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Universality of nn distributions of s-wave 2n halo nuclei and the unitary limit
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We calculate neutron-neutron relative-energy distributions of s-wave two-neutron (2n) halo nuclei using halo
effective field theory (halo EFT) at leading order. At this order these systems are described by the 2n separation
energy, the neutron-core (nc) virtual-state energy, and the neutron-neutron (nn) scattering length. We focus on
knockout reactions where the removal of the core is sudden, such that the final-state interactions are dominated
by the nn interaction. We consider the neutron relative-energy distribution for the nuclei 11Li, 14Be, 17B, 19B, and
22C. We show that the ground-state neutron momentum distributions of all these nuclei stem from a single curve,
which can be obtained by taking both the neutron-core and neutron-neutron interaction to the unitary limit. This
universal description can be extended to the final distribution measured in experiment by including nn final-state
interactions via the approximate technique of enhancement factors. For all the nuclei considered we find good
agreement between the full leading-order halo EFT calculation and the universal prediction obtained in this way.
The universality of the ground-state momentum distribution in two-neutron Borromean halos can thus be tested
by dividing the experimental results from sudden core knockout by the enhancement factor and comparing them
to the unitary-limit prediction.
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I. INTRODUCTION

Halo nuclei are a species of exotic nuclei living in the
nuclear chart beside the valley of stability. They are charac-
terized by a separation between a more tightly bound cluster,
called a core, and one to multiple more loosely bound nu-
cleons, which form the halo [1,2]. Neutron as well as proton
halos have been observed. Neutron halos seem to occur more
frequently, as they are not subject to the long-range Coulomb
interaction. Neutron halos were discovered in the 1980s at
radioactive beam facilities by measuring the markedly larger
cross section associated with their greater spatial extension
[3]. This, in turn, is related to the small separation energy of
the halo neutrons [4].

This separation of scales between the binding of the halo
nucleons and the energy scales of the core, such as excitation
energies or nucleon removal energies, form the basis for a
systematized cluster description of these systems that uses the
methodology of effective field theories (EFTs). This so-called
halo EFT was first formulated for 5He [5,6] and has since
then been applied to a number of nuclei and different observ-
ables. Halo EFT can be understood as an implementation of
an expansion around the unitary limit of infinite two-body
scattering length [7]. An in-depth review of halo EFT was
given in Ref. [2]. The underlying idea is that observables

*Contact author: matthias.goebel@pi.infn.it

can be expanded in powers of a low-momentum scale over
a high-momentum scale. This high-momentum scale is also
called the breakdown scale and is set by the lowest scale of
omitted physics, e.g., the excitation energy of the core. A
key ingredient is the power counting which determines the
order at which different parts of the interaction contribute in
this expansion. In this way, the observables can be calculated
systematically up to a certain order with a clear perspective
on how this result could be improved, i.e., by going an order
higher. Moreover, the theoretical uncertainties of the results
can be estimated from the anticipated size of omitted higher
order terms.

Many observables of halo nuclei, structural properties as
well as those related to reactions, have been calculated in halo
EFT. In this paper, we want to look at the nn relative-energy
distributions of s-wave 2n halos after core knockout. From the
theoretical side this observable has already been investigated
for the p-wave 2n halo 6He [8]. In that case, this was done
with specific emphasis on inferring the nn scattering length
from this distribution. An experiment to extract the not-yet
precisely known nn scattering length is approved at RIKEN
RIBF [9]. Since Ref. [8] has shown that this observable can be
theoretically calculated and it is also experimentally feasible,
here we are interested in calculating the same observable for
different s-wave 2n halo nuclei.

The assumptions regarding the reaction are the same as for
the reaction 6He(p, p′α)nn discussed in Ref. [8]. It is assumed
that the 2n halo h ≡ [cnn] is shot on a hydrogen target at high
velocity so that the core c is knocked out and the two neutrons
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TABLE I. Characteristic properties of the considered two-
neutron halo nuclei. The values for S2n and for the virtual-state
energy E∗

nc are taken from Ref. [10]. The only exception is S2n of
22C, for which we use the value given in Ref. [2]. The virtual-state
energy E∗

nn is the same in all cases.

nucleus A S2n [keV] E∗
nc [keV] E∗

nn [keV]

11Li 9 369 26
14Be 12 1266 510
17B 15 1384 83 118.5
19B 17 90 5
22C 20 100 68

continue to fly along the original path until they get detected.
This reaction is denoted as h(p, p′c)nn. Through the sudden
knockout of the core, the halo neutrons are almost unperturbed
by the core and nn final-state interaction (FSI) is by far the
most important FSI.

In this study, we investigate the two-neutron halos 11Li,
14Be, 17B, 19B, and 22C. They all display a low-lying
nc s-wave virtual state, whose energy parameterizes the nc
interaction at leading order. Other leading-order interactions
are the s-wave nn interaction given by the nn scattering length,
or equivalently the nn virtual state energy E∗

nn, as well as
a three-body force adjusted to reproduce the physical two-
neutron separation energy. The characteristic properties of the
considered halos, such as the mass number A of the halo core,
the two-neutron separation energy S2n, the virtual-state energy
E∗

nc of the nc subsystem, and the common nn virtual state
energy E∗

nn, are listed in Table I. The numerical values for S2n

and E∗
nc are taken from the 2020 Atomic Mass Evaluation [10]

except for S2n of 22C, where we use the value 100 keV from
Ref. [2] based on a different data set instead of the 35 keV
quoted in Ref. [10].

