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Role of the symmetry energy slope in neutron stars: Exploring the model dependency
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Using six different parametrizations of the quantum hadrodynamics (one of which is original), I study how
different values of the symmetry energy slope L affect some microscopic and macroscopic properties of neutron
stars, such as the proton fraction, the maximum mass, the radius of the canonical 1.4M� star and its dimensionless
tidal parameter �. I show that while most quantities present the same qualitative results, the tidal parameter
can increase or decrease with the slope, depending on the model. Moreover, special attention is given to the
minimum mass that enables the direct URCA process to occur in neutron stars’ interiors (MDU). Assuming the
weak constraint MDU > 1.35M�, one can see that the maximum value of L that satisfies it lies between 79 and
86 MeV, a range of only 7 MeV. Therefore, MDU is an easy way to impose upper bounds to the slope.
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I. INTRODUCTION

Neutron stars are among the densest objects in the universe.
With masses reaching two solar masses while the radii are not
larger than 15 km, their central density can reach several times
the density of the atomic nuclei. Although our knowledge
about nuclear physics near the saturation point made a great
leap in the last decade, we still have a very foggy vision for
densities above three or four times this point. Due to this, it is
easy to find in the literature models that predict similar values
near the saturation density but very different behavior at high
densities.

In two different review papers (Refs. [1,2]), the authors
were able to constrain five nuclear quantities at saturation
density: the saturation density itself (n0), the nucleon effec-
tive mass M∗

N/MN the binding energy per baryon B/A, the
(in)compressibility K , and the symmetry energy S0. A sixth
quantity, the symmetry energy slope, or simply the slope L
is still a matter of debate. In the earlier 2010s, most stud-
ies pointed to a relatively low value for L. For instance, in
Refs. [3–5] upper limits of 54.6, 61.9, and 66 MeV, respec-
tively, were suggested. However, the situation has changed in
the last couple of years, and new experiments have pointed to a
significantly higher upper limit. For instance, in a study about
the spectra of pions in intermediate energy collisions, an upper
limit of 117 MeV was obtained [6], while in one of the PREX
II analyses [7] an upper limit of 143 MeV was suggested.
All these conflicting results have been well summarized in
a recent paper [8]: the CREX group points to a slope in the
range 0 < L < 51 MeV, while PREX II results point to 76
MeV <L < 165 MeV. The CREX and PREX II results do not
overlap. It is a huge problem that must be solved.

In this work, I study the influence of the symmetry energy
slope by fixing the five well-known quantities at the satu-
ration density and varying only the slope L. Moreover, to
study the model-dependency of the results I use six differ-
ent parametrizations of the quantum hadrodynamics (QHD)

[9,10]. I only impose two prior constraints for the models. I
require that at least four of the five parameters of the nuclear
matter at the saturation point satisfy the constraint coming
from Refs. [1,2], and that all models predict neutron stars
with masses M > 2.0M�. This feature is imperative, once the
existence of very massive stars is well established, such as the
PSR J0348 + 0432 with a mass of 2.01 ± 0.04M� [11] and
the PSR J0740 + 6620, with M = 2.08 ± 0.07M� [12].

Only after that do I start to investigate which parametriza-
tion and with what values of L can fulfill other constraints
coming from nuclear astrophysics. For instance, the radius of
PSR J0740 + 6620 lies between 11.41 km <R < 13.70 km,
as suggested in Ref. [12]. Concerning the canonical 1.4M�
star, the NICER teams pointed to a limit of 13.85 km [13]
and 14.26 km [14]. These results were refined in Ref. [15] to
11.80 km < R1.4 < 13.10 km. A more conservative constraint
coming from state-of-the-art theoretical results at low and
high baryon density points to an upper limit of R1.4 < 13.6 km
[16]. Still, on the canonical star, another important quantity
and constraint is the so-called dimensionless tidal deforma-
bility parameter �. The gravitational wave observations by
LIGO/VIRGO in the GW170817 event put the constraints
on the dimensionless tidal parameter of the canonical star
�1.4 < 800 [17]. This result was then refined in Ref. [18] to
70 < �1.4 < 580.

