + 〈 �p�q |tR
c P|�〉. (16)

Actually, there is no justification for rejecting these two
pure Coulomb terms. On the contrary, it seems unavoidable
that the pure Coulomb terms must receive contributions from
strong interactions between nucleons as indicated by the sec-
ond term in (8), the importance of which will probably depend
on the energy. However, in the present investigation we stick
first to approximation (16) for the transition amplitude, defer-
ring the problem of importance of rejected terms for a later
stage of the present study. In the following we will refer to
(16) as “approximate transition amplitude (16)” [AA(16)] in
contrast to “exact transition amplitude of Eq. (15)” [EA(15)].

The transition amplitude for breakup 〈�0|U0|�〉 is given in
terms of T |�〉 by [5,15]

〈�0|U0|�〉 = 〈�0|(1 + P)T |�〉, (17)

where |�0〉 = | �p�qm1m2m3ν1ν2ν3〉 is the state of three free
outgoing nucleons. The permutations acting in momentum,
spin, and isospin spaces can be applied to the bra state 〈�0| =
〈 �p�qm1m2m3ν1ν2ν3|, changing the sequence of nucleons spin
and isospin magnetic quantum numbers mi and νi and leading
to well known linear combinations of the Jacobi momenta
�p, �q. Thus evaluating (17) it is sufficient to regard the general
amplitudes 〈 �p�qm1m2m3ν1ν2ν3|T |�〉 ≡ 〈 �p�q|T |�〉, which are
given again by (16). Also for breakup, in addition to the
amplitudes 〈pqα|T |�〉, the partial-wave projected amplitude
〈pqα|tR

c P|�〉 is required. The expressions for the contribu-
tions of these two terms to the transition amplitude for the
breakup reaction are given in Appendix B of Ref. [11]. The
last term in (16) must be calculated using directly the three-
dimensional screened Coulomb t-matrix. It corresponds to the
Rutherford amplitude in elastic pd scattering. In Appendix C
of Ref. [11] the expression for 〈 �p�q|tR

c P|�〉 is provided.
The Faddeev equations (12) and (13) are well defined for

any finite screening radius. The important challenge is to con-
trol the screening limit for the physical pd elastic scattering
and breakup amplitudes (15). In the case of elastic scattering
we provided in Ref. [11] arguments that the physical elastic
pd scattering amplitude itself has a well defined screening
limit and does not require renormalization. This was traced
back to the fact that in order to get the elastic pd scattering
amplitude it is sufficient to solve the Faddeev equations (12)–
(13) for off-shell values of the Jacobi momenta,

p2

m
+ 3

4m
q2 �= E . (18)

The off-shell Faddeev amplitudes 〈pqα|T |�〉 of Eqs. (12)–
(13) are determined by off-shell nucleon-nucleon t-matrix
elements t (p, p′; E − 3

4m q2), which have a well defined
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screening limit (see [11] as well as the discussion and ex-
amples in [12]). Also the off-shell three-dimensional pure
Coulomb t-matrix is known analytically (see [16,17] and ref-
erences therein):

〈 �p ′|tR
c

(
k2

m

)
| �p〉 → e2

2π2

1 + I (x)

( �p ′ − �p)2
(19)

with

I (x) = 1

x

[
2F1

(
1, iη; 1 + iη;

x + 1

x − 1

)

− 2F1

(
1, iη; 1 + iη;

x − 1

x + 1

)]

and

x2 = 1 + (p′2 − k2)(p2 − k2)

k2( �p′ − �p)2
,

where 2F1 is a hypergeometric function [18]. Thus also the
Coulomb term 〈�′|PtR

c P|�〉 has a well defined screening
limit [19].

In contrast to pd elastic scattering the physical breakup
amplitude (17) corresponds to the on-shell values of Jacobi
momenta

p2

m
+ 3

4m
q2 = E ≡ 3

4m
q2

max. (20)

That means that the physical pd breakup amplitude (17)
requires on-shell Faddeev amplitudes 〈p0qα|T |�〉 together
with the two, also on-shell, additional terms in (16), with
p0 =

√
3
4 (q2

max − q2). The on-shell Faddeev amplitudes can
be obtained from the off-shell solutions 〈pqα|T |�〉 using
(11), (12), or (13) (in the following referred to as ONSH2).
These on-shell amplitudes together with additional, also on-
shell, terms in (16) define the physical breakup amplitude
(17). That in consequence requires half-shell t-matrix ele-

ments t (p0, p′; p2
0

m ) which are of three types: the partial-wave
projected pure screened Coulomb tR

c generated by V R
c , the

partial-wave projected tR
N+c generated by Vstrong + V R

c , and the
three-dimensional screened Coulomb t-matrix elements.

It is well known [1,20,21] that in the screening limit R →
∞ such half-shell t-matrices acquire an infinitely oscillating
phase factor ei�R (p), where �R(p) depends on the type of the
screening. For the exponential screening

V R
c (r) = α

r
e−( r

R )n

, (21)

its form depends on two parameters, the screening radius
R and the power n. At a given value n the pure Coulomb
potential results for R → ∞. As has been shown in [22] based
on [23,24], the related phase �R

n (p) is given as

�R
n (p) = −η

[
ln(2pR) − γ

n

]
+ η

∞∑
k=1

(−1)k

knk!(2pR)kn
, (22)

where γ = 0.5772 . . . is the Euler number and η = mpα

2p is the
so-called Sommerfeld parameter.

That oscillatory phase factor appearing in the half-shell
proton-proton t-matrices requires a careful treatment to get

the screening limit for the 〈p0qα|T |�〉 amplitudes. Namely
for the states |α〉 with the two-nucleon subsystem isospin

t = 1 the corresponding t-matrix element 〈p0α|tR
N+c( p2

0
m )|p′α′〉

is a linear combination of the pp and neutron-proton (np)
t = 1 t-matrices, with coefficients which depend on the total
isospins T and T ′ of the states |α〉 and |α′〉 [see discussion
after (8)]. It follows that to achieve the screening limit one
needs to renormalize breakup amplitudes by removing from
them the oscillatory phase factor induced by the half-shell pp
t-matrix tR

pp+c. The term in that linear combination coming
with the np t-matrix tnp is not influenced by the pp Coulomb
force. In [12] we erroneously suggested a renormalization in
that combination before performing the action of the operators
in (12) and (13). This is, however, incorrect since amplitudes
obtained in this way do not fulfill the Faddeev equations and
would lead to false results for breakup observables. The only
proper place to perform renormalization is during calculation
of the breakup transition amplitude.

The breakup transition amplitude is built up from three
contributions due to the action of the (1 + P) operator in
Eq. (17). For a given specification of outgoing nucleons
imposed by experimental conditions, only one of these contri-
butions corresponds to the case that the neutron is a spectator
nucleon 1 and two protons form the interacting 2-3 pair (pp
partition). When calculating breakup transition amplitude the
summation over t = 1 |α〉 states with the total 3N isospin
T = 1

2 or T = 3
2 provides that in that particular partition only

the component of the breakup transition amplitude driven by
the pp half-shell t-matrix will be left. In contrast, the two other
partitions with the proton as a spectator nucleon 1 will contain
only the component of the breakup transition amplitude driven
by np half-shell t-matrix (np partitions).

