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Wave function of 9Be in the three-body (ααn) model
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A simple analytic expression of the three-body wave function describing the system (ααn) in the ground
state 3

2

−
of 9Be is obtained. In doing this, it is assumed that the α particles interact with each other via the

S-wave Ali-Bodmer potential including the Coulomb term, and the neutron-α forces act only in the P-wave
state. This wave function is constructed by trial and error method via solving in this way a kind of inverse
problem when the two-body αα potential is recovered from a postulated three-body wave function. As a result,
the wave function is an exact solution of the corresponding three-body Schrödinger equation for experimentally
known binding energy and for the αα potential whose difference from the Ali-Bodmer one is minimized by
varying the adjustable parameters on which the postulated wave function depends.

DOI: 10.1103/PhysRevC.110.024001

I. INTRODUCTION

Beryllium isotope 9Be is of special interest from several
points of view. First of all, it is clusterized with very high
probability in two α particles and a neutron. As a result the
low-lying spectrum of this nucleus is well reproduced within
the three-body (ααn) model [1–5].

Second, neither αα nor αn pairs can form bound states,
which means that this isotope is an example of a Borromean
system with a rather small binding energy of 1.5736 MeV [6].

Third, due to such a weak three-body binding the valence
neutron is loosely bound as well. This means that the neutron
should move rather far away from the center of mass, which
makes the nucleus 9Be a transient one between ordinary com-
pact nuclei and the halo nuclei.

Last but not least is the fact that 9Be plays an important
role in astrophysical processes, namely, in synthesis of heavy
elements in the universe. Since there are no stable nuclei with
A = 5 and A = 8, the two-body pp-chain reactions practically
stop at the formation of 4He [7,8]. The synthesis of more
heavy elements requires a bridge over these so-called A = 5, 8
mass gaps. These gaps can be crossed over via three-body
fusion reactions. Among them the most well known is the
triple-alpha fusion, ααα → 12C +γ , which is usually associ-
ated with the Hoyle resonance (see, for example, Ref. [9]).
In a neutron-rich environment one of the alternative bridges
is provided by the radiative process n(αα, γ ) 9Be which in-
volves the beryllium isotope that is considered in the present
paper.

Of course, in addition to what was already said, the nu-
cleus 9Be appears either in the initial or in the final states
of various nuclear reactions, such as 9Be(n, γ ) 10Be [10],
9Be(18O, 17O) 10Be [11], 8Li(p, γ ) 9Be [12,13], etc.

When theoretically describing the processes mentioned
above, one usually needs the wave functions of the quan-
tum systems involved, and in particular the wave function of

9Be. There are many different approaches to obtaining such a
function.

Strictly speaking, this nucleus should be considered as a
nine-body system. Such an (ab initio) approach can be based
either on the shell model or on the expansion over the hy-
perspherical harmonics. However, as was mentioned before,
9Be is clusterized in two α particles and a neutron. Thanks
to the tight binding of 4He (≈28 MeV), the α particles move
inside 9Be like solid bodies without internal excitations, and
therefore the nine-body problem can be reduced to an effective
three-body one. To the best of the author’s knowledge all
the calculations that were done for 9Be during the last few
decades exploited the (ααn) cluster representation. The three-
body problem can also be solved in different ways: either
using exact Faddeev equations (see, for example, Refs. [2,3]),
or with the help of various approximate methods [4,14–16].

The common feature of all the publications wherein these
three-body approaches are realized is that the wave function
of 9Be is not given (and in most cases cannot be given) in
such a form that could be used by other people in their own
calculations. In other words, if somebody wants to use the
same wave function, he or she has to repeat all the compli-
cated calculations described in these publications. However,
for the majority of the researchers this is a difficult obstacle.
Indeed, the procedure of solving, for example, the Faddeev
equations involves many mathematical and numerical tricks
that are only known to those who specialize in the field of the
few-body problem. The shell model and the hyperspherical
expansion are not much easier. It is therefore desirable to have
some parametrized analytic expressions of the wave functions
of various nuclei that are easy to use. This is what the present
paper is devoted to. Here such a parametrization is obtained
for the wave function of 9Be in the three-body cluster model
(ααn).

