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We compute the static density and spin structure factors in the long wavelength limit for pure neutron
matter at subsaturation densities relevant to core-collapse supernovae within the Brueckner-Hartree-Fock (BHF)
approach. The BHF results are reliable at high densities, extending beyond the validity of the virial expansion.
Motivated by the similarities between the dilute neutron gas and a unitary gas, we propose a phenomenological
approach to derive the static structures with finite momentum transfer as well as the dynamic ones with simple
analytical expressions, based on the computed static structures in the long wavelength limit. We also compare
the in-medium neutrino-neutron scattering cross sections using different structure factors. Our study emphasizes
the importance of accurately computing the static structure factors theoretically and utilizing the full dynamic
structure factors in core-collapse supernova simulations.
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I. INTRODUCTION

Neutrino interactions with nucleons in hot and dense nu-
clear matter play an essential role in the dynamics and the
associated synthesis of elements in core-collapse supernovae
(CCSNe), as well as the mergers of neutron stars [1–8]. As
extensively investigated in earlier literature, the strong inter-
action between nucleons can have a significant impact on the
neutrino-nucleon reaction rates in the nuclear medium. Such
medium effects on neutrino rates due to nucleon interaction
can be studied in the mean field approximation [9,10] (see
also [11–13] for studying the charged-current reactions incor-
porating higher-order weak interaction terms) and/or in the
framework of random phase approximation (RPA) [9,14–17].
While RPA calculations are model dependent, they have the
advantage of being potentially consistent with many of the
available equations of state (EoS) that are typically based on
mean-field approaches.

At low density and/or high temperature, the virial ex-
pansion, using the measured scattering phase shifts, can
provide a model-independent description of the EoS of nu-
clear matter [18,19], as well as the neutrino response, which
is closely related to the nuclear EoS [20,21]. The virial re-
sults are expanded in the fugacity of nucleons, z = eμ/T ,
with μ the nonrelativistic chemical potentials. The virial ap-
proach is applicable for zn,p � 1, which could be relevant
to the typical conditions encountered in the neutrinosphere
in CCSNe with ρ ≈ 1011–1013 g/cm3 and T ≈ 5–10 MeV.

*Contact author: guogang@cug.edu.cn

Given the nonlinearity and complexity of neutrino transport
in supernovae, it would be also desirable to have reliable
neutrino-nucleon reaction rates for a wider range of conditions
(e.g., zn,p � a few) from microscopic calculations. Further-
more, the virial studies mentioned are limited to providing the
static response functions or structure factors in the long wave-
length limit, neglecting both energy and momentum transfer
in neutrino-nucleon scattering (see, however, a recent study
[22] for computing the dynamic structure factors in the virial
expansion).

In this work, we present a microscopic calculation of the
neutral-current neutrino-nucleon scattering cross section us-
ing the Brueckner-Hartree-Fock (BHF) formalism (see, e.g.,
[23–25]), which is expected to be applicable to a broader
range of conditions relevant to supernova matter. To avoid
the complexity arising from light cluster [26] and pasta for-
mation [27], we limit our discussion to pure neutron matter,
as done in [20,22]. Since β-equilibrium can be achieved
near the neutrinosphere with relatively high temperature, the
fractions of protons and light cluster are typically much
smaller than 10% and neutrons contributes predominantly to
the neutrino scattering rates. It should be also pointed out that
the BHF method only provides the static structure factors in
the long wavelength limit, obtained by taking the thermody-
namic derivatives of the obtained EoS. Given that the dilute
neutron gas shares similar properties as a unitary gas [28–33],
owing to a large neutron-neutron scattering length, the well-
studied structure factors of a unitary gas could offer insights
into constructing the static structure factors for the dilute neu-
tron gas with finite momentum transfer, as well the dynamic
ones with both energy and momentum dependencies. We
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also compare in this paper the in-medium neutrino-neutron
cross sections using the obtained static and dynamic structure
factors.