To be more specific let us consider the contribution to the
breakup transition amplitude from particular isospin t = 1
channels α, which differ only in their total isospin value
T = 1

2 or 3
2 , in a partition defined by a spectator nucleon 1

with isospin projection ν1 and nucleons 2 and 3 with isospin
projections ν2 and ν3, respectively. In the following we keep
only isospin quantum numbers. This contribution is propor-
tional to ∑

T,T ′
C(T ) 〈αT

∣∣tR
N+c

∣∣αT ′ 〉〈αT ′ |A|�〉, (23)

with A|�〉 = (P + PG0T )|�〉 in case of Eq. (12), and

C(T ) ≡ 〈
1
2ν2

1
2ν3

∣∣t = 1ν2 + ν3
〉

〈
t = 1ν2 + ν3

1
2ν1

∣∣T ν2 + ν3 + ν1
〉
.

That gives the contribution to the pp partition (ν2 = ν3 =
− 1

2 , ν1 = + 1
2 ) to be proportional to tR

pp+c:

tR
pp+c

[ −
√

2
3

〈
T ′ = 1

2

∣∣A|�〉 + 1√
3

〈
T ′ = 3

2

∣∣A|�〉];
and the contribution to the np partition (ν2 = − 1

2 , ν3 = + 1
2 or

ν2 = + 1
2 , ν3 = − 1

2 , ν1 = − 1
2 ) to be proportional to tnp:

tnp
[ √

2
2
√

3

〈
T ′ = 1

2

∣∣A|�〉 + 1√
3

〈
T ′ = 3

2

∣∣A|�〉].
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That means that renormalization has to be done on the
level of contributing breakup amplitudes by renormalizing the
amplitude 〈p0qα|T |�〉 for the pp partition with the neutron
as a spectator nucleon 1. The same concern applies to the
renormalization of contributions from 〈p0qα|tR

c P|�〉 and from
the three-dimensional pp t-matrix 〈 �p0 �q|tR

c P|�〉, whose terms,
however, contribute only in a pp partition with the neutron
as a spectator nucleon 1. Since the half-shell pure Coulomb
t-matrix is analytically given by [25]

〈 �p ′|tR
c

(
k2

m

)
|�k〉 → C0eiσ0

kη

π2q2

(
p′2 − k2

q2

)iη

(24)

with �q = �p ′ − �k, the pure Coulomb phase shift σ0 = �(1 + iη),
and Coulomb penetrability C2

0 = 2πη

e2πη−1 , also the renor-
malized term 〈 �p0 �q|tR

c P|�〉 has a well defined screening
limit [19].

Another possibility to get on-shell breakup amplitudes is
offered by interpolations of the off-shell amplitudes to on-
shell values of Jacobi momenta (referred to in the following
as ONSH1). In contrast to the half shell, the off-shell t-
matrix elements do not acquire such an oscillating phase
and their screening limit is well defined. Thus also off-
shell 〈p′q′α′|T |�〉 as well as off-shell 〈p′q′α′|tR

c P|�〉 and a
three-dimensional Coulomb t-matrix do not acquire such an
oscillating phase and their screening limits are well defined.
However, their half-shell counterparts obtained by interpo-
lation from off-shell to on-shell values of Jacobi momenta
will gain the oscillating phase in their “pp” components.
These interpolated on-shell amplitudes must be thus also
renormalized.

The above two ways to get on-shell breakup amplitudes
should provide the same results for breakup observables. It
offers an additional verification of numerics.

III. NUMERICAL RESULTS

A. Elastic scattering

We applied the above approaches using a dynamical model
in which three nucleons interact with the AV18 nucleon-
nucleon potential [26] restricted to act only in partial waves
with j � 3. The only reason why we restricted ourselves to
this rather small value of jmax = 3 is that we would like to
compare results of our simplified approach SA(12) with that
of Eq. (13). This requires computation of the second com-
ponent in the leading term of (13) with a three-dimensional
Coulomb t-matrix. With jmax = 3 the needed computer time
and resources are definitely affordable. The pp Coulomb force
was screened exponentially,

V cR
pp (r) = e2

r
e−( r

R )n
, (25)

with the screening radius R and n = 4.
To investigate the screening limit R → ∞ we generated a

set of partial-wave decomposed t-matrices, tR
c , based on the

screened pp Coulomb force alone, or combined with the pp
nuclear interaction, tR

N+c, taking R = 5, 10, 20, 30, and 40 fm.
With that dynamical input we solved the simplified Faddeev
equation SA(12) for the total angular momenta of the p-p-n
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FIG. 1. Real (left side) and imaginary (right side) parts of non-
renormalized pd elastic scattering amplitude U = PT + PG−1

0 −
PtR

c P − PtR
c PG0T based on solutions of SA(12), at Ep = 10 MeV

(a)–(d) and 65 MeV (e)–(h), shown as functions of the center-of-mass
(c.m.) scattering angle. The initial and final proton and deuteron spin
projection quantum numbers are indicated in the figure. Results for
the AV18 NN potential obtained with the screening radii R = 5 fm
(black dotted lines), R = 10 fm (blue short-dashed lines), R = 20 fm
(magenta long dashed lines), R = 30 fm (maroon dashed-dotted
lines), and R = 40 fm (green double-dotted-dashed lines) are shown.

system up to J � 31
2 and both parities. With the same screen-

ing radii we generated the three-dimensional pure Coulomb
t-matrices tR

c by solving the three-dimensional LS equation.
For R = 40 fm we solved also Eq. (13) calculating additional
two leading terms containing three-dimensional Coulomb t-
matrix as well as its partial-wave projected counterpart.

To start with we would like to show that indeed elas-
tic scattering amplitudes in our approach do not require
renormalization. This is exemplified for two energies, E =
10 MeV and E = 65 MeV, in Fig. 1, where real and imaginary
parts of elastic scattering amplitudes are shown as a function
of c.m. scattering angle for five values of the screening radius,
R = 5, 10, 20, 30, and 40 fm. Fast convergence in R for
real and imaginary parts proves that renormalization is indeed
superfluous in our approach.

In Fig. 2 we show the convergence in the screening radius
R of the pd elastic scattering cross section. The pd predictions
of the SA(12) approach, using approximate elastic scatter-
ing transition amplitude AA(16) with the Coulomb term,
〈�′|PtR

c P|�〉, calculated taking the corresponding screening
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FIG. 2. The convergence in the cutoff radius R of the pd elastic
scattering cross section dσ

d�
shown as a function of the c.m. angle

c.m. at the incoming laboratory proton energies E = 10, 65, 135,
and 250 MeV. These cross sections were calculated using approach
SA(12) and taking elastic scattering transition amplitude AA(16)
with the screened Coulomb force and the AV18 nucleon-nucleon
potential [26] restricted to the j � 3 partial waves. The screening
radii are (n = 4) R = 5 fm (blue dotted line), R = 10 fm (green
solid line), R = 20 fm (red long-dashed line), R = 30 fm (maroon
dotted line), R = 40 fm (turquoise dotted line). The brown solid
line corresponds to the R = 40 fm result with the three-dimensional
Coulomb t-matrix tc calculated according to Eq. (19). The red solid
line is the nd elastic scattering cross section and the insets show the
region of small angles.