The way of obtaining the parametrized three-body wave
function is based on the work by Belyaev et al. [17]. That
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FIG. 1. Jacobi coordinates, �rαα and �rn, that specify a space con-
figuration of the system (ααn). The symbols ρ1 and ρ2 denote
distances between the neutron and the two alpha particles.

paper deals with a three-body problem in which two of the
three pairwise potentials as well as the three-body wave
function are given while one of the two-body potentials is
unknown. The authors of Ref. [17] developed a method for
recovering this unknown potential.

In the present work, this method is kind of “reversed,”
i.e., the wave function is postulated in a parametrized form
and its parameters are optimized by minimizing the difference
between the recovered potential and the corresponding exact
one. For the system under consideration, (ααn), the αα poten-
tial is chosen for the role of the recovered one. The analytic
form of the wave function and its parameters are chosen to fit
(as close as possible) the Ali-Bodmer potential [18].

II. FORMALISM

Consider a bound state of two α particles and a neutron
with a negative three-body energy Eb. It is known [6] that
this system has only one bound state, which is the nucleus
9Be. Using the Jacobi coordinates shown in Fig. 1, the three-
body Schrödinger equation for the wave function �(�rαα, �rn)
describing 9Be can be written as follows:

Vαα (rαα )�(�rαα, �rn) =
[

Eb − Vαn(ρ1) − Vαn(ρ2)

+ h̄2

2μαα

��rαα
+ h̄2

2μ
��rn

]
�(�rαα, �rn),

(1)

where Vαα and Vαn are the two-body potentials for the αα

and αn pairs, μαα = mα/2 and μ = 2mαmn/(2mα + mn) are
the reduced masses corresponding to the respective Jacobi
coordinates, the radial variables ρ1 and ρ2 given by

ρ1,2 =
√

1
4 r2

αα + r2
n ∓ rααrn cos ϑ, (2)

are the distances between the neutron the the α particles,
and the Laplacians involve the derivatives with respect to the
corresponding Jacobi vectors.

Multiplying Eq. (1) by �†(�rαα, �rn) from the left and in-
tegrating over vector �rn as well as over the spherical angles,
�αα , of vector �rαα , one can find the potential Vαα , if the energy

Eb, the potential Vαn, and the function �(�rαα, �rn) are given:

Vαα (rαα ) = Eb − 1

D(rαα )

∫
d�ααd3rn�

†(�rαα, �rn)

×
[

Vαn(ρ1) + Vαn(ρ2) − h̄2

2μαα

��rαα
− h̄2

2μ
��rn

]

×�(�rαα, �rn), (3)

where

D(rαα ) =
∫

d�ααd3rn�
†(�rαα, �rn)�(�rαα, �rn) (4)

is the relative αα radial probability density.
It should be noted that the wave function �(�rαα, �rn) is

(by construction) the exact solution of the Schrödinger equa-
tion with a given Eb and with the potential Vαα which is
obtained from Eq. (3). This means that if one chooses an
approximate �, it is still an exact solution of Eq. (1) with
the corresponding approximate Vαα . The difference of this
approximate αα potential from the one which is considered
as the exact potential characterizes the quality of the chosen
�. If one manages to find such a function � that the potential,
which follows from Eq. (3), is almost the same as the exact
one, one actually finds a reliable solution of Eq. (1) for a given
energy Eb. This can be achieved by varying the parameters of
a postulated function � in order to minimize the difference
between the approximate and the exact αα potentials.

III. TWO-BODY POTENTIALS

The main input information that is needed in the present
work is given by the αα and αn two-body potentials. As is
explained in the next section, these potentials are needed for
the S-wave and P-wave states, respectively. The first of them
is taken from Ref. [18]. This is well known Ali-Bodmer αα

potential:

Vαα (r) = VRe−(βRr)2 − VAe−(βAr)2 + Vc(r), (5)

which involves the repulsive and attractive Gaussian terms as
well as the repulsive electric (Coulomb-like) one,

Vc(r) = 4e2

r
erf

( √
3

2Rα

r

)
. (6)

The parameters of this potential are VR = 1050 MeV,
βR = 0.8 fm−1, VA = 150 MeV, βA = 0.5 fm−1, Rα =
1.44 fm. The Coulomb term (6) takes into account a nonzero
size of the α particle. The expression (6) is obtained under the
assumption that its charge has a Gaussian distribution in space
with the rms radius Rα .