We will investigate how universal the neutron energy distri-
butions of these different nuclei are. In Refs. [11,12] Hiyama
et al. argued that the 17B -n-n system is near the unitary
limit. In this study we go further, and argue that a universal
prediction for all—or at least many—s-wave two-neutron ha-
los can be obtained by taking all two-body interactions, the
nn interaction as well as the nc interaction, in the unitary
limit. In our leading-order EFT description, this corresponds
to setting the respective inverse scattering length to zero.
Halo EFT also includes a core-neutron-neutron interaction
at leading order, and this “three-body” force is tuned to re-
produce the two-neutron separation energy of each halo we
consider.

Our philosophy is thus similar to that of König et al. who
propose to understand the properties of light nuclei in pionless
EFT in a perturbative expansion around a leading order given
by two-body interactions in the unitary limit plus a three-body
force [13]. They demonstrated that this works well for nuclei
with A � 4 and suggested examining the expansion also in
higher-A systems. The proposal of König et al. was further
investigated in Refs. [14–20].

Our work can be seen as an extension of the ideas of
Ref. [13] to clustered systems that focuses on the nn relative-
energy distribution. We demonstrate that this observable

can be accurately computed via a unitary-limit treatment of
the halo nucleus ground state as follows. In Sec. II B we
recapitulate how a leading-order halo EFT calculation of
a two-neutron halo is carried out, displaying the Faddeev
equations, and explaining how to combine the particle-dimer
amplitudes that are the output of those equations to obtain
the full three-body wave function. In Sec. II C we define
the neutron relative-energy distribution in terms of that wave
function, discuss how nn final-state interactions are included
in its calculation, and present our results for this distribution
for each of the five different Borromean halos considered
here. Section III then defines what it would mean for these
different results to be related to one universal curve. In
Sec. IV we first show that the rescaled ground-state momen-
tum distributions of all five halos are, when plotted versus an
appropriate variable, described to better than 25% accuracy,
by the unitary-limit result. We explain why this is actually to
be expected given the scales in the problem and the three-body
dynamics that is at work. We then show, in Sec. IV B, that
the final-state interactions that might obscure this universality
can be accounted for—at a similar level of accuracy—using
an enhancement factor. We offer a summary and outlook in
Sec. V.

II. HALO EFT AND CALCULATIONAL METHODS

A. Agenda

In order to obtain the nn relative-energy distribution
we first calculate the wave function of the 2n halo. On
this basis, we can either calculate the ground-state nn
relative-energy distribution or we can calculate the final
nn relative-energy distribution after the hard knock-out in
the reaction h(p, p′c)nn. The latter final distribution in-
cludes the effect of nn FSI on the ground-state wave
function.

Calculating the wave functions in halo EFT works along
the lines described in Ref. [21] and in Ref. [2]: one starts
with the leading-order Lagrangian, which has as its de-
grees of freedom the neutrons and the core, together with
the corresponding neutron-neutron and neutron-core dimers.
The dressed dimer propagators determine the neutron-neutron
and neutron-core t matrices which enter in the Faddeev
equations. They can be obtained analytically from a Dyson
equation, where the leading-order effective range parameters
are employed as renormalization conditions. While in the
case of the nn interaction this is directly done using the nn
scattering length ann, in the case of the nc interaction the
momentum γnc characterizing the low-lying virtual state is
employed.

In the next step, the coupled integral equations for the
particle-dimer amplitudes can be derived. These equations are
equivalent to the Faddeev equations. The amplitudes can be
obtained from the equations via discretization and solving the
resulting eigenvalue problem. These correspond to the Fad-
deev amplitudes. Finally, the wave functions can be calculated
from the amplitudes. The nn relative-momentum (or, equiv-
alently relative-energy) distribution is then straightforwardly
obtained from the wave function.
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B. Formalism, Faddeev amplitudes, and wave functions

We use the Jacobi coordinates

pi := μ jk

(
k j

m j
− kk

mk

)
, (1)

qi := μi( jk)

(
ki

mi
− k j + kk

Mjk

)
, (2)

where μi j = mimj/(mi + mj ) and μi( jk) = miMjk/(mi +
Mjk ). Mjk is the total mass of particles j and k.

