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Coulomb screening in the momentum-space description of proton-deuteron elastic scattering:
Examination of the need for renormalization
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Proton-deuteron elastic scattering is considered in the framework of momentum-space Faddeev equations with
the screening method for the Coulomb interaction. It is shown how the interplay of the proton-proton Coulomb
potential and the deuteron pole in the neutron-proton transition operator leads to coinciding singularities in the
Faddeev equation. The coincidence of those singularities was not taken into account in a previous work [Witała
et al., Eur. Phys. J. A 41, 369 (2009)], leading to a conjecture that no renormalization is needed. However, the
coinciding singularities closely resemble those of the point deuteron-proton system, naturally suggesting that the
renormalization of the scattering amplitude is needed in the unscreened Coulomb limit and can be performed
conveniently in terms of the point deuteron-proton system.
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I. INTRODUCTION

The proton-deuteron scattering in the momentum-space
framework is often described employing the screening of the
Coulomb potential, thereby rendering it of short range and
treatable by the standard scattering theory. However, there
is no consensus in the literature regarding the behavior and
renormalization of amplitudes in the unscreened limit. For
example, while the most studies [1–4] require the renormal-
ization of scattering amplitudes, the work by Witała et al. [5]
claims the existence of the unscreened limit for the proton-
deuteron elastic scattering amplitude without renormalization.
The present work tries to explain those differences.

II. COULOMB SCREENING AND RENORMALIZATION

The long-range nature of the Coulomb interaction prevents
the direct application of the standard scattering theory. In the
momentum space the Coulomb potential

〈p f |w|pi〉 ≡ w(p f − pi ) = α

(p f − pi )2
(1)

is singular for the vanishing momentum transfer. In the
Lippmann-Schwinger equation for the two-body transition
operator

〈p f |tc
(
p2

o/2μ + i0
)|pi〉

= α

(p f − pi )2
+

∫
d3 p

α

(p f − p)2

× 2μ

p2
o − p2 + i0

〈p|tc(p2
o/2μ + i0)|pi〉 (2)

this potential singularity coincides with the singularity of the
free resolvent, if the half-shell condition p f = po is fulfilled.
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Although integrable separately, the coinciding singularities
become nonintegrable. As a consequence, the equation is ill
defined and the standard scattering amplitude does not exist.
In the above equations α = αe.m./2π2 with αe.m. ≈ 1/137 be-
ing the fine structure constant, μ is the reduced mass and p j

denote the relative two-particle momenta.
The problem can be solved by introducing the screening

of the Coulomb potential at large distances r > R in the
coordinate space, rendering the momentum-space potential
nonsingular, then solving the Lippmann-Schwinger equation
and taking the unscreened Coulomb, i.e., R → ∞ limit [6]. It
was shown that in the R → ∞ limit the half-shell and on-shell
matrix elements of the transition operator acquire a diverg-
ing phase factor [6]. After the isolation and removal of that
factor, the so-called renormalization, the resulting amplitudes
are well behaved (at least as distributions), and can be used
to calculate scattering observables in a standard way. The
procedure can be extended when the additional short-range
forces are present: the troublesome Coulomb contributions are
isolated such that the diverging phase factor to be removed
via the renormalization is known from the pure Coulomb
problem [7].

The idea of screening and renormalization has been applied
also for the three-body problem; see Refs. [1–4] for a detailed
description. In short, full three-body transition operators are
decomposed such that the problematic Coulomb contribu-
tions are isolated. In the proton-deuteron elastic scattering
this is achieved by introducing auxiliary two-body operators
driven by the screened Coulomb force between the proton and
the center of mass of the deuteron. Being solutions of the
two-body Coulomb problem, these operators display the cor-
responding behavior in the R → ∞ limit where the diverging
phase factor is known and can be removed via the renormal-
ization. It must be emphasized that these auxiliary operators
do not imply approximating the proton-proton Coulomb force
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by the proton-deuteron one. In the solved three-body equa-
tions the Coulomb force between the protons is included.
Witała et al. [5] have chosen a slightly different strategy. They
started with the symmetrized three-nucleon Faddeev equation
in the isospin formalism, where the two-body proton-proton
transition operators contained also Coulomb contributions.
Without introducing auxiliary operators, they investigated the
behavior of all terms in the Faddeev equation and concluded
the absence of strong singularities for the elastic amplitude.
This led to the conclusion that the proton-deuteron elastic
scattering amplitude should exist without renormalization.