We organize this paper as follows. In Sec. II, we com-
pare the static density and spin structure factors in the long
wavelength limit using both the virial approach and the BHF
scheme. Motivated by the similarity between a dilute neutron
gas and a unitary gas, in Sec. III we propose methods to obtain
the static structure factors with finite momentum transfer,
based on results for a unitary gas as found in existing liter-
ature. The derivation of dynamic structures using sum rules
is detailed in Sec. IV. In Sec. V, we compare the neutron-
neutron scattering rates using different structure factors. We
conclude this work in Sec. VI. Throughout this work, we take
the natural units with h̄ = c = kB = 1.

II. STATIC STRUCTURE FACTORS IN THE LONG
WAVELENGTH LIMIT, SV,A(0)

A. Virial expansion

Below we present the basic formalism for the virial ap-
proach which can be applied to study the neutrino response of
neutron matter at low densities and/or high temperatures. We
refer to Refs. [18,20,34,35] for additional details. Analogous
to the grand-canonical partition functions, thermodynamic
quantities such as pressure (P), number density (n), and en-
tropy (S) can be expressed as expansions in powers of the
fugacity z ≡ eμ/T with T the temperature and μ the chemical
potential excluding the nucleon rest mass [18]. The expansion
coefficients are linked to the so-called virial coefficients. For
a dilute system with z � 1/2, keeping terms up to O(z2) is
generally sufficient. The related second virial coefficient is
directly related to the two-body scattering phase shifts that
are well measured experimentally.

To study the spin response function, it is necessary to
introduce nσ , μσ , and zσ = eμσ /T as the densities, chemical
potentials, and fugacities of spin-up (σ = 1

2 ) and spin-down
(σ = − 1

2 ) neutrons. The second virial coefficient and the sec-
ond spin (axial) virial coefficient are given by

bn = bn,1 + bn,0, (1)

ba = bn,1 − bn,0, (2)

where bn,1 and bn,0 are the second virial coefficients for scat-
tering of two incoming neutrons with same and opposite spin
projections, respectively. They are given by

bn,1(T ) = 23/2

πT

∫
dEe−E/T δ1(E ) − 2−5/2, (3)

bn,0(T ) = 23/2

πT

∫
dEe−E/T δ0(E ), (4)

where E = k2/mn is the scattering energy with mn the neutron
mass, k = |p − p′|/2 is the relative momentum between the
two neutrons in the center-of-mass frame, and δ1,0 denote the

total phase shift of partial waves

δ1(E ) =
∑
L,J

2J + 1

3
δJS=1

L (E ), (5)

δ0(E ) =
∑
S,L,J

2J + 1

2(2S + 1)
δJS

L (E ) (6)

with L, S, and J the total orbital angular momentum, the total
spin, and the total angular momentum of the neutron pair,
respectively.

The scattering of neutrinos with nuclear matter can be
characterized by the density (vector) dynamic structure fac-
tor SV (q, ω) and the spin (axial) dynamic structure factor
SA(q, ω), where q and ω represent the momentum and energy
transferred from the neutrino to the nuclear medium. Under
typical conditions around neutrinosphere, the scattering cross
section could be approximated using the static structure fac-
tors [20], which are defined as

SV,A(q) =
∫ ∞

−∞
SV,A(q, ω)dω. (7)

For spin-unpolarised neutron matter, the static density
structure factor in the long-wavelength limit is given by [20]

SV ≡ SV (q = 0) = z

n

(
∂n

∂z

)
T

= 1 + 4bnz

1 + 2bnz
. (8)

Similarly, the static spin structure factor of the unpolarized
neutron matter is [20]

SA ≡ SA(q = 0) = za

n

(
∂na

∂za

)
T, za=1

= 1 + 2baz

1 + 2bnz
, (9)

where na ≡ n 1
2
− n− 1

2
is the polarization density, and za ≡√

z 1
2
/z− 1

2
is the axial fugacity. In our numerical study, we

derive the temperature-dependent virial coefficients from
Eqs. (3) and (4) considering the measured T = 1 np phase
shifts up to J = 6. For an approximate study, one can adopt
values such as bn ≈ 0.3 and ba ≈ −0.6 [20,22] under condi-
tions relevant to SN matter, neglecting their relatively mild
temperature dependencies.