The Faddeev equations for a two-neutron system with one
nn and one nc interaction channel are given by

Fc(q)

4π
= (1 + (−1)l (ζc )+s(ξc ) )c〈ξc|ξn〉n

×
∫

dq′q′2Xcn(q, q′)τn(q′)Fn(q′), (3)

Fn(q)

4π
= n〈ξn|ξc〉c

∫
dq′q′2Xnc(q, q′)τc(q′)Fc(q′)

− n〈ξn|P (spin)
nn |ξn〉n

×
∫

dq′q′2Xnn(q, q′)τn(q′)Fn(q′), (4)

whereby the functions Fi are related to the abstract compo-
nents |Fi〉 via Fi(q) := ∫

d pp2gl (ζi )(p)i〈p, q; ζi|Fi〉 with some
orbital angular momentum quantum numbers ζi and the reg-
ulator functions gl . The functions τi are closely related to
t-matrix elements, while the “kernel functions” Xi j originate
from the evaluation of free Green’s functions between states
differing in the spectator. Thus they describe the one-particle
exchange contribution in the three-body system. Explicit ex-
pressions can be found in Ref. [2].1

In order to renormalize the system to the physical binding
energy of the three-body system, a three-body force is used.
It can be included by replacing Xnn(q, q′) by Xnn(q, q′) + h3

with h3 being some three-body force parameter, see, e.g.,
Ref. [2]. Another quantity appearing in the Faddeev equa-
tions is the multi-index ξn specifying the spin state of the
three-body system seen from the neutron as the spectator
when the nc subsystem is in its interaction channel. Analo-
gously, ξc specifies the spin state seen from the core as the
spectator when the nn subsystem is in its interacting channel.
In the case of a spinless core, these overlaps read

n〈ξn|ξc〉c = −1, (5)

n〈ξn|P (spin)
nn |ξn〉n = −1, (6)

1Note that we use the definition Xi j (q, q′) := ∫
d pp2

∫
d p′ p′2

gl (ζi )(p)gl (ζ j )(p′)i〈p, q; ζi|G0|p′, q′; ζ j〉 j . In the case of sharp-cutoff
regularization via the gl , these can be neglected at low mo-
menta. If additionally the already mentioned interaction chan-
nels are s wave, one can use the analytical expressions from
Ref. [2]. The notation is slightly different, whereby the rela-
tion Xnc(q, q′) = −mnX n

00(q, q′; B3) holds. Moreover, the relation
Xcn(q, q′) = Xnc(q′, q) can be employed. The function Xnn has
a P (spatial)

nn in front of the G0. Here, the relation Xnn(q, q′) =
−mnX c

00(q, q′; B3) can be used.

and one obtains Faddeev equations equivalent to the ones from
Ref. [21]. We have explained this equivalence in detail in
Ref. [22].

To calculate observables it can be efficient to use wave
functions as an intermediate step. This helps to modularize
the computation. As can be derived based on the abstract
formalism (see, e.g., Refs. [22–24]), the expression for the
wave function component with an s wave within the nn pair
and an s wave between this pair and the core is given by

�c(p, q) := c〈p, q; (0, 0)0, 0; ξc|�〉

= ψc(p, q) + c〈ξc|ξn〉n

∫ 1

−1
dxP0(x)

× ψn(κcnp(p, q, x), κcnq(p, q, x)), (7)

where further details and explicit expressions for the functions
κcnp(p, q, x) and κcnq(p, q, x) can be found in Ref. [24]. Here,
the wave function of the full state in terms of Jacobi momenta
relative to c as the spectator is given in terms of the compo-
nent wave functions ψi(p, q) = G(i)

0 (p, q)τi(q)Fi(q). Despite
having only s-wave interactions also the wave functions of
the form c〈p, q; (l, l )0, 0; ξc|�〉, i.e., with nonzero subsystem
orbital angular momenta, are nonzero (see, e.g., Ref. [24]).
The numerical calculations, however, show that in the case
of s-wave interactions these are strongly suppressed and
negligible.

C. nn relative energy distribution

The key object of our study is the ground-state nn relative-
momentum distribution defined via the projection operator
Ppnn projecting onto a relative momentum pnn:

ρ(pnn) := 〈Ppnn〉 =
∫ �

0
dqq2�2

c (pnn, q)p2
nn. (8)

The nn relative-energy distribution follows from the mo-
mentum distribution via integration by substitution in the
normalization integral:

ρ (E )(Enn) :=
√

μnn

2Enn
ρ(

√
2μnnEnn). (9)

However, measuring this distribution in the considered reac-
tion is hardly possible, as it would require kinematics which
suppresses not just all non-nn FSIs, but also nn FSI. This
requirement is not compatible with measuring the nn distri-
bution at low relative momentum between the two neutrons.
Therefore, we are mainly interested in the relative-energy
distribution subsequent to nn FSI. For this distribution the
definitions in Eqs. (8) and (9) apply with the only difference
that the ground-state wave function has to be replaced by the
wave function after FSI, which is given by

� (wFSI)
c (p, q)

:= c〈p, q; ζc; ξc|(1 + tnn(Ep)G(nn)
0 (Ep))|�〉

= �c(p, q) + 2

π
g0(p)

1

a−1
nn − rnn p2/2 + ip

×
∫

d p′ p′2g0(p′)(p2 − p′2 + iε)−1�c(p′, q) (10)
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FIG. 1. Plots of the nn relative-energy distributions of various
halo nuclei with nn FSI included in the calculation. The distributions
are normalized to a certain value at the nn relative energy Enn = 1.03
MeV that is indicated by the black cross. Leading-order EFT un-
certainty bands are shown. The relative EFT error was estimated as
(Enn/E∗

c )1/2, whereby E∗
c is the excitation energy of the correspond-

ing core. The numerical uncertainties are smaller than 2%. These
uncertainties are estimated by comparing with a calculation having
approximately twice as many mesh points and a 50% larger cutoff.

with ζc := (0, 0)0, 0.
Details on how to evaluate this expression are given in, e.g.,

Ref. [8]. The results of that evaluation are given in Fig. 1.
The distributions are normalized such that they are unity at a
certain energy around 1 MeV. This normalization scheme is
useful for comparison to experiment since the experimental
distributions are measured for neutrons of low relative energy
and the overall normalization is unknown.