The αn potential in the present work is the same that was
suggested by Bang and Gignoux [19]. It is of the Woods-
Saxon type with a spin-orbit term:

Vαn(r) = W1

1 + exp[(r − R1)/d1]

+ �
 · �s
r

d

dr

W2

1 + exp[(r − R2)/d2]
, (7)
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where W1 = −43.0 MeV, R1 = 2.0 fm, d1 = 0.7 fm, W2 =
40.0 MeV fm2, R2 = 1.5 fm, d2 = 0.35 fm. For the quantum
state with the total angular momentum J = 3/2, orbital angu-
lar momentum 
 = 1, and the neutron spin s = 1/2, the action
of the operator �
 · �s is equivalent to multiplication by 1/2.

The potentials (5) and (7) were used by many authors in
a number of calculations within the three-body models of
9Be and 6Li (see, for example, Refs. [2,3,19,20] where the
corresponding three-body Faddeev equations were solved). It
turned out that these potentials reliably described the αα and
αn interactions at low energies, as well as allowing one to
well reproduce the binding energies and the other properties
of the nuclei. The potentials (5) and (7) are therefore used in
the present paper as well.

IV. WAVE FUNCTION OF 9Be

As was explained in the Introduction, the beryllium isotope
9Be is clusterized in two α particles and a neutron. This is a
Borromean three-body system that has only one bound state
with a rather small binding energy |Eb| = 1.5736 MeV and
with the spin-parity (3/2)− [6]. Since the α particle spins
are zero, the three-body wave function should be symmetric
with respect to the α-α permutation. This means that their
relative orbital angular momentum is even, 
αα = 0, 2, 4, . . . .
The negative parity can therefore be obtained if the va-
lence neutron moves with an odd orbital angular momentum,

n = 1, 3, 5, . . . , relative to the αα pair.

As a reliable approximation, it is reasonable to assume that

αα = 0 and 
n = 1. All the higher partial waves are ignored
since the (ααn) binding is weak and Borromean while high
values of 
αα and 
n introduce additional repulsive centrifugal
potentials into the three-body Hamiltonianian. The minimal
repulsion is in the state 
αα = 0, 
n = 1.

One may wonder why 
n = 1 and not zero, which would
generate even less repulsion. An intuitive explanation can be
found by considering the naive shell model as follows. There
are five neutrons in this nucleus. Four of them are sitting in the
clusters. Each cluster has its own mean-field potential and its
own level structure. Two neutrons in the first α particle occupy
its lowest S level and the other two neutrons occupy the lowest
S level in the second α particle. What remains for the fifth
neutron is the P level either in the first or in the second cluster.
Therefore the valence neutron moves in the P-wave state with
respect to both α particles. This is therefore the shell-model
configuration with the minimal energy. And since 
αα = 0, the
orbital angular momentum of the neutron with respect of the
center of mass of the αα subsystem is also 1, i.e. 
n = 1.

Based on the above reasoning, one comes to the following
structure of the wave function of 9Be:

�(�rαα, �rn) = R(rαα, rn)Y00(�αα )Y
3
2 Jz

1 1
2

(�n), (8)

where the spin-angular function of the neutron, Y
3
2 Jz

1 1
2

(�n),

defined as

YJJz


s (�) =
∑
msz

CJJz


mssz
Y
m(�)χs(sz ), (9)

couples its orbital angular momentum and the spin. Here χs is
the spin function of the neutron.

Substituting wave function (8) in Eqs. (3) and (4), the
following decomposition of the αα potential is obtained:

Vαα (rαα ) = Eb − 〈Vαn(ρ1) + Vαn(ρ2)〉 −
〈

n(
n + 1)

r2
n

〉

+ 〈Ekin〉, (10)

where the averaging, denoted by the brackets 〈〉, is done over
all the configuration space variables except the radial variable
rαα . These average values represent the contributions that
originate from the two αn potentials,

〈Vαn(ρ1,2)〉 = 3

4D(rαα )

∫ ∞

0
drn

∫ π

0
dϑ r2

n (sin ϑ )3Vαn(ρ1,2)

× |R(rαα, rn)|2, (11)

from the centrifugal potential caused by 
n = 1,〈

n(
n + 1)

r2
n

〉
= h̄2

μD(rαα )