I also pay special attention to the possible presence of the
direct URCA (DU) process in neutron stars. The so-called
standard model of neutron-star cooling is based upon neutrino
emission from the interior, which is dominated by the modi-
fied URCA process. However, if the proton fraction exceeds
some critical value (XDU) in the range 11%–15%, the process
will be dominated by the direct URCA process, a process one
million times more efficient [19–22]. As in beta-stable matter,
the condition expected in neutron stars’ interior, the proton
fraction grows with the density: the more massive the star, the
higher will be the proton fraction. For each parametrization
and slope value, I calculate the minimum mass that enables the
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DU process (MDU). Moreover, there are also some constraints
related to it. Reference [23] pointed out that any acceptable
equation of state (EoS) does not allow the direct URCA
process to occur in neutron stars with masses below 1.5M�.
Such a constraint is corroborated by a recent study on the
statistical theory of thermal evolution of neutron stars, which
suggests that the minimum mass that allows the DU process
lies between 1.6M� and 1.8M� [24]. These are, nevertheless,
faced as strong constraints. A weak constraint is presented in
Refs. [23,25–27] and indicates that MDU > 1.35M�.

Therefore, for the six parametrizations of the QHD, I fix the
five well-known parameters at the saturation density and run
over the slope from 44 MeV up to 92 MeV, to rule out values
of L that predict MDU < 1.35M�. Moreover, to keep the sym-
metry energy fixed while varying the slope, I add the nonlinear
ω − ρ coupling as presented in the IUFSU model [28–30].
It is also possible to obtain L above 92 MeV with the help
of the scalar-isovector δ meson [31–33]. However, as it will
become clear in the text, this is not necessary because L = 92
MeV already produces MDU < 1.35M�. Moreover, two recent
papers [34,35] indicate that higher values of the slope are
in disagreement with some constraints coming from neutron
stars’ observations, once it predicts the radii for the canonical
stars outside the limits inferred by the NICER observations
[13,14], as well a hadron-quark phase transition very close or
even below the saturation density.

II. FORMALISM AND PARAMETRIZATIONS

The extended version of the QHD [9], which includes the
ωρ nonlinear coupling [28–30] has the following Lagrangian
density in natural units:

LQHD = ψ̄N

[
γ μ

(
i∂μ − gωωμ − gρ

1

2
�τ · �ρμ

)

− (MN − gσ σ )

]
ψN − U (σ ) + 1

2
m2

vωμωμ

+ 1

2

(
∂μσ∂μσ − m2

s σ
2) + ξg4

ω

4
(ωμωμ)2

− 1

4
�μν�μν + �ωρ

(
g2

ρ
�ρμ · �ρμ

)(
g2

ωωμωμ

)

+ 1

2
m2

ρ �ρμ · �ρ μ − 1

4
Pμν · Pμν. (1)

The ψN is the Dirac field of the nucleons. σ , ωμ, and �ρμ are
the mesonic fields. g are the Yukawa coupling constants that
simulate the strong interaction, MN is the nucleon mass and
ms, mv , and mρ are the masses of the σ , ω, and ρ mesons
respectively. The ξ is related to the self-interaction of the ω

meson, while the �ωρ is a nonlinear coupling between the ω-ρ
mesons and controls the symmetry energy and its slope [30].
The U (σ ) is the self-interaction term introduced in Ref. [36]
to fix the compressibility:

U (σ ) = κMN (gσ σ )3

3
+ λ(gσ σ )4

4
. (2)

Furthermore, leptons are added as free fermions to ac-
count for the chemical stability. The EoS is then obtained in

mean-field approximation (MFA) by calculating the compo-
nents of the energy-momentum tensor. The detailed calcula-
tion of the EoS in the mean-field approximation can be found
in Refs. [9,10,28,33,37–39] and the references therein.