The plot shows that the results depend strongly on the
considered nucleus; there seems to be a great influence of S2n.
The lower it is, the larger the peak value of the distribution.
Only the results for 14Be and 17B are close to each other
(note that the orange curve is almost underneath the green
curve), likely because of the similar two-neutron separation
energies of the two nuclei. Given the fact that the nc virtual
state energies E∗

nc of these two nuclei differ by a factor greater
than five, this indicates that, at least for these two systems,
the scattering length of the nc interaction seems to be not so
important.

III. UNIVERSALITY

Next we discuss universality for the nn relative-energy
distribution. To set the stage, we start with a brief synopsis
of the physics picture underlying the universality of the nn
relative-energy distribution that emerges from our detailed in-
vestigations in Sec. IV. In order to motivate the methodology,
this is followed by a more formal discussion of different levels
of universality and the application of these ideas to the nn
relative-energy distribution.

A. Synopsis of the physics picture

In the case of the nn relative-energy distribution, all con-
sidered halo nuclei can be considered copies of each other,

FIG. 2. Plot of the ground-state nn relative-energy distribution
times S2n as a function of Enn/S2n, computed in the double unitary
limit, for a core with mass A equal to 1 (blue lines), 9 (orange lines),
and 100 (green lines). For each value of A the result for S2n = 1.384
MeV is shown as the dotted line and the results for S2n = 0.09 MeV
is shown as the solid line.

that differ only in the overall scale set by the two-neutron
separation energy S2n. Why can the other scales of the halo
nuclei be neglected in leading order? Inspecting the numbers
in Table I, it is evident that:

(i) The neutron-core and neutron-neutron virtual state
energies E∗

nc and E∗
nn, respectively, are in all cases sig-

nificantly less than S2n. In leading order, each nucleus
is thus only characterized by one energy scale, the
two-neutron separation energy S2n, and all other scales
can be set to zero.

(ii) The core mass parameter A is significantly larger than
one. This, combined with the low-momentum nature
of the halo state, means that core-recoil effects are
negligible, which allows us to set 1/A = 0 without
appreciably altering our results. We demonstrate this
explicitly in Fig. 2 below.

However, first, in order to elucidate the consequences of
these observations for the universality of the nn relative-
energy distribution, we discuss universality from a more
formal perspective.

B. When is an observable universal?

Loosely speaking, universality means that different sys-
tems display common features. More specifically, universality
can mean that some rescaled and/or differently parameterized
version of the observable function is almost the same for the
different systems. In our case, the different systems are the
different s-wave 2n halo nuclei.

To make this discussion more concrete, we consider an
observable O(x), which is different for each of the N con-
sidered systems, i.e., it is O(x; θ), where the vector θ collects
the characteristic parameters of the systems. This observable
is universal if there is a rescaled version O(x; θ)/ f (θ) which
is almost independent of θ, i.e.,

O(x; θ) ≈ f (θ)Õ(x). (11)
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One might, in addition, expect that f (θ) varies only in a
low-dimensional subspace of the full space of parameters θ

that describe the system. However, this is not essential to
the observable being universal. Only in the case of f being
additionally dependent on x would Eq. (11) become pointless.
We note that the scaling variable may also be system-
dependent, and so a slightly weaker form of universality is

O(x; θ) ≈ f (θ)Õ(x/g(θ)). (12)

For g(θ) the same expectation as for f (θ) holds: it should not
be too complicated and should ideally depend only on a subset
of the entries of θ—a subset that may be different than the
subset present in f . Moreover, even if Õ would also depend on
a subvector of θ denoted as θ2, i.e., Õ(x/g(θ); θ2), this would
still be a variant of universality.

There are two equivalent ways to check universality based
on a hypothesis for Õ, f , and g. The first is to compare the
plots of f (θ)Õ(x/g(θ)) as a function of x with the same plots
of O(x; θ) as a function of x for different systems. This is ba-
sically testing the agreement between the universal prediction
and the actual observable for all the systems. Alternatively,
one can plot

O(x̃g(θ); θ)/ f (θ) (13)

against x̃ = x/g(θ). If there is universality as defined in
Eq. (12) amongst the N systems then the relation

O(x̃g(θ); θ)/ f (θ) ≈ Õ(x̃) (14)

holds and the N curves for these different systems will lie
approximately on one line. That is a very illustrative way of
testing universality: the curves obtained from different sys-
tems reduce to one, the universal prediction Õ(x̃).

C. The case of nn relative-energy distributions

We are now in the position to apply these general con-
siderations to the nn relative-energy distribution of 2n halo
nuclei. A key goal of this paper is to investigate if all the nn
relative-energy distributions for s-wave 2n halo nuclei can be
derived by suitable (nucleus-dependent) rescalings of a single
underlying function.