radius R, are compared with the nd angular distributions at the
incoming proton or neutron laboratory energies E = 10, 65,
135, and 250 MeV. On the scale of the figure the pd cross sec-
tions for all screening radii R are practically indistinguishable
with the exception of forward c.m. angles below ≈30◦, shown
in insets. At very forward angles cross sections for R = 5
and 10 fm clearly deviate, but starting from R = 40 fm the
screening limit is achieved, with the exception of E =
10 MeV, which requires at forward angles even larger val-
ues of R. We checked that the same picture of approaching
the screening limit is seen for all other elastic scattering
spin observables (altogether 55 observables, including pro-
ton analyzing power, deuteron vector and tensor analyzing
powers, spin correlation coefficients, as well as spin trans-
fer coefficients from the nucleon or deuteron to the nucleon
or deuteron). The achieved screening limit for a particular
observable is equal to the prediction for that observable ob-
tained with the limiting off-shell three-dimensional Coulomb
t-matrix of Eq. (19) (brown solid lines in Fig. 2), which is a
very strong test of reaching the screening limit.

At E = 13 and 65 MeV we compared results of the SA(12)
approach to that of Eq. (13), taking the limiting screening
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FIG. 3. The predictions for the pd elastic scattering cross section
dσ

d�
, proton analyzing power Ay, and the deuteron tensor analyzing

power T20, shown as a function of the c.m. angle c.m. at the incoming
laboratory proton energy E = 13 and 65 MeV. The black dotted lines
show results of our SA(12) approach and the red dashed lines of the
approach based on Eq. (13). In both cases the elastic scattering transi-
tion amplitude AA(16) was used. These observables were calculated
with the screened Coulomb force (R = 40 fm, n = 4) and the AV18
nucleon-nucleon potential [26] restricted to the j � 3 partial waves.

value of R = 40 fm. In Fig. 3 the predictions for the cross
section, proton analyzing power Ay, and the deuteron tensor
analyzing power T20, of the first approach [SA(12), the black
dotted line] and second approach [Eq. (13), the red dashed
line) are shown. There is a nice agreement between predic-
tions of both approaches at E = 65 MeV, which extends also
to other, not shown, observables. At E = 13 MeV for some
spin observables, like Ay shown in Fig. 3, differences appear,
but generally also here the agreement is good. These results
demonstrate that, even with such a rather small j � 3 basis,
cancellation effects cause our simplified approach to work
quite well.

The basic difference between these two ap-
proaches lies in the treatment of the first pair of
contributing Coulomb terms in Eq. (11): namely the
term with the three-dimensional Coulomb t-matrix
〈pqα|tR

N+cPG0tR
c P|�〉 and its partial-wave decomposed

counterpart −〈pqα|tR
N+cPG0

∑
α′

∫ |α′〉〈α′|tR
c P|�〉. While

the SA(12) approach relies solely on the cancellation of
contributions of these terms, in the second one, based on
Eq. (13), they are calculated explicitly. Since one expects
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that the magnitude of the Coulomb terms as well as of the
Coulomb force effects diminishes with increasing energy, the
above mentioned differences at 13 MeV could be interpreted
as a warning that one should avoid a direct calculation of
complicated terms containing a three-dimensional Coulomb
t-matrix and, instead, rely on the cancellation between
contributing Coulomb terms. Presently the terms with a
three-dimensional Coulomb t-matrix can be calculated only
for very restricted sets of partial-wave states |α〉 and total
3N angular momenta J , highly insufficient in full-fledged
calculations needed for analyses of data.

In the following we concentrate on the SA(12) approach,
showing how its precision can be improved and perfor-
mance controlled. It is evident that increasing the number
of partial-wave states |α〉 would strengthen the cancellation
effect between contributing Coulomb terms, improving thus
approximation SA(12). Namely, for any particular value of
the screening radius R there is a finite number of partial-
wave states which reproduce exactly the three-dimensional
Coulomb t-matrix. In the extreme case when |α〉 is taken as
such a set of states, the Coulomb terms in the Faddeev equa-
tion (11) cancel exactly and the approach based on SA(12)
becomes an exact one. Otherwise it is only an approximation,
the quality of which depends on how large the cancellation
effect is between Coulomb terms. Since that cancellation
concerns not only Coulomb terms in Eq. (11) but also to
some extent those in elastic scattering and breakup transition
amplitudes of Eqs. (15)–(16), the condition reflecting degree
of cancellation can be made quantitative by comparing cross
sections (observables) obtained with only the first term and
with all terms in Eqs. (15)–(16). In the case of a complete
cancellation they should be equal. However, in many cases
it will be sufficient when these two results converge with an
increasing basis |α〉 even to different values. Starting from an
initial set of |α〉 states one needs to extend it by incorporating
consecutive states from |β〉.

To study this in more detail we extended the set of |α〉
states by adding to the initially chosen states with j � js = 3,
in which both strong interactions and pp Coulomb force act,
some partial-wave states from set |β〉 with js � j � jmax, in
which only pp Coulomb force operates. In the following such
an extended set of |α〉states will be denoted by “ js js j jmax,”
so that the initially used set is denoted by js3 j3. We solved
SA(12) at E = 10 MeV for a number of extended |α〉 sets:
js3 j5, js3 j7, js3 j8, js3 j9, and js3 j10, and looked for a
pattern of convergence for different elastic scattering observ-
ables with a growing number of jmax. The increase in number
of treated partial waves for given total angular momentum J
and parity π of the ppn system is large and amounts to 89
for js3 j3, 165 for js3 j5, and 539 for js3 j10. In spite of that
increase the time required to solve numerically Faddeev equa-
tions remains restricted due to the fact that partial waves of
pure Coulomb nature |β〉 (with js � j � jmax) do not couple
between themselves (see a remark about the third term after
(10) and Eq. (2) in Ref. [9]).

We found for practically all elastic scattering observables
that the convergence in jmax is rapid. The ones most influenced
by changes of jmax are low energy proton and deuteron vector
analyzing powers, Ay and iT11, which require for converged
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FIG. 4. Comparison of data and predictions for the pd elastic
scattering cross section dσ

d�
obtained in SA(12) and using elas-

tic scattering transition amplitude AA(16), at the incoming proton
laboratory energy E = 10, 65, 135, and 250 MeV. The cross sec-
tions were calculated with the screened Coulomb force (R = 40 fm,
n = 4) and the AV18 nucleon-nucleon potential [26] restricted to
the j � 3 partial waves. The pure Coulomb term 〈�′|PtcP|�〉 was
determined with the three-dimensional Coulomb t-matrix tc accord-
ing to Eq. (19) (blue dashed line). At E = 10 MeV the set js3 j7
of |α〉-states was used while for other energies the set js3 j3. The
red solid line is the corresponding nd elastic scattering cross section.
The brown dotted lines show the results when also the fourth term in
(15) (−〈�p�q | ∑α′

∫ |α′〉〈α′|tR
c PG0

∑
α′′

∫ |α′′〉〈α′′|T |�〉) is included
in elastic scattering transition amplitude AA(16). The black circles,
blue squares and red diamonds at E = 10 MeV are pd elastic scat-
tering cross section data of Refs. [27–29], respectively. The black
circles at E = 65 MeV are pd data from [30], at E = 135 MeV
from [31], and at E = 250 MeV from [32]. The magenta squares
at E = 250 MeV are nd data from [33].

result at 10 MeV the basis js3 j7. At 65 MeV and higher
energies it is sufficient to use the basis js3 j3, which reflects
the diminishing pp Coulomb force effects for higher energies.