I use six different QHD parametrizations to study the
model dependency of the slope in neutron stars’ properties.
Five of them are well known in the literature. They are (from
the softer to the stiffer one) the NLρ [32], the L3ωρ [40], the
GM1 [41], the FSU2H [38], and the BigApple [42]. The sixth
one is completely original. Recently, Ref. [43] reported that
the NICER group during the April American Physical Society
(APS) meeting indicated that PSR J0437-4715 has a radius of
only 11.36+0.95

−0.63 km. With a mass very close to the canonical
star, MJ0437 = 1.418M�, such a radius range presents a very
strong constraint for the upper limit: RJ0437 < 12.31 km. The
original parametrization can fulfill such strong constraint (at
least for L = 44 MeV) and simultaneously predict a max-
imum mass above 2.2M�. This feature can be potentially
important because Ref. [44] indicates that the black widow
pulsars PSR J0952-0607 has a mass M = 2.35 ± 0.17M�.
Moreover, the original parametrization (which I call here
L1ω4) fulfills the five constraints at the saturation density
presented in Refs. [1,2].

For each parametrization, except for the slope, all five other
quantities (n0, M∗

N/MN , B/A, K , S0) are fixed. This implies
that, except for gρ and �ωρ , all other parameters of the model
are also fixed. In Table I, I present the fixed parameters of
the six models, the prediction of the five fixed quantities, and
the constraints coming from Refs. [1,2]. In Table II, I present
the values of gρ and �ωρ for each model and for four different
slope values.

As can be seen from Table I, four of the six parametriza-
tions satisfy all the five constraints of nuclear matter. The
FSU2H fails to fulfill the effective nucleon mass at saturation
density, but its value is only ≈1% below the bottom limit. On
the other hand, the GM1 parametrization presents a compress-
ibility around 15% above the upper limit. I nevertheless kept
the GM1 parametrization precisely to study the effects of such
a high value of K .

Now, the direct URCA (DU) process takes place when the
proton fraction exceeds a critical value XDU, which can be
evaluated in terms of the leptonic fraction [19,22]:

XDU = 1

1 + (
1 + x1/3

e
)3 , (3)

where xe = ne/(ne + nμ), and ne, nμ are the number den-
sities of the electron and muon, respectively. Furthermore,
as will become clear through the paper, the minimum mass
that enables the DU process depends on the slope. In the
Table III I display for each parametrization, the slope value
that predicts exactly the weak constraint of the DU process,
MDU = 1.35M�.

III. RESULTS AND DISCUSSION

In order not to saturate the text, I only present the summa-
rized figures here, which cover all the models and L values.
The individualized figures, for each model and each slope
value, are presented in Figs. 1, 3, 6, and 7.
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TABLE I. Parameter sets used in this work and corresponding saturation properties.

NLρ [32] L3ωρ [40] GM1 [41] FSU2H [38] BigApple [42] L1ω4 (original) Constraints [1,2]

n0 (fm−3) 0.160 0.156 0.153 0.150 0.155 0.164 0.148–0.170
K (MeV) 240 256 300 238 229 241 220–260
M∗

N/MN 0.75 0.69 0.70 0.59 0.61 0.69 0.6–0.8
B/A (MeV) 16.0 16.2 16.3 16.3 16.3 16.0 15.8–16.5
S0 (Mev) 32.5 31.7 32.5 30.5 31.3 33.1 28.6–34.4
MN 938.93 938.93 938.93 939.0 939.0 938.9 −
mσ 512 512 512 497.5 492.7 512 −
mω 783 783 783 782.5 782.5 783 −
mρ 770 770 770 763 763 770 −
gσ 8.339 9.029 8.908 10.136 9.670 8.913 −
gω 9.239 10.597 10.609 13.020 12.316 10.457 −
κ 0.00694 0.00414 0.00295 0.00213 0.00277 0.00440 −
λ −0.00480 −0.00390 −0.00107 −0.00222 −0.00362 −0.00480 −
ξ − − − 0.00133 0.00012 −0.00004 −