The first step in this direction is to find dimensionless
distributions, where the independent variable, which we take
to be the nn pair’s relative energy, Enn, is measured in units
of the characteristic energy of the system. A natural choice
for this energy is the two-neutron separation energy S2n, and
indeed, we shall adopt x̃ := Enn/S2n. The distribution ρ (x̃)(x̃)
parameterized by x̃ and abbreviated as ρ(x̃) or ρ(Enn/S2n) is
given by

ρ (x̃)(x̃) = ρ (E )(x̃S2n), (15)

where ρ (E ) is the relative energy distribution of the neu-
trons [cf. Eq. (9)]. The normalization relation for this
reparametrized distribution is∫ �2/(2μnnS2n )

0
dx̃ρ (x̃)(x̃)S2n = 1. (16)

This relation indicates that the size of the distribution ρ (x̃)(x̃)
should scale as 1/S2n for a given halo nucleus. We will
therefore take the function f (θ) = 1/S2n here, while with the
definition of x̃ we have already introduced g(θ) = S2n.

We therefore take S2nρ
(x̃)(x̃) as our universal observable ρ̃

and attempt to work out if any additional modifications to the
already proposed f (θ) and g(θ) are required. Moreover, we
check if we can reduce the parameter vector ρ̃ depends on any
further.

The possibility to describe different 2n halos in halo EFT at
leading order already manifests a certain kind of universality,
since, e.g., the effective-range parameters of all the different
nc interactions are only next-to-leading-order corrections and
so become (approximately) irrelevant to the prediction. For
the nn relative-energy distribution, leading order (LO) halo
EFT implies

ρ̃(Enn/S2n; θ2 = (Vnn,Vnc, S2n, A))

= ρ̃(Enn/S2n; θ3 = (
√

2μS2nann,
√

2μS2nanc, A)) (17)

with Vnn and Vnc containing all the nn and nc potential features
the distribution might depend on. Thus, in Eq. (17) θ3 is an
element of a three-dimensional subspace of the much larger
parameter space containing θ2, i.e., θ3 ⊂ θ2. This “leading-
order halo EFT universality” is a reduction-of-parameters
statement.

Furthermore, systems with the same ratios of two-body
and three-body scales, i.e.,

√
2μS2nann and

√
2μS2nanc will

produce the same dimensionless distributions ρ̃. It would be
somewhat coincidental to have the same finite values of these
two ratios occur in two different halo systems. This situation
is more likely to occur across several systems if either:

(i) S2n is large enough, in comparison to the energies of
the nn and nc virtual states 1/(2μa2

i j ), that
√

2μS2nann

and
√

2μS2nanc can both be taken to infinity. We de-
note this situation “unitary universality”.

(ii) anc is small enough, and S2n large enough, that
we can work in the limit

√
2μS2nann → ∞ and√

2μS2nanc → 0. This is the limit in which nc inter-
actions are a subleading effect. In this case the nn halo
is bound by a three-body force and is essentially a
two-body (core-dineutron) halo, since the nc pair is not
dynamical. This leads to a universal result for nn halo
observables, as pointed out recently by Hongo and Son
[25]. However, it is obviously a different limit to that
considered under the previous bullet, and we denote it
hereafter as “nested two-body universality”. It is not
relevant to the nuclei considered here.

Instead, it is the first scenario, “unitary universality”, that
is explicitly manifest in Table I, and is relevant for our study.

As mentioned at the start of this section, in this first
scenario, the mass number of the core, A, also becomes irrel-
evant to the calculation of the nn momentum distribution—at
least for any core-mass number A � 9. Core recoil in the
two-neutron-halo three-body problem is always suppressed
by 1/A, and so its impact on bound states and momentum
distributions vanishes as A → ∞. In the case of the unitary-
limit two-neutron ground-state momentum distribution this
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happens very quickly as a function of A. Figure 2 shows
the rescaled momentum distribution S2nρ(Enn/S2n) as a func-
tion of Enn/S2n for three different values of A. To check our
numerics we have done each calculation for two different
values of S2n that define the limits of the systems we consider
in this paper: S2n = 0.09 and 1.384 MeV. The results are
independent of S2n to within numerical uncertainties, as we
argued above that they should be. The A = 1 momentum
distribution is already within 25% of the result for A = 100.
And for A = 9, the core-mass ratio in the lightest two-neutron
halo considered in this work, finite-A effects are the same size
as numerical uncertainties. In the unitary limit the two-neutron
halo is a low-momentum state, and this renders the effect
of core recoil even less important than it is in models of
two-neutron halos where the three-body wave function has
high-momentum components.

The result of Fig. 2 is relevant because we will show ex-
plicitly in the next section that, based on the parameters listed
in Table I, the 2n halo nuclei 11Li, 14Be, 17B, 19B, 22C exhibit
“unitary universality” in their ground-state nn relative-energy
distributions. We therefore have

ρ̃(Enn/S2n; θ2 = (Vnn,Vnc, S2n, A)) = ρ̃(Enn/S2n). (18)

The nn relative momentum distributions of these systems can
thus be described by a one-parameter curve that can be calcu-
lated in the triple limit in which both nc and nn systems are at
unitarity and the core mass number is taken to infinity.