In Figs. 4–7 we compare at different energies pd pre-
dictions of the SA(12) approach, using elastic scattering
amplitude AA(16) with the screening radius R = 40 fm and
calculating the Coulomb term 〈�′|PtR

c P|�〉 with the limiting
three-dimensional off-shell Coulomb t-matrix of Eq. (19),
to available pd data for the elastic scattering cross sec-
tion (Fig. 4), the deuteron vector analyzing power iT11 (Fig. 5),
the proton analyzing power Ay (Fig. 6), and the deuteron ten-
sor analyzing power T20 (Fig. 7). To emphasise the importance
and magnitude of Coulomb effects we provide also nd predic-
tions for these observables. Large pp Coulomb force effects
for elastic scattering observables are concentrated mainly at
forward angles below θc.m. ≈ 30◦ and they diminish with in-
creasing energy. For the cross section the characteristic pattern
caused by the pp Coulomb force is properly reproduced by
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FIG. 5. The same as in Fig. 4 but for the deuteron vector ana-
lyzing power iT11. For the description of lines see Fig. 4. The black
circles are pd data from [34] at E = 10 MeV, [35] at E = 65 MeV,
[36] at E = 135 MeV, and [37] at E = 250 MeV. The blue squares
at E = 10 MeV are pd data from [38].

the calculations. Also the forward angle data for Ay, iT11, and
T20 are nicely reproduced. It follows that large discrepancies
between pd cross section data and predictions at middle and
backward c.m. angles, which grow with increasing energy, are
not caused by the pp Coulomb force and must be explained
either by the action of three-nucleon forces (3NFs) (E = 65
and 135 MeV) [40] or through activation of mesonic degrees
of freedom (E = 250 MeV) [41].

The above results were obtained omitting completely
the second pair of Coulomb terms, namely the fourth
and fifth terms, in the exact elastic scattering transition
amplitude EA(15). To answer the question of how the elas-
tic scattering observables are affected by approximation
AA(16) for the scattering amplitude, numerical calculations
of both neglected terms are required. The computation of the
first term, −〈�p�q| ∑α′

∫ |α′〉〈α′|tR
c PG0

∑
α′′

∫ |α′′〉〈α′′|T |�〉,
is straightforward, but determination of the second one,
〈 �p�q|tR

c PG0
∑

α′
∫ |α′〉〈α′|T |�〉, which contains the three-

dimensional Coulomb t-matrix tR
c , presents quite a formidable

numerical task according to expressions (D.9), (D.6), and
(D.8) of Ref. [11]. We postpone direct numerical calcula-
tion of this term till a future study and here we would like
to present some plausible arguments which justify omission
of both terms for AA(16) for elastic scattering at energies
considered in the present study. To that end we investigated
changes of elastic scattering observables induced by inclusion
of the first term in the calculation of observables at our four
energies with js3 j3 set |α〉. It turned out that at E = 65,
135, and 250 MeV the modifications are practically negli-
gible for all 55 elastic scattering observables. At the lowest
investigated energy E = 10 MeV, some spin observables were
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FIG. 6. The same as in Fig. 4 but for the proton analyzing power
Ay. For the description of lines see Fig. 4. The black circles are
pd data from [34] at E = 10 MeV, [30] at E = 65 MeV, [39] at
E = 135 MeV, and [32] at E = 250 MeV. The blue squares at
E = 10 MeV are pd data from [28] and red diamonds are from [29].

modified by ≈5–10 %. Changing the set js3 j3 to js3 j7 led
to a similar picture at 10 MeV. In Figs. 4–7 we display
using brown dotted lines predictions obtained with the term
−〈�p�q| ∑α′

∫ |α′〉〈α′|tR
c PG0

∑
α′′

∫ |α′′〉〈α′′|T |�〉 included in
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FIG. 7. The same as in Fig. 4 but for the deuteron tensor ana-
lyzing power T20. For the description of lines see Fig. 4. The black
circles are pd data from [38] at E = 10 MeV, [35] at E = 65 MeV,
[36] at E = 135 MeV, and [37] at E = 250 MeV.
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AA(16). It permits us to conclude that the magnitude of this
term diminishes with the increasing energy and at the higher
energies this term can be safely dropped. At the lowest en-
ergy studied (10 MeV) its contribution is not overwhelmingly
large. That, together with the fact that also in exact elastic
scattering amplitude EA(15) one expects a cancellation be-
tween contributions from the second pair of the Coulomb
terms similar to that for the first pair, seems to justify the
omission of the two terms discussed.

B. Breakup reaction

The exclusive breakup reaction offers a rich spectrum of
kinematically complete geometries with observables sensitive
to underlying dynamics. We decided to focus on three ge-
ometries specified by a kinematical condition for momenta
of the three outgoing nucleons. In the so-called final-state-
interaction (FSI) geometry the two outgoing nucleons have
equal momenta. In neutron-deuteron (nd) breakup their strong
interaction in the 1S0 state leads to a characteristic cross
section maximum occurring at the exact FSI condition, the
magnitude of which is sensitive to the 1S0 scattering length. In
the symmetrical-space-star (SST) configuration the momenta
of the three outgoing nucleons in the 3N center of mass
(c.m.) have the same magnitudes and form a three-pointed
“Mercedes-Benz” star. That star lies in a plane inclined under
an angle α with respect to the beam direction with momenta of
the two outgoing and detected nucleons (in our case protons)
lying symmetrically to the beam. The quasi-free-scattering
(QFS) geometry refers to a situation where one of the nucle-
ons is at rest in the laboratory system. In pd breakup the np
or pp QFS configurations are possible, while for nd breakup
np or neutron-neutron (nn) quasifreely scattered pairs can
emerge.

The characteristic feature of the exact approach of
Refs. [11,12] as well as of our simplified one is the ap-
pearance in the breakup transition amplitude of a new term,
〈 �p0 �q|(1 + P)tR

c P|�〉, based on a three-dimensional Coulomb
t-matrix, tR

c , analogous to the Rurherford term in the elastic pd
scattering. The expression for this term given in Appendix C
of Ref. [11] [Eq. (C.3)] shows that the largest contributions
from this term are expected in the region of the breakup phase
space where the argument of the deuteron wave function,
ϕL(| �q + 1

2 �q0|), vanishes. That condition �q = − 1
2 �q0 occurs in

the pp QFS, where the spectator neutron rests in the labora-
tory system (see also the discussion on p. 185 of Ref. [5]).
Therefore one expects large pp Coulomb force effects for that
geometry. Also large Coulomb effects are expected in the pp
FSI region, where two outgoing protons have equal momenta
and interact strongly. For nn FSI this leads to a pronounced
cross section maximum just at the nn FSI condition and in
the case of pp FSI the Coulomb barrier should prevent such a
maximum from forming.