∫ ∞

0
drn|R(rαα, rn)|2, (12)

and from the radial derivatives (“kinetic energy” terms) of the
Laplacians ��rαα

and ��rn ,

〈Ekin〉 = h̄2

2μααr2
ααD(rαα )

∫ ∞

0
drn r2

nR∗(rαα, rn)
∂

∂rαα

×
[

r2
αα

∂

∂rαα

R(rαα, rn)

]

+ h̄2

2μD(rαα )

∫ ∞

0
drn R∗(rαα, rn)

∂

∂rn

×
[

r2
n

∂

∂rn
R(rαα, rn)

]
, (13)

where

D(rαα ) =
∫ ∞

0
drn r2

n |R(rαα, rn)|2. (14)

Equation (11) was obtained using the fact that the left-
hand side of Eq. (10) cannot depend on Jz. The simplest
choice is Jz = 3/2 which implies that the sum in Eq. (9)
only includes one term involving the spherical harmonics
Y11(ϑ, ϕ) = −(1/2)

√
3/(2π ) sin ϑ exp(iϕ), where the z axis

is chosen along �rαα and the polar angle ϑ is between vectors
�rαα and �rn (see Fig. 1).

It should be noted that in Eqs. (11)–(13) the normaliza-
tion of the radial wave function R(rαα, rn) is arbitrary. This
is because in each of these equations the square of R is
present in both the numerator and denominator. This fact
significantly simplifies the procedure for fitting the potential
Vαα (rαα ), because one does not have to care about proper
normalization of R(rαα, rn) when varying its parameters. The
function R(rαα, rn) only needs to be normalized to unity at the
final stage when all its parameters have been optimized and
established.

The choice of a functional form of R(rαα, rn) is the most
important and difficult part of the described procedure. It was
done by the trial and error approach. After many unsuccessful
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attempts, a form of this radial wave function was found such
that Eq. (10) produced the potential curve whose shape was
more or less similar to the Ali-Bodmer potential. Finally, the
parameters of R(rαα, rn) were adjusted by minimizing the
difference between the Ali-Bodmer potential and the one pro-
duced by Eq. (10). This was done via the least-square method
using the minimization code MINUIT [21].

The resulting radial wave function of 9Be is as follows:

R(rαα, rn) = N

r2
ααr3

n

arctan[(a1rαα )7/2] arctan[(a2rn)7/2]

× [1 − e−(a3rαα )2
]2 e−κζ

ζ 5/2
, (15)

where κ =
√

2μ|Eb|/h̄2 is the momentum corresponding to
the experimental binding energy,

ζ =
√

μαα

μ
r2
αα + r2

n (16)

is the hyperradius, a1 = 0.374 41 fm−1, a2 = 0.070 112 fm−1,
a3 = 0.419 53 fm−1, and the normalization constant
N = 927 446.734 fm9/2.

A specific choice of the functional form of R(rαα, rn) was
based on some general properties of such a function as well as
on the author’s intuition. Unfortunately, there is no universal
recipe for constructing this function.

The following general features of the wave function were
taken into account. First of all, the radial wave function must
exponentially tend to zero at large distances in all directions in
the configuration space. It is known from the hyperspherical
expansion theory that for any three-body system such an ex-
ponential diminishing is given by the factor e−κζ /ζ 5/2. This
is why this factor is present in the expression (15). Due to the
Pauli blocking, the α particles cannot penetrate each other.
For the same reason the neutron cannot move inside them.
Therefore the Pauli blocking requires vanishing of the wave
function when rαα and rn tend to zero. And finally, the wave
function should have maxima at some short distances along
both radial variables, rαα and rn. These maxima correspond to
the most probable configuration of the system.

A maximum at some intermediate distance along the vari-
able x as well as vanishing near x = 0 can be implemented
by using the function arctan[(ax)n]/xm with n > m. There
are two such factors in the function (15), for x = rαα and
for x = rn. In principle, the powers n and m could be made
additional adjustable parameters. However, it was decided
not to increase the number of the free parameters, because
a multivariable function usually has many local minima and
therefore with too many variable parameters the fitting of the
potential could be more difficult. The optimal values of n and
m for the variables rαα and rn were found manually by the trial
and error method.