IV. EXPOSING THE UNIVERSAL CURVE

A. Universality of the ground-state relative-energy distribution

At first glance, the results displayed in Fig. 1 do not
support the existence of a universal result for the neutron
energy distribution in two-neutron halo nuclei. We will show
in this section that there is a common curve hidden within this
result. However, it is obscured because the nn FSI depends
on a different set of variables than the “unitary universality”
curve does. We therefore focus first on the distributions that
are obtained before the inclusion of nn FSI. This permits
us to understand the ground-state dynamics better. We first
follow the argument from Sec. III and plot the distribution
ρ̃(Enn/S2n) = S2nρ(Enn/S2n) in Fig. 3.

We observe significantly more universality in these dis-
tributions without FSI: it is particularly noticeable that their
maxima are now at approximately the same position. But
this only occurs if we plot versus Enn/S2n. The FSI is also
universal, in the sense that the nn interaction that drives it is
the same for all halo nuclei. But there the relevant energy scale
is set by the neutron-neutron scattering length, 1/(mna2

nn). Our
intermediate conclusion is that the universal description of
these nuclei must be improved by taking into account the fact
that the universal ground-state distribution and the universal-
ity due to the nn interaction introduce two different energy
scales into the final, experimentally observed, distribution of
the relative energy of the two neutrons.

We begin by examining more closely the ground-state
distribution. First, we note that some of the nc virtual-state
energies E∗

nc are not very accurately known. But, in fact,
this does not matter for our prediction. If we push the nc

FIG. 3. Plots of the ground-state nn relative-energy distributions
times S2n as a function of Enn/S2n. The circles indicate the positions
of the maxima. The vertical line indicates the breakdown scale of
halo EFT for 14Be. For all the other halo nuclei considered halo EFT
breaks down only beyond the region shown here.

interaction into the unitary limit, where the leading-order
nc t matrix simplifies from ∝ (γ −1

nc + ip)−1 to ∝ (ip)−1, the
ground-state energy distributions change by less than 25%.
The results of such a calculation for the five different nuclei
considered here are given by the brown band in Fig. 4. (The
band results from varying A in the region of interest for our
work: between 9 and 20.)

We next investigate what happens if we do the same for the
nn interaction, which also displays a large s-wave scattering
length and is so not very far away from the unitary limit. The
result when both the nn and nc interaction are taken to the
unitary limit is the turquoise curve in Fig. 4.

FIG. 4. Ground-state nn relative-energy distributions from LO
halo EFT in comparison with two bands representing the calcula-
tions with the nc interaction in the unitary limit (brown) and the
calculations with the nc and the nn interactions in the unitary lim-
its (turquoise). These calculations are represented by bands, as we
varied A between 9 and 20. The normalization scheme where the
distribution is normalized to a specific value at a specific point is
used. The inset shows the deviations of the different curves from the
doubly unitary limit in percent.
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Note that we have not used the normalization scheme
suggested by the arguments of the previous section. Instead,
we followed the experimentally motivated prescription of
Sec. II C, and normalized to the same number at a particular
value of Enn/S2n (Enn = 1.54S2n) in every curve.

The results of Fig. 4 also display the independence of A
that results from the small effect of core recoil on the 2n halo
momentum distribution. The full range A = 9–20 is contained
in the turquoise line in the figure, which is in accord with the
results of Fig. 2 where we showed that, for the unitary-limit
momentum distribution, the A → ∞ limit is approached very
quickly.

The full LO results for the ground-state distribution, i.e.,
the results with interactions not taken to the unitary limit, are
not far away from the bands. In this range of Enn/S2n the
deviations from the “double unitary limit” are at most 25%
and less than that for almost all nuclei over almost all the
kinematic range. This means that in addition to the LO EFT
universality we can observe three further universalities:

(i) possibility to neglect the nc scattering length by going
into the nc unitary limit,

(ii) possibility to neglect the nn scattering length in the
same way,

(iii) possibility to neglect A.

These are all reduction-of-parameters universalities. And
they ultimately mean that to 25% or better accuracy the quan-
tity plotted in Fig. 4 depends solely on the ratio Enn/S2n

and not on any of the specific parameters—anc, A, or even
ann—of the two-neutron halo. An important point regarding
this universal distribution is that it describes the ratio ρ̃(x̃ =
Enn/S2n)/ρ̃(x̃0), and not the probability density itself. That
is, we are arguing that the shape of the distribution, with its
overall size divided out, is a better candidate for a universal
treatment.

The inset of Fig. 4 shows the deviation of the neutron
relative-energy distribution from the unitary-limit one. To a
significant extent the size of the deviations shown there can be
understood in terms of the particular parameters that pertain
to each Borromean 2n halo. The Faddeev equations (3) and
(4) can be expressed in dimensionless variables if the input
scattering lengths are recast as the dimensionless quantities
ānn := √

2μS2nann and ānc := √
2μS2nanc. The larger these di-

mensionless scattering lengths are, the nearer each of the two
t matrices is to the corresponding unitary limit t matrix. The
different ways the parameters S2n and anc that go into ānc can
bring the system nearer to the unitary limit can be understood
from Fig. 5. It shows the deviation of the different halos’ nc
t matrices in percent. The t matrices are plotted as a function
of energy. In the three-body calculation, they are evaluated
at E = −S2n − q2/(2μn(nc) ). Thereby, −S2n determines the
maximum energy at which the nc t matrix can be probed. Thus
it can either be driven closer to the unitary limit by increas-
ing the scattering length or restricting the probed region to
more negative energies by increasing S2n. In a dimensionless
parametrization, these are two facets of the same process. The
figure illustrates both facets.