In the following we start to investigate the breakup re-
action using simplified approach SA(12) with the set js3 j3
and the breakup transition amplitude AA(16). First we
demonstrate the pattern of convergence to the screening
limit in two exclusive geometries, QFS as well as FSI,

and show that the final results do not depend on how
specifically the on-shell breakup amplitudes, which undergo
renormalization, are derived. We will apply renormalization
to the on-shell breakup amplitudes obtained in two different
ways. In the first approach the on-shell breakup amplitudes
〈p0qα|T R|�〉 (〈p0qα|tR

c P|�〉) are obtained by interpola-
tion from the off-shell ones 〈pqα|T R|�〉 (〈pqα|tR

c P|�〉)
(ONSH1), with subsequent removal of the oscillating phase
factor ei�R

n when calculating the breakup transition ampli-
tude. In the second method we generate the half-shell pp
t-matrix tR

N+c(p0, p′; E − 3
4m q2) [tR

c (p0, p′; E − 3
4m q2)] and

calculate the on-shell transition matrix elements 〈p0qα|T R|�〉
[〈p0qα|tR

c P|�〉] according to Eq. (12) (ONSH2). Here one has
to use unrenormalized tR

N+c(p0, p′; E − 3
4m q2) [tR

c (p0, p′; E −
3

4m q2)] and postpone again the renormalization to calculation
of the breakup transition amplitude.

In Fig. 8 we present the pattern of convergence in the
screening radius R for the pp QFS. Taking unrenormalized on-
shell breakup amplitudes obtained by an interpolation from
the off-shell solutions of the Faddeev equations to the on-shell
values (p0, q) (ONSH1) provides unrenormalized pp QFS
cross sections which change with varying R [Fig. 8(a)]. Renor-
malizing these amplitudes stabilizes the cross sections for the
screening radii R � 20 fm [see Fig. 8(b)]. The limiting values
of the pp QFS cross sections do not depend on the way the
on-shell breakup amplitudes are determined [see Figs. 8(b)
(ONSH1) and 8(c) (ONSH2)]. These two methods lead to the
same final pp QFS cross sections. That the screening limit
has been achieved is confirmed in Fig. 8(b), where the violet
dotted line shows the result for R = 40 fm with the pure
Coulomb term 〈 �p0 �q|(1 + P)tcP|�〉 determined using the final
three-dimensional Coulomb t-matrix of Eq. (24).

In Fig. 9 we present analogous investigation for the pp FSI
configuration. The large effect of the pp Coulomb force is
seen in the region of FSI where, instead of a clear maximum
present for nn FSI, the cross section is reduced practically to
zero by the pp Coulomb barrier. The pattern of approaching
the limiting value is similar to the case of the pp QFS, and
final result also here does not depend on how the on-shell
breakup amplitudes were derived. To get the final values of
the cross section one needs to go to a larger screening radius
than in the case of the pp QFS [see Fig. 9(b)].

In Fig. 8 non-negligible effects of renormalization
[Figs. 8(a) and 8(b)], which raise the cross section by ≈5%
in the maximum, are seen for that particular pp QFS config-
uration. In order to investigate the renormalization as well as
the pp Coulomb force effects for all pp QFS configurations,
we looked at the pp quasi-free-scattering cross section exactly
at the QFS condition (maximum of the cross section) as a
function of the laboratory angle of the first outgoing proton
θ lab.

1 [d (p, p1 p2)n]. Since later we will compare theoretical
predictions to available pp QFS cross section data at E = 9.5,
13, 19, 22.7, and 65 MeV, we show in Fig. 10 results of this
investigation for three energies: E = 13, 19, and 65 MeV.
At each energy at given θ lab.

1 there are 2 solutions for the
QFS condition, the second one (upper branch in Fig. 10)
corresponding to small values of the angle θ lab.

2 and energy
E lab.

1 . The full result with renormalization is given by the
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FIG. 8. The convergence with respect to the cutoff radius R of the
pd breakup cross section d5σ

d�1d�2dS shown as a function of the S-curve
length for the pp QFS kinematically complete configuration at the
incoming proton laboratory energy E = 13 MeV. The screening radii
are (n = 4) R = 5 fm (blue dotted line), R = 10 fm (magenta dashed-
dotted line), R = 20 fm (orange short-dashed line), R = 40 fm
(maroon long-dashed line). These cross sections were calculated
using approach SA(12) with the screened Coulomb force and the
AV18 nucleon-nucleon potential [26] restricted to the j � 3 partial
waves (set js3 j3), taking the on-shell Faddeev amplitudes AA(16)
obtained in two different ways and applying renormalization when
calculating the breakup transition amplitude. In (a) unrenormalized
on-shell amplitudes gained by interpolation from the off-shell ones
were used (ONSH1). In (b) the on-shell amplitudes of (a) have
been renormalized before calculating observables. In (c) the on-
shell amplitudes were calculated according to (12) (ONSH2) with
the unrenormalized pp part of tR

N+c (tR
c ) and renormalization was

performed before calculating observables. The red solid line is the
corresponding nd elastic scattering cross section. The violet dotted
line in (b) is the result with R = 40 fm but with the pure Coulomb
term 〈 �p0 �q|(1 + P)tR

c P|�〉 determined with the screening limit for tR
c

given by Eq. (24).

blue long-dashed line, which compared with the green dotted
line (without renormalization) reveals the importance and the
magnitude of renormalization. The non-negligible renormal-
ization effects at E = 13 MeV of the order of ≈5–8% are seen
only for θ lab.

1 ∈ (10◦, 50◦). At 19 and 65 MeV the renormal-
ization causes in pp QFS only insignificant effects.

In order to get the information of the Coulomb force
effects in Fig. 10 also the nd prediction is shown by the
solid red line. The Coulomb effects are largest at E =
13 MeV as evidenced by the nd results as well as by
the maroon dotted line, resulting when the term with the
three-dimensional Coulomb t-matrix, 〈 �p0 �q|(1 + P)tR

c P|�〉, is
omitted in AA(16), or by the magenta dashed-dotted line,
resulting when both Coulomb terms, the one above and
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FIG. 9. The same as in Fig. 8 but for the pp FSI kinematically
complete configuration.

−〈�p0 �q|(1 + P)
∑

α′
∫ |α′〉〈α′|tR

c P|�〉, are absent in AA(16).
The Coulomb effects diminish rapidly with growing energy,
becoming practically negligible at 65 MeV, with the exception
of forward angles θ lab.

1 and θ lab.
2 on lower and upper branches,

respectively. It is interesting to note that the angular depen-
dence of the pp QFS cross section resembles that of pd elastic
scattering, with the characteristic increase at forward angles
caused by the Coulomb term 〈 �p0 �q|(1 + P)tR

c P|�〉. Also the
importance and magnitude of the Coulomb force effects in
pp QFS resembles those in a free pp scattering (see insets
in Fig. 10). To exemplify the cancellation effect between the
Coulomb terms in the pp QFS breakup transition amplitude
we show in Fig. 10 also cross sections (black double-dotted-
dashed line) obtained with these two terms only. In the
region of angles θ lab.

1 ∈ (10◦, 40◦) the resulting values of that
cross section are about ≈10−1 mb/(MeV sr2) for that set
of |α〉 states, which illustrates quite significant cancellation,
although not as large as for the case of the pp FSI or pd SST
(see below).