It turned out that the suppression of R(rαα, rn) at
rαα → 0 that was provided by the corresponding factor
∼ arctan(·) was insufficient (the resulting Vαα potential was
too soft at the origin). In order to increase the suppression, an
additional factor [1 − e−(a3rαα )2

]2 was introduced.

FIG. 2. The exact Ali-Bodmer potential (5) shown by the dashed
curve, and the αα potential corresponding to the wave function (8)
with the radial part (15) (solid curve).

The wave function (8) with the radial part (15) is an exact
solution of Eq. (3) for the αα potential shown in Fig. 2 by the
solid curve. As one can see, this reconstructed potential is very
close to the Ali-Bodmer one. On one hand it is a bit different,
but on the other hand it corresponds to the exact experimental
binding energy of 9Be.

In order to check how good the reconstructed potential
is in describing the low-energy αα scattering, the S-wave
scattering phase shifts were calculated and compared with
the corresponding values for the Ali-Bodmer potential. For
obtaining the phase shifts the differential equations for the Jost
functions were numerically integrated (see Eqs. (8.57, 8.58) of
the book [22]). The results of these calculations are shown in
Fig. 3, where the solid curve corresponds to the reconstructed
potential while the dashed curve represents the Ali-Bodmer
one. In Fig. 3 these phase shifts are compared not only with
each other but also with the corresponding experimental val-
ues. The experimental data are available (see Refs. [23,24])
as the so-called nuclear parts of the phase shifts, i.e., the pure
Coulomb phase shifts are subtracted. In calculating the curves
such a subtraction was done as well.

The purpose of this comparison is to indirectly check the
quality of the wave function (8) with the radial part (15).
Since the reconstructed potential is not very much different
from the Ali-Bodmer one and since it generates almost the
same phase shifts that are also close to experimental data, one
can say that in a possible application of this wave function
it can be considered as a reliable approximation of the exact
solution of the three-body Schrödinger equation (1) with the
two-body potentials given in Sec. III.

An additional test of the wave function that is obtained in
the present work can be done by calculating various space
distances in the bound (ααn) state which this wave function
describes. It should be emphasized that none of the root-
mean-square (RMS) distances that are calculated and given
in Table I, were fitted. The fit (by varying the parameters a1,
a2, and a3) was only done for the αα potential. The RMS
distances are just those that the resulting wave function gives.
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FIG. 3. The S-wave phase shift for the Ali-Bodmer potential (5)
shown by the dashed curve, and the corresponding phase shift for
the αα potential reconstructed from the wave function (8) with the
radial part (15) (solid curve). The experimental data are taken from
Refs. [23,24].

The calculation of the RMS distances is reduced to one- or
three-dimensional integrals over rαα , rn, and ϑ (see Fig. 1):〈

r2
αα

〉 = 〈�|r2
αα|�〉, (17)

〈
r2

cm-n

〉 = 〈�|
(

2mα

2mα + mn
rn

)2

|�〉, (18)

〈
r2

cm-α

〉 = 〈�|
(

1

2
�rαα − mn

2mα + mn
�rn

)2

|�〉. (19)

When finding the RMS charge and matter radii of 9Be,
the corresponding nonzero radii of the α particle, Rch(α) =

TABLE I. Various RMS distances in 9Be: between the α particles
(
√〈r2

αα〉), from c.m. to the valence neutron (
√〈r2

cm-n〉), from c.m. to
the α particle (

√〈r2
cm-α〉), charge radius of the nucleus (

√〈r2
ch〉), and

matter radius of the nucleus (
√

〈r2
mat〉). The experimental data are

taken from Refs. [25–27].

Distance

Calculated (fm) Measured (fm)

√〈r2
αα〉 3.46√〈r2
cm-n〉 4.65√〈r2
cm-α〉 1.83√〈r2
ch〉 2.48 2.519 [25,26]√

〈r2
mat〉 2.70 2.50 ± 0.01 [27]

FIG. 4. Radial part (15) of the wave function of 9Be.