FIG. 5. The deviation of the nc t-matrix from its unitary-limit
variant. The vertical lines indicate minus the two-neutron separa-
tion energies, which represent the maximum energies at which the
t-matrix is probed in the corresponding system. The small left panel
indicates the deviations at these energies as well as at −2 MeV.

We note also that, since this is a three-body problem, the
interplay of ānc and ānn is relevant. The strength of one inter-
action can influence in which momentum region the other is
probed. A change of ānn could change the way the nc t matrix
is probed. If changing ānn causes the nc t matrix to be probed
at higher momenta the unitary-limit approximation will work
better, even if the value of ānc is unchanged. The three-body
force and the value of A also play a role in this regard.

Out of all the halos discussed here 22C is the one that has
the largest deviation of its nc t matrix from the unitary limit
(UL) t matrix at the two-neutron separation energy. Moreover,
also at higher energies, other nuclei display smaller devia-
tions. The larger deviations of the UL distribution of 22C from
the LO result in Fig. 4 can already be understood in terms of
the size of the dimensionless parameters ānc in that system.
Furthermore, we observe that the nucleus with the second
largest unitary-limit deviation for the nc interaction—14Be—
also has the second largest deviation for the ground-state
relative-energy distribution. However, while 14Be was quite
prominent amongst the remaining nuclei in regard to its nc
interaction deviation, the deviation of its distribution is not
much larger than those of the remaining nuclei. This high-
lights that also the three-body dynamics can have quite some
influence.

The fact that the nn t matrix can be moved into the unitary
limit without changing the distributions very much could be
understood in terms of a similar plot. Only the three-body
dynamics and the size of S2n are relevant in that case, as the
virtual-state energy of the nn system is the same for all nuclei.
The deviations of the exact nn t matrix from the corresponding
unitary limit t-matrix at the two-neutron separation energies
are roughly 23% for 14Be and 17B, 36% for 11Li, 52% for
22C, and 53% for 19B. Therefore, due to having the smallest
two-neutron separation energies, 19B and 22C are the ones with
the highest deviations of the rescaled nn t-matrix in the region
that is relevant for the bound-state calculation.

Therefore, if we are willing to accept approximations of
about 20% (or a bit more for 22C) we can conclude that
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the ground-state relative-energy distributions of these halos
display “unitary universality” as given in Eq. (18).

B. Universality with nn FSI included

Having discovered a remarkable amount of universality in
the ground-state relative-energy distribution of two-neutron
halos we now turn our attention to the impact that the nn
FSI—and the corresponding energy scale 1/(mna2

nn)—has on
that distribution.

First, we state the obvious: also taking the nn interaction
for the FSI in the unitary limit is not a desirable approxima-
tion. In the bound-state calculation the nn t-matrix is only ever
evaluated at distances of at least S2n away from the origin on
the energy axis. However, the FSI takes place on the positive
real energy axis, and the nn t matrix needs to be evaluated
at energies of order 1/(mna2

nn). Pushing the nn interaction to
the unitary limit for the ground-state distribution is a good
approximation for 2n halos with S2n  1

mna2
nn

, but that approx-
imation cannot be made in the low-energy region relevant for
FSI.

The need to treat the two different components of the reac-
tion calculation differently, due to the different energy regions
that are probed in each case, means that we must find a way
to build nn FSI on top of the ground-state result. To take the
FSI exactly into account one needs to apply the t matrix on
the wave function level. But one can also employ the approx-
imate technique of so-called FSI enhancement factors; these
can be directly applied to the distributions. A detailed com-
parison between the exact calculation and FSI enhancement
factors as well as an overview of different FSI enhancement
factors can be found in Ref. [8] and its supplemental material
(see also Refs. [26–28]).

Our suggestion for a universal nn distribution including nn
FSI is therefore

ρ̃ (wFSI)(Enn/S2n;Vnn,Vnc, S2n, A)

= ρ̃(Enn/S2n)G(ann

√
2μEnn, rnn

√
2μEnn). (19)

Here, G(ann
√

2μEnn, rnn
√

2μEnn) is an enhancement fac-
tor parametrized in terms of the dimensionless variables
ann

√
2μEnn and rnn

√
2μEnn. (The standard enhancement fac-

tors parameterized by the nn relative-momentum pnn, the nn
scattering length ann and the nn effective range rnn can, in
fact, be rewritten exactly like this, as functions of the neutron-
neutron scattering length and the effective range measured
in units of the nn relative momentum.) Popular enhancement
factors are the G1 factor which can be found in Ref. [27] and
G2 from Ref. [28]. It is worth noting that one cannot easily get
rid of rnn in these factors, as these two standard factors would
diverge in the limit rnn → 0.