B. Brueckner-Hartree-Fock (BHF) scheme

The static structure factors can be derived from the EoS
of neutron matter studied within the framework of the BHF
formalism [36]. The neutron self-energy is given by

	σ (p, εσ (p)) = 1

2π

1
2∑

σ ′=− 1
2

∫
d3 p′

(2π )3

S+l is even∑
Jll ′SSz

(
CSSz

1
2 σ 1

2 σ ′
)2

×
∑
Lm

(−1)mCJ (m+Sz )
lmSSz

CJ (m+Sz )
l ′mSSz

× CL0
lml ′(−m)C

L0
l0l ′0[ll ′]PL(k̂) fσ ′ (p′)

× GJSSz

ll ′ (k, k; P,� = εσ (p) + εσ ′ (p′)),
(10)
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where k = |k| = 1
2 |p − p′| is the relative momentum between

the neutron pair, P = |P| = |p + p′| is the total momentum,
[n] ≡ √

2n + 1, fσ (p) = [1 + e(εσ (p)−μσ )/T ]−1 is the standard
Fermi-Dirac distribution with εσ (p) being the quasiparticle
energy of the neutron, and GJSSz

ll is the diagonal G-matrix
element in partial wave basis with Sz representing the spin
projection. Note that in the above summation, the isospin
index has been omitted as it always equals 1 for pure neutron
matter. The G-matrix element can be obtained by solving the
Bethe-Goldstone equation

GJSSz

ll ′ (k′, k; P,�) =V JS
ll ′ (k′, k) +

∑
l ′′

k′′2dk′′

(2π )3
V JS

ll ′′ (k′, k′′)

× ḡSz
II (P,�, k′′)GJSSz

l ′′l ′ (k′′, k), (11)

where V JS
ll ′ is the neutron-neutron potential in partial wave

basis, and ḡSz
II (P,�, k) is the angle-averaged two-neutron

propagator. In this work, we employ the two-body potential
of chiral effective field theory (χEFT) up to N4LO from [37].
In the quasiparticle approximation, ḡSz

II is given by

ḡSz
II (P,�, k) =

〈
[1 − fσ (p1)][1 − fσ ′ (p2)]

� − εσ (p1) − εσ ′ (p2) + iη

〉
θ

. (12)

Here, σ and σ ′ represent any set of spin alignments satisfying
σ + σ ′ = Sz, p1,2 = |p1,2| = | 1

2 P ± k| are the momenta of the
two intermediate neutrons in the propagator, and θ is the angle
between the total momentum P and the relative momentum k.
The self-consistent solution for the BHF quasiparticle spec-
trum and zσ can be obtained iteratively with Eqs. (10)–(12),
considering the on-shell condition

εσ (p) = p2

2mn
+ Re	σ (p, εσ (p)), (13)

and the number density nσ = ∫ d3 p
(2π )3 fσ (p).

For unpolarized neutron matter, Eq. (10) simplifies to

	(p, ε(p)) = 	σ (p, εσ (p)) = 1

2

∑
σ

	σ (p, εσ (p))

= 1

4π

∫
d3 p′

(2π )3

S+L is even∑
JLS

(2J + 1) f (p′)

× GJS
LL(k, k; P,� = ε(p) + ε(p′)). (14)

The static structure factors, in the long wavelength limit,
can be obtained from the derivative of neutron density with
respect to fugacities z = z1/2 = z−1/2 and za for unpolarized
neutron matter [see the first expressions in Eqs. (8) and (9)].
The quasiparticle chemical potentials μσ and fugacities zσ ≡
eμσ /T can be straightforwardly obtained from Eqs. (10)–(18)
through iteration. These are commonly referred to as the
microscopic (axial) chemical potentials and (axial) fugacities
in the literature. Apart from these microscopically computed
ones for quasiparticles, the chemical potentials can also be
derived by taking the derivative of the free energy with respect

to (polarization) densities [38]