In Figs. 11 and 12 results of a similar investigation are
shown for pp FSI and pd SST, respectively. The action of
the Coulomb barrier brings the pp FSI cross section close
to zero for all pp FSI configurations. Regardless of their
production angle θ lab.

1 , the renormalization effect is insignif-
icant and the cancellation between two contributing Coulomb
terms appears drastic (black double-dotted-dashed line). The
pp FSI cross section is determined practically by only the first
term 〈 �p0 �q|(1 + P)

∑
α′

∫ |α′〉〈α′|T |�〉 in the breakup transi-
tion amplitude AA(16). For the SST configurations the largest
effects of renormalization as well as of the pp Coulomb force
are present at E = 13 and 19 MeV around αc.m. ≈ 40◦. They
become again negligible at E = 65 MeV. When the star plane
is perpendicular to the beam direction the renormalization
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FIG. 10. The pd breakup d (p, pp)n cross section calculated at
the pp QFS condition for the incoming proton laboratory energies
E = 13, 19, and 65 MeV, as a function of the angle of the outgoing
proton 1. The SA(12) approach with set of js3 j3 partial waves and
the screening radius R = 40 fm (n = 4) was used, with on-shell
AA(16) Faddeev amplitudes obtained by an interpolation from the
off-shell ones (ONSH1), renormalized before calculating observ-
ables. The pure Coulomb term 〈 �p0 �q|(1 + P)tR

c P|�〉 in AA(16) was
determined with the screening limit for tR

c given by Eq. (24). The
blue long-dashed line is the result with all three terms in AA(16).
Also the result of AA(16) without renormalization (nr) is shown by
the green dotted line. The maroon dotted and magenta dashed-dotted
lines follow when the term with three-dimensional tR

c Coulomb t-
matrix and both terms with tR

c , respectively, are omitted, and the
black double-dotted-dashed line shows the result when only these
two terms are kept. At the bottom of each figure the continuation of
the black double-dotted-dashed line is shown in a compressed y-axis
scale shown on the right side. The red solid line is the nd breakup
cross section. In insets the laboratory cross sections dσ/d� ( mb

sr ) for
pp scattering at laboratory energies E = 10, 20, and 65 MeV are
shown as a function of the proton laboratory angle. Here the red solid
and blue dashed lines are the AV18 cross sections without and with
pp Coulomb interaction, respectively.

effects are small. As for the pp FSI, the cancellation effects
in the breakup transition amplitude for that configuration are
very large.

In Figs. 13 and 14 we show examples of comparison of
our theoretical predictions to pd breakup cross section data
at E = 13 and 65 MeV for SST (αc.m. = 90◦) and pp QFS
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FIG. 11. The same as in Fig. 10 but for the pd breakup d (p, pp)n
cross section d5σ/d�1d�2dS calculated at the pp FSI condition
( �p1 = �p2).

configurations. We show predictions of our simplified ap-
proach SA(12) (blue short-dashed line) and of the approach
based on Eq. (13) (maroon dotted line). At 13 MeV they
agree very well with each other for pp QFS, differing by
≈10% for SST. Both disagree significantly with the pd SST
cross section data, underestimating slightly pp QFS data. At
65 MeV they are close to each other and agree quite well
with the SST data, differing again only slightly from the pp
QFS data. This is similar to what we have found for elastic
scattering when comparing these two approaches, and seems
to support the validity of the assumption about the cancella-
tion of the Coulomb terms in our simplified approach SA(12),
at the same time indicating that using directly computed
complex terms with three-dimensional Coulomb t-matrix is
hazardous.

In Ref. [47] a correct description of the low energy pp
QFS cross section data was reported. That prompted us to
reanalyze available low energy pp QFS cross section data and
look for a possible reason of the slight discrepancy found at
13 MeV in Fig. 13. In Fig. 15 we compare E = 19 MeV data
of Refs. [45,46] and E = 22.7 MeV data of Ref. [44] to our
theoretical predictions SA(12), obtained with the renormal-
ized and unrenormalized js3 j3 on-shell breakup amplitudes
AA(16), received by interpolation from the off-shell ones
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FIG. 12. The same as in Fig. 10 but for the pd breakup d (p, pp)n
cross section d5σ/d�1d�2dS calculated at the symmetrical-space-
star condition (in the 3N c.m. system the momenta of the three
outgoing nucleons are equal and form a symmetrical three-point star
in a plane inclined at an angle αc.m. with respect to the incoming
proton momentum).

(ONSH1) (blue short-dashed and green dotted lines, respec-
tively). The same comparison at E = 9.5 and 13 MeV for the
data from Ref. [47] and at 13 MeV for the data from Ref. [42],
is presented in Fig. 16. To make sure that the screening limit
has been achieved we show in both figures by the red dotted
lines also the renormalized R = 40 fm results obtained with
the pure Coulomb term calculated using the three-dimensional
Coulomb t-matrix according to (24).

A glance at both figures reveals again that the renormal-
ization effects shrink with the growing energy. While at 9.5
and 13 MeV they are non-negligible and enhance the cross
section bringing the theory closer to the data, at 19 and
22.7 MeV they are practically insignificant. It is interesting to
notice that large effects of the pp Coulomb force at smaller
energies have a pattern of contributions changing with pp
QFS configuration (see the orange dashed-dotted and magenta
double-dashed-dotted lines in Fig. 16, which show the results
when both Coulomb terms are omitted). At 9.5 and 13 MeV
theory slightly underestimates pp QFS cross sections in prac-
tically all configurations. At 19 MeV theory lies between
two available data sets, and at 22.7 MeV the data are clearly
overestimated.
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FIG. 13. The pd complete breakup d (p, pp)n cross sec-
tions d5σ/d�1d�2dS for the SST and pp QFS configurations at
13 MeV of the incoming proton laboratory energy as a function of
the arc length of the S curve. They are obtained with the screening
radius R = 40 fm (n = 4) and set js3 j3 partial waves, using the
SA(12) approach (blue short-dashed line) or the approach based
on Eq. (13) (maroon dotted line). In both approaches the three-
dimensional Coulomb t-matrix tc is determined according to (24).
The on-shell Faddeev amplitudes AA(16) obtained by interpolation
from the off-shell ones (ONSH1) are used and renormalized before
calculating observables. For SST configuration (a) and the SA(12)
approach the convergence in the screening radius R is presented by
results with R = 10 fm (brown dotted line), R = 20 fm (green long-
dashed line), and R = 30 fm (magenta short-dashed-dotted line). The
red solid line is the corresponding nd breakup cross section. The
maroon circles are pd data from Ref. [42].
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FIG. 14. The same as in Fig. 13 but for the pd complete breakup
d (p, pp)n cross sections d5σ/d�1d�2dS in SST and pp QFS at
65 MeV. Here in both approaches the three-dimensional Coulomb
t-matrix tR

c was determined by solving the three-dimensional
Lippmann-Schwinger equation with the screening radius R = 40 fm
(n = 4). In the case of the SA(12) approach, the effect of using the
three-dimensional Coulomb t-matrix tc determined according to (24)
is shown by the orange dotted lines. The maroon circles are pd data
from Ref. [43].
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FIG. 15. The pd complete breakup d (p, pp)n cross sec-
tions d5σ/d�1d�2dS for pp QFS configurations at 22.7 MeV
(a)–(c) and 19 MeV (d) of the incoming proton laboratory energy, as
a function of the arc length of the S curve. They were obtained with
the screening radius R = 40 fm (n = 4) using the SA(12) approach
and set js3 j3 of partial waves. The on-shell Faddeev amplitudes
AA(16) obtained by interpolation from the off-shell ones (ONSH1)
were used and renormalized before calculating observables (blue
short-dashed line). The green dotted line is a result without renor-
malization. The black double-dotted-dashed line shows the result
when also the fourth term in EA(15) is included in the breakup
transition amplitude AA(16). The red dotted line is obtained with
the limiting three-dimensional tc of Eq. (24). The red solid line is the
corresponding nd breakup cross section. The maroon circles are pd
data from Ref. [44] for (a)–(c) and from Ref. [45] for (d). The blue
squares in (d) are pd data from Ref. [46].