I begin by calculating the proton fraction (Yp) as a function
of the number density for different slope values. The complete
results are presented in Fig. 1, where XDU is defined in Eq. (3).
As can be seen, the higher the value of L, the higher the proton
fraction. One can also notice that for two parametrizations,
NLρ and L3ωρ, the Yp has a quick increase, surpassing 0.25
for L = 92 MeV. Such behavior, which is more than a depen-
dence on the physical quantities, seems to be linked to the
nature of nonlinear ω-ρ coupling, �ωρ . For positive values of
�ωρ coupling (see Ref. [34] and references therein for addi-

TABLE II. Parameters for four fixed values of the symmetry
energy slope within six different parametrizations.

Model L (MeV) gρ �ωρ

NLρ 44 11.037 0.0700
NLρ 60 9.763 0.0470
NLρ 76 8.804 0.0220
NLρ 92 8.120 −0.0010
L3ωρ 44 11.310 0.0515
L3ωρ 60 9.685 0.0344
L3ωρ 76 8.638 0.0171
L3ωρ 92 7.863 0
GM1 44 11.536 0.0470
GM1 60 10.086 0.0320
GM1 76 9.017 0.0165
GM1 92 8.287 0.0019
FSU2H 44 14.049 0.0450
FSU2H 60 10.260 0.0312
FSU2H 76 8.445 0.0175
FSU2H 92 7.326 0.0036
BigApple 44 12.846 0.0440
BigApple 60 10.000 0.0310
BigApple 76 8.509 0.0181
BigApple 92 7.567 0.0057
L1ω4 44 11.707 0.0530
L1ω4 60 9.926 0.0362
L1ω4 76 8.818 0.0204
L1ω4 92 5.866 0.0050

tional details), the effective mass of the ρ meson, increases
proportional to the number density, reducing its contribution,
especially at high densities. For L = 92 MeV, L3ωρ has �ωρ

equal to zero, while NLρ presents a negative value, therefore
its effects are reversed. The density where the proton fraction
reaches XDU, which I call by nDU is presented in Fig. 2.

As can be seen, from the qualitative point of view, there is
a correlation between the slope and the number density where
the proton fraction reaches XDU. The lower is the slope, the
higher is the nDU. From the quantitative point of view, one
can see that for low values of the slope, the results present big
differences, but for high values of L, the results are similar. For
instance, within L = 44 MeV, nDU reads 1.48 fm−3 for NLρ

and 1.44 fm−3 for GM1, while assumes nDU = 0.64 fm−3

for BigApple and nDU = 0.57 fm−3 for FSU2H. On the
other hand, within L = 92 MeV, nDU = 0.31, 0.29, 0.30, and
0.28 fm−3 for NLρ, GM1, BigApple and FSU2H respectively.
The fact that the results begin to become degenerate at higher
values of L was noticed (in a different context) in Ref. [35].
In their work, the authors show that for higher values of L,
the critical chemical potential related to hadron-quark phase
transition is almost independent of the quark EoS utilized.

I now discuss how the slope affects some neutron star
properties. The complete mass-radius solution is obtained by
solving the TOV equations [45]. It is also important to point
out that to describe the outer crust and inner crust of neutron

TABLE III. Slope value and the respectively parameters that
predict MDU = 1.35M�, therefore acting as a model-dependent upper
limit for the slope.