μ̃ = T ln(z̃) =
(

∂ f

∂n

)
T

, (15)

μ̃a = T ln(z̃a) =
(

∂ f

∂na

)
T,n,na=0

(16)

with f being the free energy density. To distinguish them from
the microscopic ones, the (axial) chemical potentials or (axial)
fugacities [Eqs. (15) and (16)] derived using thermodynamic
relations are termed the macroscopic ones. The free energy f
can be obtained from the internal energy density ε = E/V and
the entropy density s = S/V as follows:

f = ε − T s, (17)

ε =
∑

σ

∫
d3 p

(2π )3

[
p2

2mn
+ 1

2
Re	σ (p, εσ (p))

]
fσ (p), (18)

s = −
∑

σ

∫
d3 p

(2π )3
[ fσ (p) ln( fσ (p))

+ (1 − fσ (p)) ln(1 − fσ (p))]. (19)

Note that in Eqs. (17)–(19), the neutron quasiparticle energies
as well as the microscopic chemical potentials are used.

It is important to note that the BHF approach at finite
temperature cannot give thermodynamically consistent chem-
ical potentials (i.e., μ �= μ̃, μa �= μ̃a) at densities close to or
higher than the nuclear saturation density, due to the absence
of hole-hole contributions [38,39]. The hole-hole correla-
tions can be taken into account within the self-consistent
Green’s function (SCGF) approach [40–44], which, however,
is more involved to solve numerically than the BHF approach.
Ref. [38] performed a systematic study of pure neutron matter
at finite temperature within the SCGF approach using the
CD Bonn [45] and the Argonne V18 [46] potentials, demon-
strating consistent microscopic and macroscopic chemical
potentials for each potential. In addition, the macroscopic
chemical potentials from the BHF approach were found to
agree well with those from the SCGF approach at subsatu-
ration densities [38]. However, the microscopic ones within
BHF are reliable only at low densities, tending to underesti-
mate the chemical potentials at n � 0.01 fm−3 [38].

C. Results of SV,A(0)

Figure 1 compares the fugacities for spin-symmetric neu-
tron matter as functions of density at T = 5, 10, and 20
MeV from the virial expansion and the BHF microscopic
[Eqs. (10)–(18)] and the macroscopic [Eq. (15)] calculations.
As shown in the figure, the three different approaches lead to
close results at low densities. Note that at the subsaturation
densities encountered in supernova conditions, the fugacity
can be as high as a few for T = 5 MeV, while it typically stays
below 1 for T = 20 MeV. Considering the virial expansion is
not valid above z ≈ 1, our BHF results start to differ from
the virial ones at high densities. The hole-hole correlation,
which is neglected in the BHF microscopic calculations, tends
to add a repulsive contribution to the neutron quasiparticle
energy. However, such correlation effect can be properly taken
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FIG. 1. Fugacities for unpolarized neutron matter as functions
of neutron number density at T = 5, 10, and 20 MeV from the
virial expansion up to O(z2), the microscopic and the macroscopic
calculations within the BHF scheme, and the virial expansion up to
O(z4) for a unitary gas. The horizontal lines correspond to z = 0.1
and z = 0.5.

into account in the BHF macroscopic calculation [38], leading
to a larger chemical potential or fugacity compared to the
microscopic results within BHF. For comparison, Fig. 1 also
shows the virial results up to fourth order for a unitary gas
[30]. The axial fugacity, za, can be computed similarly.

The static vector and axial vector structure factors SV,A

in the long wavelength limit can be obtained by taking the
derivatives of the fugacity and the axial fugacity with respect
to n and na [Eqs. (8) and (9)], respectively. Depending on
whether the microscopic or the macroscopic fugacities are
utilised, one can obtain the corresponding microscopic and
macroscopic SV,A. As shown in Fig. 2, the structure factors
from different approaches are close to each other at low den-
sities. The virial results for a unitary gas up to O(z4) are also
shown. With bn ≈ 0.3 and ba ≈ −0.6, the virial expansion
up to O(z2) gives rise to an increase of SV and a decrease
of SA with density [Eqs. (8) and (9)], as predicted by the
BHF approach. As the vertex correction diagrams have not
been taken into account, the BHF tends to underestimate the
medium effects at low densities, resulting in smaller SV and
larger SA compared to the virial results. The static structure
factors from both methods agree well at intermediate values of