The contribution to a particular kinematically complete
breakup configuration, specified by momenta of three out-
going nucleons, comes from only three sets (pi, qi ) of
Jacobi-relative-momenta values, belonging to an ellipse of
Eq. (20) in the q-p plane. Performing exclusive breakup mea-
surements, one is restricted only to points from that curve,
which makes the exclusive breakup reaction a very selective
tool. In contrast to the breakup reaction, averaging over the
relative momentum of nucleons forming the deuteron causes
the elastic pd scattering to get contributions from a large re-
gion in the q-p plane, which does not overlap with the elliptic
curve for the breakup reaction (see Fig. 1 in [48]). It follows
that breakup observables should reveal greater sensitivity to
the underlying dynamics than elastic pd scattering observ-
ables. This motivated us to investigate how the extension of
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FIG. 16. The same as in Fig. 15 but for the pp QFS configura-
tions at 13 and 9.5 MeV. The orange dashed-dotted and magenta
double-dashed-dotted lines are renormalized and unrenormalized re-
sults, respectively, when both Coulomb terms are omitted in the
breakup AA(16). The red solid line is the nd breakup cross section.
The maroon circles are pd data from Ref. [47] and blue squares at
13 MeV are pd data from Ref. [28].

the set |α〉, which has only a small effect on elastic scattering
observables, influences the pp QFS cross sections.

In Fig. 17 we show the pattern of convergence in partial-
wave expansion of the pp QFS cross section around QFS
point for some pp QFS configurations from Fig. 16. The
differently colored dashed lines as well as the solid green
line are cross sections based on solutions of our SA(12)
Faddeev equation with different partial-wave sets and tran-
sition amplitude AA(16). The dotted lines show the cross
sections resulting when only the first term in AA(16) was
kept and the two Coulomb terms were omitted. The same
colored lines correspond to the same set of |α〉 states, with
the exception of black dotted and solid green lines, which
correspond to the js3 j8 set. Starting from the set js3 j3, for
which a large effect of omitting the Coulomb terms is seen and
a separation between blue the dotted and dashed lines is large,
the difference between dashed and dotted lines diminishes
rapidly with increasing j and disappears for the js3 j8 set.
Also the dashed lines themselves are converging to the pre-
diction obtained for the set js3 j8. Including additional partial
waves with j = 9 and higher does not change the results. It is
clear that extending set |α〉 improves the description of data.
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FIG. 17. The pattern of convergence in the sets of partial waves
around the QFS pp condition for cross sections in chosen configura-
tions from Fig. 16, calculated with the SA(12) approach (R = 40 fm,
n = 4) and the renormalized amplitude AA(16). The meaning of
the data symbols is the same as in Fig. 16. Same colored dashed
and dotted lines correspond to identical set of partial waves. For
dashed lines all three terms in AA(16) contribute to the breakup
amplitude while for dotted lines only the first term in AA(16)
(〈 �p0 �q|(1 + P)

∑
α′

∫ |α′〉〈α′|T |�〉) was taken into account. The sets
of partial waves are blue: js3 j3; maroon: js3 j5; red: js3 j7. For the
set js3 j8 the colors of lines are solid green and black dotted for the
case when all three terms and only the first one, respectively, were
taken into account in AA(16).

That points to the need for treatment of higher partial waves
in breakup, and the convergence of the results shown with the
dotted and dashed lines supports our expectation about the
stronger cancellation between contributing Coulomb terms
with the increasing number of partial waves.

Last but not least, we investigate the significance
of the two additional Coulomb contributions to the ex-
act breakup amplitude EA(15) (the fourth and fifth
terms) omitted up to now, namely the terms −〈�p�q
| ∑α′

∫ |α′〉〈α′|tR
c PG0

∑
α′′

∫ |α′′〉〈α′′|T |�〉 and 〈 �p�q|tR
c PG0∑

α′
∫ |α′〉〈α′|T |�〉. That their contribution can be impor-

tant is visualized in Figs. 15 and 16, where the black
double-dotted-dashed lines show the cross section obtained
when in addition to three contributions in AA(16) also the
term −〈�p�q| ∑α′

∫ |α′〉〈α′|tR
c PG0

∑
α′′

∫ |α′′〉〈α′′|T |�〉 was in-
cluded. The changes of the cross section are quite large
at lower energies and become much smaller at 19 and
22.7 MeV, confirming again diminishing of the Coulomb
force effects with growing energy. Since changes of the
cross section induced by this term are non-negligible,
it is unavoidable to include in the transition amplitude
also the term with three-dimensional Coulomb t-matrix
tR
c : 〈 �p�q|tR

c PG0
∑

α′
∫ |α′〉〈α′|T |�〉. One would expect that,
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FIG. 18. The pattern of convergence in the sets of partial waves
around the QFS pp condition for cross section of the first config-
uration at E = 13 MeV from Fig. 16, calculated using the SA(12)
approach (R = 40 fm, n = 4) with the renormalized AA(16) (lines)
and EA(15) (circles). The meaning of the data symbols is the same
as in Fig. 16. Equally colored lines and circles correspond to iden-
tical set of partial waves. For lines all three terms in AA(16) and
for circles all five terms in EA(15) contribute to the breakup am-
plitude. The sets of partial waves are blue (short dashed): js3 j3;
red (dotted): js3 j5; brown (long dashed): js3 j7; and orange (long
dashed): js3 j8.

similarly as for the first pair of the two Coulomb terms in
(15), also terms in the second pair would probably cancel
each other when extending the set |α〉. To check it requires,
however, a calculation of this nontrivial modification of the
Rutherford term by the strong nucleon-nucleon interactions,
as given in Appendix D of Ref. [11] [Eqs. (D.6)–(D.8)]. In
Fig. 18 we show the convergence pattern in j for the first
pp QFS configuration at 13 MeV, where circles represent
cross sections obtained with all the five terms included in the
exact breakup amplitude EA(15). To facilitate the comparison
we also show again by different lines the convergence pat-
tern with three terms in the approximate breakup amplitude
AA(16). It is seen that indeed circles converge rapidly to
a result which, in the maximum of that pp QFS, is ≈5%
smaller than the prediction obtained with only the first pair of
Coulomb terms in the breakup transition amplitude AA(16).
It shows that the two contributions in the second pair of
the Coulomb terms of the exact breakup transition ampli-
tude EA(15) do not cancel each other completely in the QFS
maximum.