In contrary to Ref. [5], it will be shown here that
also without the introduction of the auxiliary operators the
proton-deuteron elastic scattering equation in the unscreened
Coulomb limit has coinciding singularities of the same type as
in the two-body problem (2). There is no intention to provide
a complete rederivation of the proton-deuteron formalism,
which is already given in Refs. [1–4]; the Faddeev equation
of Ref. [5] is not the optimal starting point for this purpose.

In the following, the dependence on the Coulomb screen-
ing radius R is suppressed in the notation, having the
unscreened limit R → ∞ in mind. The Faddeev equation in
the Alt-Grassberger-Sandhas (AGS) version [8] for the sym-
metrized proton-deuteron transition operator

U = PG−1
0 + PtG0U (3)

after one iteration becomes

U = PG−1
0 + PtP + PtG0PtG0U . (4)

Here G0 is the free resolvent, t is the two-nucleon transition
operator, and P is the sum of two cyclic permutation oper-
ators [4]. Isospin formalism is used, meaning that for given
isospin states the t operator is a linear combination of proton-
neutron and proton-proton operators, the latter including also
the Coulomb contribution. For calculation of elastic scattering
observables one needs the matrix elements of U between the
proton-deuteron states |φdq j〉 where φd denotes the deuteron
wave function with the binding energy εd , and q j denotes
the relative spectator-pair momentum. The dependence on the
discrete quantum numbers is suppressed in the notation. With
explicit intermediate integrations the third term in Eq. (4) then
reads∫

〈φd q f |PtP|pq〉d3 p d3q〈pq|G0tG0|p′q′〉d3 p′ d3q′

× 〈p′q′|U |φd qi〉. (5)

The structure of this integrand will be investigated in the
proton-deuteron on-shell limit for q, that is, q → qo, where
qo is the relative proton-deuteron on-shell momentum, cor-
responding to the system energy in the c.m. frame E =
q2

o/2μpd − εd . Near this q value the matrix elements of the
free resolvent G0 are finite, but the two-nucleon transition
operator has a pole corresponding to the deuteron bound state,
i.e.,

〈pq|G0tG0|p′q′〉 −−−→
q→qo

〈p|φd〉2μpd δ(q − q′)
q2

o − q2 + i0
〈φd |p′〉. (6)

Thus, in the vicinity of q → qo the contribution of the
deuteron pole to (5) is∫

〈φd q f |PtP|φd q〉d3q
2μpd

q2
o − q2 + i0

〈φd q|U |φd qi〉. (7)

The matrix element 〈φd q f |PtP|φd q〉, appearing also as the
second term in Eq. (4), in the isospin formalism has contri-
butions from proton-proton and neutron-proton t operators,
which are fully off shell under the q → qo condition. The
nonsingular contributions are omitted in the following. In the
unscreened Coulomb limit R → ∞ the singular part of this
matrix element arises from the off-shell proton-proton transi-
tion operator tR

c contained in t whose singularity is the same
as in the proton-proton Coulomb potential [9]. Thus, when
investigating the structure of singularities one can replace t by
2
3 w, where the 2

3 factor arises from the isospin weighting [4].
The result has the form

2
3 〈φd q f |PwP|φd q〉 = w(q f − q) F1(q f − q) + F2(q f , q),

(8)

where the regular form-factor-type functions Fk involve spin-
coupling coefficients and integrals over the deuteron wave
function (F2 involves also the Coulomb potential, but its sin-
gularity is integrated out). Detailed expressions for Fk are
irrelevant, except for the particular feature F1(0) = 1. This
means that in the limit of the vanishing momentum transfer
q f → q, the singular part of (8) is exactly the same as in
the proton scattering off a point deuteron. Combining together
expressions (6) and (8) in the unscreened Coulomb limit and
leaving out regular terms one arrives at∫

d3q
F1(q f − q)