Model L (MeV) gρ �ωρ

NLρ 79 8.647 0.0176
L3ωρ 81 8.360 0.0012
GM1 84 8.629 0.0092
FSU2H 86 7.685 0.0089
BigApple 86 7.919 0.0107
L1ω4 80 8.620 0.0165
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FIG. 1. Proton fraction as a function of the number density for different values of L.

stars, I utilize the Baym-Pethick-Sutherland (BPS) EoS [46]
and the Baym-Bethe-Pethick (BBP) EoS [47], respectively. I
use the BPS + BBP EoS up to the density of 0.0089 fm−3 for
all values of L, and from this point on, I use the QHD EoS,
as suggested in Ref. [39]. In Ref. [48], the authors compare
the BPS + BBP crust EoS with a unified EoS. They show
that, for the canonical star, there is a variation in the radius of
60 m < R1.4 < 150 m. For a radius of 13 km, this implies an
uncertainty around 1%. This procedure is the same as the one

done in Refs. [34,35,49]. The complete mass-radius relation
is displayed in Fig. 3, while the main results are presented in
Fig. 4.

At the top of Fig. 4, I show the minimum mass that enables
the DU process as a function of the slope. That is an im-
portant feature because the weak constraint, MDU > 1.35M�
must be satisfied. Although the models predict very different
stars, the maximum values of the slope are very close to each
other, presenting a difference of only 7 MeV, as presented
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FIG. 2. The number density where the proton fraction reaches
XDU as a function of the slope (bottom).

in Table III. Therefore, the results of this table can be used
as a model-dependent upper limit of the slope. Moreover, in
general, the stiffer the EoS, the higher the upper limit of the
slope. However, there is little correlation between the physical
quantities at saturation density and MDU. One also can see
that, for L = 44 MeV, only the two stiffer EoSs (BigApple
and FSU2H) predict the DU process for massive stars. For
L = 60 MeV, L3ωρ and L1ω4 also predict the DU process for
massive stars. Finally, for L � 76 MeV, all models predict the
DU process at least for massive stars.

In the middle of the Fig. 4, I display the radius of the
canonical star altogether with the constraint R1.4 = 12.45 ±
0.65 km, as presented in Ref. [15]. There is an increase in
the radius with the slope for all parametrizations. The FSU2H
does not satisfy this constraint for either value of L. BigApple
satisfies only for L = 44 MeV. On the other hand, NLρ and
L1ω4 satisfy this constraint for all values of L. If, however,
one uses a more conservative constraint, as R1.4 < 13.6 km
as suggested in Ref. [16], then FSU2H can be satisfied up to
L = 60 MeV. In the same sense, BigApple can be satisfied up
to 76 MeV, while the L3ωρ is satisfied for all values of L.
Here again, I do not see any correlation between the radius
of the canonical star and the physical quantities at saturation
point, except the well-known fact that increasing the slope
also increases the radius. There is, nevertheless, a correlation
between a stiffer EoS and the radius of the canonical star. The
exception is the FSU2H, which is softer than the BigApple
but has a higher radius for the canonical star with the same
value of L. But this can be explained by the coupling constant
with the ω meson, gω, and the strength of its self-interaction,
ξ . While increasing gω stiffens the EoS, increasing ξ softens
the EoS at high densities. The FSU2H has both: the largest
value of gω and ξ , indicating a stiffened EoS at moderate
densities, but it begins to soften at higher densities. Similarly,
the negative value of ξ for the L1ω4 parametrization produces
a soft EoS at moderate density but a stiffer one at higher
densities.

At the bottom of Fig. 4, I plot the radius of the 2.01M�
star, which is not only the most probable mass value of
PSR J0348 + 0432 [11] but also the lower limit of PSR

J0740 + 6620, whose gravitational mass is 2.08 ± 0.07M�
[12,15]. Therefore, any equation of state (EoS) unable to
reach at least 2.01M� must be ruled out. Altogether, there is
also the constraint to the radius of the PSR J0348 + 0432,
R = 12.39+1.30

−0.98 km. One can see that the correlation between
the slope and the radius of the 2.01M� star is much weaker
than the correlation for the canonical star. It also can be
seen that most parametrizations agree with the constraint R =
12.39+1.30

−0.98. The exception is the NLρ, which produces too low
values. Although it can be satisfied for L = 92 MeV, the upper
limit for this parametrization based on MDU > 1.35M� is
79 MeV.