In Figs. 19–21, we show converged results obtained with
js3 j8 set for all herein-investigated pp QFS configurations at
9.5 and 13, 19 and 22.7, and 65 MeV, respectively. At 9.5 and
13 MeV the description of data by AA(16) (the green solid
line) is significantly improved when compared to js3 j3 set
predictions (the blue short-dashed line). Including in addition
the second pair of the Coulomb terms when using EA(15)
lowers by ≈5% cross sections in all the QFS maxima, dete-
riorating slightly the good description of data in that region,
leaving it, however, without a change beyond the QFS peak re-
gion. At the higher energies the contribution from the second
pair of the Coulomb terms in EA(15) becomes insignificant
and a nice agreement with data at 19 and 65 MeV is found
using AA(16). The large discrepancies compared to data at
22.7 MeV remain.
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H. WITAŁA, J. GOLAK, AND R. SKIBIŃSKI PHYSICAL REVIEW C 110, 024005 (2024)

1

2

3

2

4

1

2

3

d
5
σ/

d
S

d
Ω

1d
Ω

2 [
m

b
/M

eV
sr

2
]

2

4

1

2

3

5
S [MeV]

2

4

5 10

1

nd

pd js3j3: SA(12), all terms in AA(16)

pd js3j8: SA(12), all terms in AA(16)

pd js3j8: SA(12), onlyT|φ> in AA(16)

pd js3j8: SA(12), all terms  in EA(15)

5 10
S [MeV]

1

E=13 MeV E=9.5 MeV

FIG. 19. The pd complete breakup d (p, pp)n cross sec-
tions d5σ/d�1d�2dS for the configurations from Fig. 16, calculated
using the SA(12) approach and set js3 j8 of partial waves, with on-
shell Faddeev amplitudes obtained by interpolation from the off-shell
ones (ONSH1), renormalized before calculating observables. The
screening radius R = 40 fm (n = 4) was used and the green solid
lines show the results with all three terms in AA(16) contributing
to the breakup amplitude, while for the black dotted lines only the
first term in AA(16) was taken into account. The red circles show
the cross sections calculated with all five terms in EA(15) included
in the breakup amplitude. For the sake of comparison also results
with the set js3 j3 and three terms in AA(16) are shown (the blue
short-dashed line). The red solid line is the corresponding nd cross
section. The meaning of the data symbols is the same as in Fig. 16.

IV. SUMMARY AND CONCLUSIONS

We formulated and applied a simplified approach to the
exact treatment of the pp Coulomb force in the momentum
space 3N Faddeev calculations, presented in Refs. [11] and
[12]. That exact treatment is based on a standard formulation
for short-range forces and relies on a screening of the long-
range Coulomb interaction. It is, however, inconvenient for
applications since it contains two contributing terms with a
three-dimensional Coulomb t-matrix, which require an un-
realistic amount of computer time and resources to compute
them in practice. That prevents any application of the exact
approach in full-fledged 3N calculations. Our simplified ap-
proach contains the main physical ingredients of the exact
method but neglects these complex terms altogether, relying
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FIG. 20. The same as in Fig. 19 but for the configurations from
Fig. 15.

on their cancellation. We have applied it in a wide energy
range of the incoming proton energies, using the AV18 NN
potential to calculate elastic pd scattering and breakup ob-
servables. The main results are summarized as follows.

(i) We demonstrated and showed numerically that the
elastic pd scattering amplitude has a well defined
screening limit and therefore does not require any
renormalization. This is an implication of the fact
that only off-shell values of Jacobi momenta and con-
sequently, only off-shell 2N t-matrices are required
and enter in the determination of that amplitude. Well
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FIG. 21. The same as in Fig. 19 but for the pp QFS configura-
tions from Fig. 14.
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converged elastic pd cross sections and spin observ-
ables are obtained at finite screening radii. Additional
support for the claim that infinite R limit is achieved,
was provided by using directly the limiting analyt-
ical expression for the three-dimensional off-shell
Coulomb t-matrix when calculating the transition
amplitude.

(ii) In contrast to pd elastic scattering, for pd breakup
it is unavoidable to perform renormalization of the
breakup amplitudes. The reason is that in breakup
only the amplitudes for on-shell values of Jacobi
momenta are required, which demands in conse-
quence also half-shell 2N t-matrices. The breakup
amplitudes have two contributions, one driven by
the interaction in the pp subsystem and second by
that in the np subsystem. Only the first part requires
renormalization. We demonstrated that the renormal-
ization has to be performed during calculation of the
breakup transition amplitude and the on-shell ampli-
tudes themselves can be derived in two different ways
which lead to the same results. We have shown that
converged results for breakup can be achieved with
finite screening radii. The importance of the renor-
malization depends on the energy of a 3N system and
on the region in the breakup phase-space. It is di-
minishing with the growing energy, and remains very
important at low energies, especially in the region of
the QFS condition.

(iii) In our approach to breakup two new terms appear
in the scattering amplitude, which to the best of
our knowledge have not been discussed before. One
corresponds to the Rutherford pd Coulomb ampli-
tude in elastic pd scattering. This term was found
to be important in the region of QFS scattering.
Calculating that term with the exact expression for
a three-dimensional half-on-shell Coulomb t-matrix
provides an additional test that the screening limit for
breakup is achieved. The second term is a correction
to the first one due to strong interactions between
nucleons. We found that its contribution reduces the
low energy pp QFS cross sections by ≈5% in the QFS
maximum.

(iv) We have checked the validity of the basic assumption
underlying our simplified approach in the case of a

restricted basis of partial wave states, for which it
was possible to compute the first term with a three-
dimensional Coulomb t-matrix in the exact approach.
Also results for contributions to the elastic scatter-
ing and breakup transition amplitudes, obtained with
an extended basis of states, vindicate the cancella-
tion effect between Coulomb terms. The presented
results justify using our simplified approach, whose
requirements for computer time and resources are
comparable to standard nd calculations, in future ap-
plications. This ensures that the pp Coulomb force
effects for pd reactions can be calculated efficiently
and quickly.

(v) We found that large Coulomb force effects are re-
stricted to forward angles for the elastic pd scattering
and to specific regions of the breakup phase-space.
They seem generally to diminish rapidly with the
increasing energy of the pd system. A comparison to
the results published in Ref. [8] proves that our pre-
dictions for elastic scattering are very similar. Since
one expects that the pp Coulomb force effects grow
with decreasing energy of the three-nucleon system,
a comparison of predictions from both approaches
below the deuteron breakup threshold would be very
welcome. Such a study is in preparation.

(vi) For breakup reaction inclusion of the pp Coulomb
force does not help to understand the pd space-star
cross sections at 13 MeV. Again, predictions of our
simplified approach are very similar, both at 13 and
65 MeV, to the results of Ref. [7].

The simplified approach proposed by us can be applied
also in the case when in addition to pairwise forces a 3NF
contributes to the 3N Hamiltonian. Since the structure of
Faddeev equations is very similar an extension to 3N reactions
with electromagnetic probes is straightforward.
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