z. At z � 0.5, the virial expansion starts to fail and could even
produce a negative SA at z � 1. In this regime (z � 0.5), the
BHF results should be considered more reliable. For practical
application, we suggest using the viral results of the neutron
gas for z � 0.25 and the BHF results for z � 0.5, and per-
forming a numerical interpolation for the intermediate regime.
We also show the RPA results for SA(0) based on [14]. We find
that the RPA studies tend to overestimate SA(0) at intermediate
and high densities, compared to our BHF calculations. Note
that, in contrast to the virial and the BHF calculations, the
RPA results for SV (0) are smaller than 1 and are not shown.

As the hole-hole contribution is negligible at low z, the
BHF microscopic and macroscopic calculations lead to simi-
lar structure factors. At higher z, however, the structure factors
SV,A obtained from the macroscopic chemical potential should
be more reliable compared to the microscopic ones. Note
that the macroscopic SV can be smaller than the microscopic
ones by 0.4 in magnitude, while the difference between the
microscopic and macroscopic SA is � 0.05 for the conditions
considered.

In the following we provide fitting functions to the com-
puted structure factors covering a wide range of temperature
and density conditions. Temperature, T , ranges from 5 to
30 MeV and baryon density, n, from 10−4 to 0.063 fm−3.
The largest value of z ≈ 7 is obtained for T = 5 MeV and
n = 0.063 fm−3. We take the virial results for z � 0.25 and
the BHF results for z � 0.5. For intermediate z, we employ
a numerical interpolation. With this procedure, we fit the de-
rived SV,A(0) as functions of n and T with the form suggested
in Ref. [30]:

Sx(0) = 1 + (
cx

1 + cx
2T

)
η3/2 + (

cx
3 + cx

4T
)
η2

+ (
cx

5 + cx
6T

)
η3 + (

cx
7 + cx

8T
)
η4, (20)

where x denotes V or A, and η ≡ TF /T with TF =
(3π2n)2/3/(2mn) the Fermi temperature. The temperature T in
the expressions is in unit of MeV. Similar to the static structure
factors, we also provide a fit for z with the form

z = (
cz

1 + cz
2T

)
η3/2 + (

cz
3 + cz

4T
)
η2

+ (
cz

5 + cz
6T

)
η3 + (

cz
7 + cz

8T
)
η4. (21)

All the fitting coefficients are listed in Table I. The fits are
accurate within 2% for most of the conditions explored and
become worse at z � 5 where the error can be as large as 5%.

FIG. 2. The static structure factors, SV,A ≡ SV,A(0), as functions of density at T = 5 MeV (left), 10 MeV (middle), and 20 MeV (right) from
the virial expansion up to O(z2), the microscopic and the macroscopic calculations within the BHF scheme, respectively. For comparison, the
RPA results of SA from [14] and the virial results up to O(z4) for a unitary gas from [30] are also shown.
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TABLE I. Fitting coefficients for fugacity z and static structure factors SV,A(0) as functions of T and n, see Eqs. (20) and (21). Note that
we use the notation that a(b) ≡ a × 10b for the numerical values shown in the table. The fit is valid for 5 � T � 30 MeV and 10−4 � n �
0.063 fm−3.

cz,V,A
1 cz,V,A

2 cz,V,A
3 cz,V,A

4 cz,V,A
5 cz,V,A

6 cz,V,A
7 cz,V,A

8

z 8.373(−1) −2.959(−3) −2.851(−1) 9.174(−3) 5.156(−2) −1.001(−2) −5.276(−3) 1.480(−3)
SV (0) 1.056 −2.660(−2) −1.011 4.185(−2) 1.704(−1) −1.047(−2) −1.319(−2) 1.036(−3)
SA(0) −1.135 −1.604(−3) 7.773(−1) −2.669(−3) −9.112(−2) 2.724(−3) 6.354(−3) −4.824(−4)