(q f − q)2

2μpd

q2
o − q2 + i0

〈φd q|U |φd qi〉. (9)

Obviously, in the proton-deuteron on-shell limit q f = qo the
two singularities in (9) coincide, the integral does not con-
verge. Furthermore, the structure of singularities is the same
as in the two-body pure Coulomb problem (2). One may
also note that second term of (4), PtP, at q f = qo = qi and
q f → qi would include an infinite contribution (8) to the
forward scattering amplitude. It does not carry a diverging
phase factor, resembling the proton-deuteron Coulomb po-
tential rather than the Rutherford amplitude. Thus, there is a
close similarity with the two-body (proton + point deuteron)
scattering problem involving short-range and Coulomb forces,
and one may expect similar mathematical properties when
applying the method of Coulomb screening. In particular, the
proton-deuteron elastic scattering amplitudes would acquire
diverging phase factors in the R → ∞ limit and would ne-
cessitate the renormalization. Based on the above equations,
one could expect the proton scattering off a point deuteron
to be the reference problem that determines renormalization
factors and direct Coulomb amplitude, as the effective charge,
momenta, and reduced mass correspond exactly to those of the
(proton + point deuteron) system. Noteworthy, this conjec-
ture is achieved without introducing auxiliary proton-deuteron
operators. Thus, the renormalization in terms of the (proton
+ point deuteron) system is not introduced artificially but
emerges naturally from the analysis of singularities.
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As the above derivation was not relying on the properties of
the initial state |φd qi〉, the singularity structure made explicit
in (9) obviously persists for any initial momentum qi and
the pair state with relative momentum pi. In analogy with
the two-body problem this again implies that not only the
on-shell but also the half-shell matrix elements 〈φd q f |U |piqi〉
at q f = qo 	= qi need an appropriate renormalization. The
initial-final state symmetry of the transition operator U sug-
gests the necessity of the renormalization also at qi = qo 	=
q f . The singularity structure at qi = qo can be easily shown to
be of the type (9). For this one could start with an alternative
form of the AGS equation

U = PG−1
0 + UG0tP (10)

and repeat similar steps as given in (4)–(8) for the half-shell
matrix element 〈p f q f |U |φdqi〉, arriving at∫

d3q 〈p f q f |U |φdq〉 2μpd

q2
o − q2 + i0

F1(q − qi )

(q − qi )2
(11)

instead of (9), with coinciding singularities at qi = qo.
The fact that half-shell matrix elements 〈p f q f |U |φdqi〉

at qi = qo need an appropriate renormalization implies a
corresponding property also for operator products acting on
U |φd qi〉. In particular, the Faddeev operator of Ref. [5]

tG0U ≡ T = tP + tG0PT, (12)

when acting on the initial proton-deuteron state with qi = qo,
i.e., T |φdqi〉 = tG0U |φdqi〉, at least needs a renormalization
associated with the initial state. The elastic amplitude [5] is

〈φd q f |
(
PG−1

0 + PT
)|φd qi〉

= 〈φd q f |PG−1
0 |φdqi〉 + 〈φd q f |PtP|φd qi〉

+ 〈φd q f |PtPG0T |φd qi〉, (13)

where one can easily identify the three terms in (4), a con-
sequence of the equivalence between the AGS equation (3)
for U and the Faddeev equation (12) for T . In particular,
since in the two-nucleon 3S1 – 3D1 wave the operator T carries
the deuteron bound-state pole as t does, the singularity struc-
ture of the third term in (13) is exactly the same as in (9),
i.e., the two singularities from the proton-proton Coulomb
potential and the deuteron pole do coincide, such that the
renormalization in the unscreened limit of (13) is needed
also for the final state. Alternatively, for convenience one
may introduce a reduced form of T with the deuteron pole
separated from T as Refs. [5,10] do, but then the deuteron
pole has to be included explicitly in the last term for the elastic
amplitude (13) leading to exactly the same result. On the other
hand, looking back to the left-hand sides of (12) and (13) it is
quite obvious that off-shell T exhibits singular behavior itself,
stemming from the off-shell tR

c .