I now discuss a recent and fierce constraint presented in
Ref. [43]. The authors indicate that during the April APS
meeting, the NICER group reported that the PSR J0437-
4715, with a mass of MJ0437 = 1.418M�, has a radius of only
11.36+0.95

−0.63 km. In this case, only the two lower values of L for
the NLρ and only L = 44 MeV for the L1ω4 can satisfy such
a strong constraint. However, as mentioned, the NLρ fails to
fulfill the radius of the PSR J0740 + 6620, making the L1ω4

within L = 44 MeV the sole parametrization able to satisfy
both constraints. Moreover, with a maximum mass of 2.29M�
even the speculative black widow pulsars PSR J0952-0607
with a mass M = 2.35 ± 0.17M� [44] can be reached.

To finish, I discuss the influence of the slope in the di-
mensionless tidal parameter �. The tidal deformability of a
compact object is a single parameter that quantifies how easily
the object is deformed when subjected to an external tidal
field. A larger tidal deformability indicates that the object
is easily deformable. On the opposite side, a compact object
with a smaller tidal deformability parameter is smaller, more
compact, and more difficult to deform. It is defined as

� = 2k2

3C5
, (4)

where C = M/R is the neutron-star compactness. The param-
eter k2 is called the Love number and is related to the metric
perturbation. A complete discussion about the Love number
and its calculation is both, very extensive and well docu-
mented in the literature. Therefore, it is out of the scope of the
present work. I refer the interested reader to see Refs. [50–53]
and the references therein.

In Fig. 5, I show the dimensionless tidal parameter for the
canonical star, �1.4, as a function of the slope, altogether with
the constraint 70 < �1.4 < 580 coming from the GW170817
event detected by the VIRGO/LIGO gravitational wave ob-
servatories [18]. The complete results for � are presented in
Fig. 6. One can see that there are two different behaviors.
Within the NLρ and the GM1, the �1.4 monotonically in-
creases with the slope. The other four parametrizations present
a minimum for �1.4. For the L3ωρ and L1ω4 this minimum
happens at L = 60 MeV, while for the FSU2H and BigApple,
it happens at L = 86 MeV. The fact that some parametrization
presents a decreasing �1.4 with the slope is related to the
competition between the compactness C and the Love num-
ber k2, as pointed out in Ref. [34]. Although increasing the
slope also increases the radius and consequently reduces the
compactness, it also reduces the Love number k2. The lower
values of L, actually present large values of k2. I display the
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FIG. 3. Mass-radius relation for different values of L. The hatched area are constraints related to PSR J0740 + 6620, with M = 2.08 ±
0.07M� and R = 12.39+1.30

−0.98 km (dark yellow) [12], and to PSR J0437-4715 with M = 1.418M� and R = 11.36+0.95
−0.63 km (red) [43], R1.4 =

12.45 ± 0.65 km (blue) [15], and R1.4 < 13.6 km (light yellow) [16].

Love number k2 for different values of L in Fig. 7. The large
value of k2 within L = 44 MeV for both BigApple and FSU2H
explains the large value of �1.4 even for low values of the
slope.

As in the case of R1.4, �1.4 seems to be more linked to
the stiffness of the EoSs than to the physical quantities at

saturation density. Nevertheless, the compressibility (K ) may
play a secondary role in the tidal parameter. For instance,
GM1 within L = 60 MeV and the L3ωρ within L = 76 MeV
present similar maximum masses as well as very similar radii
for the canonical star. Still, the GM1 predicts �1.4 signifi-
cantly larger than the L3ωρ. Another parametrization close
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FIG. 4. (top) The minimum mass that enables the DU process
as a function of the slope. The horizontal line indicates the weak
constraint MDU > 1.35M�. (middle) The radius of the canonical
1.4M� star as a function of the slope. The hatched area is related
to the constraint R1.4 = 12.45 ± 0.65 km [15]. (bottom) The radius
of the 2.01M� star as a function of the slope. The hatched area is the
constraint R = 12.39+1.30

−0.98 km [12].

to the previous two is the L1ω4 within L = 92 MeV, which
corroborates the possible secondary role of K .