III. STATIC STRUCTURE FACTORS WITH FINITE
MOMENTUM TRANSFER, SV,A(q)

In this section, we present a phenomenological approach
to obtain the static structure factors, SV,A(q), with finite mo-
mentum transfer q. With a large scattering length, we assume
that the dilute neutron gas exhibits similar properties of struc-
ture factors as a unitary gas. Consequently, we choose to use
the extensively studied structure factors of a unitary gas to
describe the SV,A(q) of a neutron gas.

First, we assume that in the limit of large q,

SV (q 	 kF ) ≈ 1 + IkF

4q
, (22)

SA(q 	 kF ) ≈ 1 − IkF

4q
, (23)

where kF = (3π2n)1/3 is the Fermi momentum, and I is the
Tan contact1 accounting for the short-distance behavior of
the pair correlation function. The static structure factors of
neutron matter have recently been computed using a lattice
formulation at specific conditions relevant to supernova matter
[48], confirming the asymptotic behaviours shown in Eqs. (22)
and (23). Moreover, the Tan contact of the neutron gas ex-
tracted from the calculated static structure factors is close to
those of a unitary gas. In this work, we adopt a similar Tan
contact to a unitary gas for the dilute neutron gas as explained
below. The Tan contact of a unitary gas only depends on the
dimensionless parameter T/TF . At high T or low z, the virial
expansion of the Tan contact up to O(z3) is available for a
unitary gas [47]. For simplicity, we take the same virial expan-
sion coefficients to obtain the Tan contact of the neutron gas at
low z. Experimental measurements of the Tan contact at low
temperatures (T � 0.1TF ) have been conducted using Bragg
spectroscopy of cold atomic Fermi gases and the unitary gas,
albeit with relatively large uncertainties [49–51]. To match
the measured Tan contact at low temperatures, we find that
a linear extrapolation of I in T/TF derived from the virial
expansion, starting from T/TF ≈ 1 and extending to low T ,
is a suitable choice (see, e.g., Fig. 3 of [48]). Based on the
above arguments, we take the following expressions for the
Tan contact of a neutron gas:

I =
⎧⎨
⎩

3π2
(

T
TF

)2( z2

π
− 0.14z3

)
, z � 0.5,

2.22 + 0.4
(
1.1 − T

TF

)
, z > 0.5.

(24)

1Note that here I denotes the dimensionless Tan contact [47].

Note that for a neutron gas T/TF ≈ 1.1 at z = 0.5.
The static structure factors, SV,A(q), of a unitary gas have

also been computed with the lattice formulation for a wide
range of conditions relevant to supernova matter beyond
the validity of the virial expansion [52]. We suggest that
the obtained SV,A(q) can be well fitted with the expressions
(see Fig. 3)

SV (q) = 1 +
[

SV (0) − 1 − aV I

4

]
e−bV x2

q + I

4xq
tanh (aV xq),

(25)

SA(q) = 1 +
[
SA(0) − 1 + aAI

4

]
e−bAx2

q − I

4xq
tanh (aAxq ),

(26)

where xq ≡ q/kF , and the coefficients are aV = 1.028, bV =
0.555, aA = 0.637, bA = 0.346. It can be readily verified that
in the limit q/kF 	 1 the static structure factors adhere to the
asymptotic behaviours outlined in Eqs. (22) and (23). We also
note that Eqs. (25) and (26) are formulated to be even func-
tions of q, ensuring that dSV,A(q)/dq vanishes at q = 0. This
is consistent with the fact that SV,A(q, ω) represent the Fourier
transforms of the corresponding pair correlation functions.