III. DISCUSSION

The above consideration is not a rigorous proof of the
screening and renormalization procedure for the proton-
deuteron scattering, see Refs. [2,4] instead. However, it
demonstrates one more time that in the proton-deuteron scat-
tering problem one encounters typical difficulties related to

the Coulomb treatment, manifesting themselves by coincid-
ing singularities in the momentum-space framework. This
feature arises not from the proton-proton transition opera-
tor directly, but via the interplay between the proton-proton
Coulomb interaction and the deuteron bound-state pole. In
fact, one may consider the energy regime below the deuteron
breakup threshold where the two-nucleon transition opera-
tors are always off shell at negative two-nucleon energies,
and do not need renormalization. However, even in this case
the coinciding singularities (9) persist and, consequently,
the proton-deuteron elastic scattering amplitudes need
renormalization.

It is very important to note that the work by Witała et al.
[5] disregarded the appearance of coinciding singularities by
interplay of the proton-proton Coulomb potential and the
deuteron pole. In Sec. 4 of Ref. [5] Witała et al. consid-
ered only the singularities and renormalization features of
the half-shell and on-shell proton-proton Coulomb transition
matrix and the free resolvent that indeed do not coincide
in the expression for the elastic amplitude. However, they
apparently missed the fact that the off-shell proton-proton
transition matrix, though exists in the unscreened limit with-
out renormalization, nevertheless carries the singularity of the
Coulomb potential, which together with the deuteron pole
leads to coinciding singularities in proton-deuteron scattering
equations. For example, the analysis of the off-shell tR

c in the
unscreened limit of Eq. (D.8) of Ref. [5] reveals that this takes
place for |p ± q/2| = q0, in combination with P leading to
the appearance of coinciding singularities of type (9) in (D.9),
that are not taken into account in the investigation of the
unscreened limit. Recently, a statement has been made [11]
that those singularities cancel, however, without any proof.
By neglecting this type of singularities Witała et al. arrived
at an erroneous conclusion that the proton-deuteron elastic
scattering amplitude in the unscreened limit should exist with-
out renormalization. Noteworthy, the numerical studies of
Ref. [5] omitted the term 〈φd q f |PtR

c PG0T |φd qi〉, which in the
present work is taken as an example for the appearance of
coinciding singularities in the R → ∞ limit. The remaining
terms in the elastic amplitude of Ref. [5] may cancel par-
tially, possibly reducing the sensitivity of the phase at finite
R, since the low-order terms, such as the first and second
term in Eq. (13), taken separately do not acquire the diverging
phase. The shortcoming of Ref. [5] persists also in subsequent
studies of the breakup reaction, and also in a recent preprint
[10]. The latter work mostly deals with the decomposition
into contributions of low partial waves and the remaining
three-dimensional (3D) ones and partial cancellations be-
tween them. Considerations of the present work are performed
directly in three dimensions, which is more transparent for
the analysis of singularities. The practical calculations [4,12]
solve the AGS equations at finite screening radius in the
angular-momentum representation with a high number of par-
tial waves, much higher than in calculations of Refs. [5,10],
such that the additional 3D terms of Ref. [10] become en-
tirely negligible. Finally, the numerical studies [12,13] using
full amplitudes clearly confirmed the need for the renor-
malization of the scattering amplitudes consistently with
Refs. [2,4].
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The overall phase of the amplitude is irrelevant for
observables, but is decisive for phase shifts. A benchmark cal-
culation for the proton-deuteron elastic scattering observables
and phase parameters was performed in Ref. [14], compar-
ing momentum-space [4] and coordinate-space [15] results.
The necessity for the amplitude renormalization in the un-
screened limit is related to the coordinate-space wave function
asymptotics, where the phase shifts with respect to Bessel
functions have no limit, but do exist with respect to
Coulomb functions [16]. The benchmark [14] demonstrated

a good agreement between the two methods, further re-
inforcing the screening and renormalization method. As
the benchmarks are important in establishing the valid-
ity and accuracy of new techniques, phase shifts should
be calculated also using the method of Refs. [5,10].
However, the existence of the unscreened limit for the
proton-deuteron amplitude without renormalization claimed
in Refs. [5,10] is consistent with existence of standard
phase shifts with respect to Bessel functions, but not with
Coulomb ones.
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