Concerning the constraint 70 < �1.4 < 580, it can be seen
that the three stiffer EoSs fail to satisfy it for all values of
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FIG. 5. The relation between the dimensionless tidal parameter
for the canonical star, �1.4, and the slope.

L. On the other hand, the two softer ones satisfy it for all
values of L. The L3ωρ fulfills this constraint up to 81 MeV,
which coincides with the upper limit due to MDU > 1.35M�.
A complete table, with the values of all quantities discussed in
the text, as well as some constraints, is presented as Table IV.

IV. CONCLUSIONS

Using six different parametrizations of the QHD, I study
the influence of the slope on neutron star properties and
explore the model dependency of the results. The main con-
clusions are as follows:

(1) The proton fraction, Yp, is dependent on the slope. The
higher the slope, the lower is the value of nDU. The
qualitative results are the same for all parametriza-
tions.

(2) The nonlinear coupling of the ω-ρ mesons, �ωρ seems
to play a more relevant role in the Yp than the physical
quantities at saturation density. If its value is turned to
zero or even becomes negative, the Yp presents a quick
increase.

(3) The minimum mass that enables DU process (MDU)
decreases with the slope. If one imposes the weak
constraint MDU � 1.35M�, a model-dependent upper
limit for the slope appears. Although it is model-
dependent, the variation of the upper limit of L is very
low, only 7 MeV.

(4) The radius of the canonical 1.4M� star always in-
creases with the slope. The same is true for the radius
of the 2.01M� star, although it is less sensible. The
absolute values of the R1.4 seem to be more related to
the strength of the model than to the physical quantities
at saturation density.

(5) The revised constraint presented by the NICER group,
R1.4 = 12.45 ± 0.65 km [15], cannot be satisfied for
the FSU2H neither the BigApple for any value of L.
On the other hand, the constraint related to the PSR
J0740 + 6620, whose gravitational mass is 2.08 ±
0.07M� and radius R = 12.39+1.30

−0.98 km [12,15] cannot
be satisfied by the NLρ.
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FIG. 6. Dimensionless tidal parameter � for different values of L. The hatched area is related to the GW170817 event,
70 < �1.4 < 580 [18].

(6) L1ω4 within L = 44 MeV is the only parametriza-
tion in this work that is able to simultaneously
satisfy the strong constraint reported in Ref. [43]
related to the PSR J0437-4715 (MJ0437 = 1.418M�,
R = 11.36+0.95

−0.63 km), altogether with the PSR J0740
+ 6620. Indeed, even the speculative black widow

pulsars PSR J0952-0607 with a mass M = 2.35 ±
0.17M� [44] can be explained.

(7) The dimensionless tidal parameter of the canonical star
can increase or decrease with the slope, depending on
the model used. The stiffer EoSs (GM1, FSU2H, and
BigApple) fail to reproduce the constraints coming
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FIG. 7. Love number k2 for different values of L. In general, the lower the slope, the higher the k2.

from the LIGO/VIRGO gravitational wave observa-
tories, 70 < �1.4 < 580 for all values of L. On the
other hand, this constraint is satisfied for all values of
L for the softer EoSs (NLρ and L1ω4). Moreover, the
compressibility, K , seems to play a secondary role in
this quantity.