We employ Eqs. (25) and (26) along with the SV,A(0)
obtained from either our BHF calculation or the virial ex-
pansion to determine the SV,A(q) for the dilute neutron gas.
It should be stressed, however, that the neutron gas, with a
finite effective range, could be different from a unitary gas

FIG. 3. Fits to SV,A(q) for a unitary gas under supernova condi-
tions computed from a lattice formulation [52] using the expressions
given by Eqs. (25) and (26).
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[32]. Despite that, the slowly varying nature of SV,A at small q
and the asymptotic behavior at q � 2kF have already imposed
significant constraints on SV,A(q). Therefore, the method we
propose for constructing the SV,A(q) of the neutron gas should,
at the very least, capture qualitative aspects and, in general,
allow for quantitative results.

IV. DYNAMIC STRUCTURE FACTORS, SV,A(q, ω)

Similarly to the static structure factors, the dynamic struc-
ture factors of a strongly interacting Fermi gas, especially a
unitary gas, could provide valuable insights into understand-
ing the qualitative behaviors of the dynamic structure factors
of the neutron gas. For ultracold atomic gases with tunable
interaction strength spanning the Bose-Einstein condensate
(BEC)–Bardeen-Cooper-Schrieffer (BCS) crossover, both the
static and the dynamic structures have been widely measured
using Bragg spectroscopy. At high temperatures, SV,A(q, ω)
of a strongly correlated Fermi gas with a short-range attrac-
tive S-wave potential can be virially computed up to O(z2)
[47,53], consistent with those extracted from experiments.
As anticipated, the dynamic structure factor peaks at ω =
ωq/2 = q2/(4m) with a width of

√
ωqT in the BEC limit,

and peaks at ω = ωq = q2/(2m) with a width of
√

2ωqT in
the BCS limit, since the associated underlying constituents
are bound molecules with masses of 2m and free atoms with
masses of m, respectively. In the intermediate regime, in-
cluding the unitary limit, a two-peak structure emerges from
both the molecular and the atomic responses. It has also been
observed that the peaks in dynamic structure factors can be
well described by Gaussian functions across a wide range of
interaction strengths [47,54].

Motivated by the above discussions for strongly interacting
Fermi gas, we propose that the dynamic structure factors,
SV,A(q, ω), of the neutron gas can be quantitatively repre-
sented by the form

SV,A(q, ω) = AV,A e− (ω−ωq )2

4ωqT + BV,A e− (ω− 1
2 ωq )2

2ωqT (27)

with ωq ≡ q2/(2mn). The coefficients AV,A and BV,A can be
uniquely determined from the f -sum rules∫ +∞

−∞
dωωSV,A(q, ω)

=
∫ +∞

0
dω(1 − e−ω/T )ωSV,A(q, ω) = q2

2mn
, (28)

together with the definitions of SV,A(q) with∫ +∞

−∞
dωSV,A(q, ω)

=
∫ +∞

0
dω(1 + e−ω/T )SV,A(q, ω) = SV,A(q). (29)

Note that we have used the relation S(q,−ω) = e−ω/T S(q, ω)
in deriving Eqs. (28) and (29). It should be also pointed out
that for SA, Eq. (28) is not exact as the nucleon spin is not
conserved by nuclear interactions [22,55]. Here, we simply
assume that the correction to Eq. (28) is relatively minor

FIG. 4. Dynamic structure factors obtained from Eq. (27) at T =
10 MeV, n = 0.004 fm−3, and q = 30 MeV. The dynamic structure
factors from [22], the SA(q, ω) from RPA calculations [14], and the
ones for a noninteracting neutron gas are also shown.

considering that the neutron interaction is dominated by the
1S0 component [22]. With the special forms given in Eq. (27),
both integrals in Eqs. (28) and (29) can be analytically solved,
leading to

AV,A = [2 − SV,A(q)]/
√

4πωqT , (30)

BV,A =
√

2[1 − SV,A(q)]/
√

πωqT . (31)

With SV,A(0) derived either from the BHF calculations
or from the virial expansion, the SV,A(q, ω) can be easily
obtained by using Eqs. (25)–(27). Figure 4 presents our calcu-
lated SV,A(q, ω) with q = 30 MeV as function of ω at T = 10
MeV and n = 0.004 fm−3 (corresponding to z ≈ 0.23), where
we have used SV (0) ≈ 1.13 and SA(0) ≈ 0.75 from the virial
expansion. Compared to the noninteracting case [9], the nu-
cleon interaction enhances SV (q, ω) and suppresses SA(q, ω)
significantly at ω � max[ωq,