Our universal description for the final distribution is not
as universal as our result for the ground-state distribution.
It is different for each nucleus considered because we get
an additional direct S2n dependence from the enhancement
factor if we stay in the Enn/S2n plot. The enhancement factor’s
dimensionless variables ann

√
2μEnn and rnn

√
2μEnn depend

on Enn but not Enn/S2n and thereby in that plot the factor
is different for each nucleus. If one wants to compare the

FIG. 6. Full nn relative-energy distributions from LO halo EFT
divided by the FSI enhancement factor G1 in comparison with two
bands representing the ground-state calculations with the nc inter-
action in the unitary limit (brown) and the calculations with the
nc and the nn interactions in the unitary limits (turquoise). These
calculations are represented by bands, as we varied A between 9 and
20. The normalization scheme where the distribution is normalized
to a specific value at a specific point is used. The inset shows the
deviations from the universal description.

exact calculations (or future experimental results) against the
universal curve plus enhancement factor in the Enn/S2n plot,
one would have to draw a new universal prediction for each
nucleus. This difficulty can be avoided by dividing Eq. (19)
by the corresponding enhancement factor G on both sides
and comparing the resulting distributions. This comparison is
shown in Fig. 6. The division by the enhancement factor does
not remove all FSI effects. For this reason, the comparison
in Fig. 6 is a meaningful test of the universality encoded in
Eq. (19) and not equivalent to the previous comparison in
Fig. 4.

It can be seen that this approach leads to good results.
In the case of all nuclei, the deviations are not significantly
larger than 20%. Thereby, we have found a well-working
universal description that is based on two different kinds of
universality:

(i) A reduction-of-parameter universality that eliminates
the dependence of the distribution on the nucleus un-
der consideration: the EFT reduces the number of
parameters which are then further reduced by being
able to use unitary-limit amplitudes in the calculation
of the bound-state distribution in our normalization
scheme. The A dependence turns out to be negligible.

(ii) A factorization universality: the FSI enhancement fac-
tor is the same for all nuclei.

V. CONCLUSION

We calculated the nn relative-energy distributions of var-
ious 2n halo nuclei at leading order in halo EFT. These can
be observed in high-energy core-knockout reactions. This was
done at the ground-state level as well as after inclusion of nn
FSI. We found that good results for the ground-state distribu-
tions can be obtained by replacing the nc as well as the nn
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amplitude by the unitary limit amplitude, so turning the corre-
sponding scattering lengths into superfluous parameters as far
as the bound-state calculation is concerned. Furthermore, with
a suitable normalization of the distribution, the unitary-limit
result is also rendered independent of the mass number of the
nucleus.

There is thus a universal ground-state nn relative-energy
distribution for all s-wave Borromean 2n halo nuclei. We
assessed the deviations of this universal result from the
leading-order prediction of halo EFT. In the Enn region from
0 to 4S2n they are smaller than 20% for the four halo nuclei
11Li, 14Be, 17B, and 19B, and slightly higher for the case
of 22C. The two-neutron relative-energy distribution derived
using “unitary universality” is as good an approximation as
using leading-order halo EFT. This approximation is governed
by the large values of the scattering lengths and the fact
that, within the three-body (nnc) bound-state calculations, the
corresponding t matrices are only probed at negative energies
with some distance to 0.

Georgoudis has also recently argued that the unitary limit
is a useful way to understand the compound system of two
neutrons and a heavy even-even nucleus [29]. However, the
focus in that work is on energies and widths of states in the
compound system.

The unitary universality we found for two-neutron relative-
energy distributions across 2n halos is not straightforward to
observe experimentally, though, since it occurs at low relative
momentum between the two neutrons. In that kinematic re-
gion nn final-state interactions are strong. And while the nn
FSI is not affected by the mass of the core c, or by the nature
of the nc interaction, the universality of the nn FSI is not
aligned with that of the ground-state distribution. The former
involves rescaling by the energy scale 1/(mna2

nn), while the
latter involves rescaling by S2n.

But the nn FSI can be taken into account by multiplying
the universal nn relative-energy distribution by a final-state
enhancement factor, cf. Eq. (19). We assessed the accuracy of

this approximation for the final distribution by comparing it
to the leading-order EFT calculations with nn FSI taken into
account using the nn t matrix and found differences of less
than 20% almost everywhere.

In the future, it would be interesting to extend the halo
EFT calculation to next-to-leading order and see how large
deviations from the universal results are. This could be com-
plemented by tests in higher-resolution three-body models and
ab initio calculations based on chiral effective field theory.

Moreover, it would be very interesting to measure these
distributions experimentally. This would provide another ex-
perimental test case for leading-order halo EFT, but, more
than that, would permit an empirical evaluation of the claim
that there is a universal nn relative-energy distribution that
occurs in all these 2n halos. Such measurements of the
nn relative-energy distributions following a high-energy core
knockout are, in principle, feasible at rare isotope beam fac-
tories. Indeed, one was already done using the missing-mass
technique for the calibration reaction 6He(p, p′α)nn of the
recent RIKEN experiment regarding the tetraneutron [30].
A kinematically complete measurement of the same reaction
will be performed at RIKEN for the purpose of measuring the
nn scattering length [8,9].
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