(8) Ultimately, very large values of the slope, as sug-
gested by the PREX group [8], seem to be very
unlike. Indeed, values of L around 90 MeV are enough
to produce MDU < 1.35M�. Moreover, for most of
the parametrization, they are also beyond the up-
per limit of the radius and tidal deformability of the
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TABLE IV. Some of the main neutron-star properties and constraints. The radii are presented in km.

Model L (MeV) nDU (fm−3) MDU/M� R1.4 R2.01 �1.4 Mmax/M� MDU > 1.35 NICER1.4 R1.4 < 13.6 J0740+ GW170817 J0437-

NLρ 44 1.48 − 11.98 11.01 339 2.05 Yes Yes Yes No Yes Yes
NLρ 60 1.35 − 12.09 11.00 352 2.05 Yes Yes Yes No Yes Yes
NLρ 76 0.58 1.59 12.37 11.04 386 2.04 Yes Yes Yes No Yes No
NLρ 79 0.46 1.35 12.47 11.07 397 2.04 Yes Yes Yes No Yes No
NLρ 92 0.31 1.03 13.02 11.87 520 2.11 No Yes Yes Yes Yes No
L3ωρ 44 1.27 − 12.58 12.40 515 2.31 Yes Yes Yes Yes Yes No
L3ωρ 60 0.80 2.28 12.74 12.47 513 2.30 Yes Yes Yes Yes Yes No
L3ωρ 76 0.44 1.62 12.99 12.59 535 2.30 Yes Yes Yes Yes Yes No
L3ωρ 81 0.38 1.35 13.10 12.66 559 2.30 Yes Yes Yes Yes Yes No
L3ωρ 92 0.29 1.10 13.48 13.04 639 2.34 No No Yes Yes No No
GM1 44 1.44 − 12.84 12.68 594 2.33 Yes Yes Yes Yes No No
GM1 60 1.16 − 13.03 12.78 609 2.32 Yes Yes Yes Yes No No
GM1 76 0.47 1.87 13.28 12.94 652 2.32 Yes No Yes Yes No No
GM1 84 0.35 1.35 13.49 13.06 712 2.32 Yes No Yes Yes No No
GM1 92 0.29 1.15 13.69 13.30 751 2.34 No No No Yes No No
FSU2H 44 0.57 2.28 13.19 13.33 794 2.38 Yes No Yes Yes No No
FSU2H 60 0.47 2.08 13.44 13.46 752 2.38 Yes No Yes Yes No No
FSU2H 76 0.36 1.67 13.62 13.58 728 2.38 Yes No No Yes No No
FSU2H 86 0.31 1.35 13.80 13.70 725 2.39 Yes No No Yes No No
FSU2H 92 0.28 1.20 13.96 13.82 746 2.40 No No No No No No
BigApple 44 0.64 2.57 13.03 13.34 745 2.60 Yes Yes Yes Yes No No
BigApple 60 0.48 2.30 13.31 13.49 724 2.60 Yes No Yes Yes No No
BigApple 76 0.36 1.69 13.48 13.59 699 2.60 Yes No Yes Yes No No
BigApple 86 0.32 1.35 13.62 13.59 695 2.60 Yes No No Yes No No
BigApple 92 0.30 1.23 13.77 13.80 708 2.60 No No No No No No
L1ω4 44 1.05 − 12.30 12.10 446 2.29 Yes Yes Yes Yes Yes Yes
L1ω4 60 0.70 2.17 12.46 12.17 444 2.28 Yes Yes Yes Yes Yes No
L1ω4 76 0.46 1.57 12.66 12.26 466 2.28 Yes Yes Yes Yes Yes No
L1ω4 80 0.41 1.35 12.73 12.30 479 2.28 Yes Yes Yes Yes Yes No
L1ω4 92 0.30 1.02 13.00 12.51 527 2.28 No Yes Yes Yes Yes No

canonical star. The results presented here are a lit-
tle stronger than those presented in Ref. [35], related
to the hadron-quark phase transition, which rules out
L � 100.
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