1.67824 fm [28] and Rmat(α) = 1.457 fm [29] should be taken
into account:〈

r2
ch

〉 = 〈
r2

cm-α

〉 + R2
ch(α), (20)

〈
r2

mat

〉 = 2mα

2mα + mn

[〈
r2

cm-α

〉 + R2
mat(α)

]
+ mn

2mα + mn

〈
r2

cm-n

〉
. (21)

As one can see, the charge radius,
√

〈r2
ch〉, turned out to

be very close to the corresponding experimental value. The
matter radius,

√
〈r2

mat〉, is a bit too large as compared to the
measurement. The difference, however, is not drastic. A very
close result, namely, the value of 2.68 fm for the matter radius
of 9Be, was obtained in Ref. [30] within the three-body model
with microscopic nonlocal interactions based on the Volkov
V2 potential. Also, it should be noted that, in contrast to a
rather simple and accurate procedure for experimental deter-
mination of the charge radius, the measurements of the matter
radii of the nuclei are always more difficult and are not without
some ambiguities [29].

A quasi-three-dimensional image of the radial part (15) of
the wave function of 9Be is given in Fig. 4. This function has a
maximum at rαα = 2.4051 fm and rn = 1.4654 fm. One also
clearly sees a “ridge” along rn with rαα ≈ 2 fm. This extended
“ridge” is the cause of rather large values of

√〈r2
cm-n〉 and√

〈r2
mat〉.

V. CONCLUSION

The wave function (8) with the radial part (15) is an ex-
act bound-state solution of the three-body integrodifferential
equation (3) which follows from the equivalent Schrödinger
equation (1). By construction, this solution corresponds to the
experimentally known binding energy, as well as to the αn
potential (7) and to the αα potential that is almost the same
as the Ali-Bodmer one. It can therefore be considered as a
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reliable approximation of the wave function of the nucleus
9Be in the three-body model (ααn).

This wave function is obtained in the form of a compact
analytical expression that is easy to use. Among possible
applications of this function could be, for example, the con-
struction of various folding potentials as well as estimating the
cross sections of various nuclear reactions that involve 9Be.

The method used in the present paper is universal and can
be applied for constructing the ground-state wave functions of
any other nuclear or some atomic bound three-body systems.
Of course it cannot compete with the approaches based on
Faddeev equations, hyperspherical expansions, etc., where the
whole spectrum of the excited states can be described. How-
ever, the proposed method has its own application niche where
it may be preferable. In particular, this method is suitable for
the systems that have no excited states, such as, the nuclei 6He
and 6Li if they are considered in the three-body model (αNN ).
The proposed method can give an analytical expression for
the wave function which is easy to use when one needs a
reliable estimate of something and does not want to delve into
complicated numerical calculations of the rigorous three-body
theory. In principle, the excited state wave functions can be
constructed within this method as well. This, however, will
require additional effort in making the excited states orthogo-
nal to the ground state and to each other.

The method can be generalized for constructing the wave
functions that are linear combinations of several mutually
orthogonal components. For example, the ground 0+ state of
6He in the (αnn) model is mainly composed of two compo-
nents: the state |�0〉 with zero nn spin as well as zero orbital

angular momenta associated with both nn and α(nn) Jacobi
coordinates (82.87%), plus the state |�1〉 with the nn spin 1
and the P waves along both Jacobi coordinates (13.96%) [31],
i.e., |�〉 = C0|�0〉 + C1|�1〉. In such a case, when going from
Eq. (1) (which should be written for the nn potential) to
Eq. (3), one should multiply Eq. (1) from the left either by
�

†
0 or by �

†
1 and integrate over all the configuration-space

variables except the nn distance. As a result one obtains a
system of two coupled integrodifferential equations where on
the left-hand sides are the singlet (1S0) and triplet (3P1) nn
potentials which can be fitted by adjusting the parameters of
some postulated �0 and �1.

Another possible generalization of the proposed method
may consist in considering four, five, and larger numbers
of bodies in the bound system. In doing this, one term of
the Schrödinger equation that involves a chosen two-body
potential can be moved to the left-hand side, as is done
in Eq. (1). Then whole equation should be multiplied from
the left by �† and integrated over all the variables except
the one on which the chosen potential depends. After that the
wave function should be postulated and its parameters should
be adjusted in order to fit the potential. The main difficulty
here is that with increasing number of particles it is not a
simple task to find (to guess) an appropriate parametrization
of the wave function because it depends on many variables.
Moreover, even if one manages to find such a parametrization,
the right-hand side of Eq. (3) will involve multidimen-
sional integrals which may cause some numerical difficulties
when the system under consideration consists of too many
particles.
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