√
ωqT ]. The dynamic structure

factors computed from the virial expansion up to O(z2) using
a pseudopotential are also shown [22]. Note that we have
used the fitting formulas of [22] to produce their SV,A(q, ω).
We find that our SV (q, ω) agrees well with that of [22], while
for SA(q, ω), slightly larger differences occur. Note that our
SA(q, ω) is normalized to a slightly larger SA(q) ≈ 0.75 than
that of [22] with SA(q) ≈ 0.74 at q = 30 MeV. Using the
same SA(q) of [22], the derived SA(q, ω) based on Eqs. (27),
(30), and (31) gets closer to the one of [22]. At low densities
as considered in Fig. 4, the RPA results for SA(q, ω) from
[14] are higher than our SA(q, ω) at low ω, which is consistent
with the observations for SA(0) shown in Fig. 2.

V. NEUTRINO-NEUTRON SCATTERING CROSS SECTION

In this section, we compare the neutral-current scattering
cross sections of neutrinos with neutrons, using the different
structure factors derived above. The double differential cross
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×

FIG. 5. Differential cross sections, (dσ/d cos θ )/σ̄ (upper) and (dσ/dω)/σ̄ (middle), and total cross sections [σ (Eν )/σ̄ ] ×
(103 MeV2/E 2

ν ) (lower) using different structure factors for two selected conditions: T = 10 MeV and n = 0.004 fm−3 (left), and T = 10
MeV and n = 0.0126 fm−3 (right). Note that all the cross sections shown are normalized by σ̄ = 10−42 cm2. For the differential cross
sections (upper and middle), we have chosen Eν = 10 MeV. For the total cross section (lower), an additional factor of 103 MeV2/E 2

ν has
been added to eliminate the apparent E 2

ν dependence.

section is related to the full dynamic structure factors as

dσ (Eν )

dωd cos θ
= G2

F

8π
(Eν − ω)2

[
(1 + cos θ )SV (q, ω)

+ g2
a(3 − cos θ )SA(q, ω)

]
, (32)

where Eν is the incoming neutrino energy, θ is the scatter-
ing angle, GF is the Fermi constant, and ga ≈ 1.26 is the
axial coupling constant. Integrating over the kinetically al-
lowed energy transfer ω and/or cos θ , the single differential
cross sections dσ (Eν )/d cos θ , and dσ (Eν )/dω, and the total
cross section σ (Eν ) can be derived. Note that the associated
integration limits are −q � ω � min[2Eν − q, q] and −1 �
cos θ � 1. The opacities for neutrino-neutron scattering can
be obtained by multiplying the scattering cross sections with
the neutron number density.

If only the static structure factors SV,A(q) or even just
SV,A(0) are available, dσ (Eν )/d cos θ , in the so-called elastic

limit, could be approximated by [22,30,56]

dσ (Eν )

d cos θ
≈ G2

F

8π
E2

ν

[
(1 + cos θ )SV (q) + g2

a(3 − cos θ )SA(q)
]

(33)

≈ G2
F

8π
E2

ν

[
(1 + cos θ )SV (0) + g2

a(3 − cos θ )SA(0)
]
.

(34)

As previously mentioned, SV,A(q, ω) peaks around ω ≈
q2/(2mn) and exhibits a width ≈

√
q2T/mn in the energy

distribution for a given q. Therefore, it is imperative to verify
the validity of the elastic approximation, particularly for high
temperatures and/or Eν .

We compare in Fig. 5 the differential and the total cross
sections using different static and dynamic structure fac-
tors obtained for two selected conditions: T = 10 MeV
and n = 0.004 fm−3 with z ≈ 0.23, and T = 10 MeV and
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n = 0.0126 fm−3 with z ≈ 0.62. For the first condition, we
use the virial results to derive the structure factors, while for
the second one, we rely on the BHF results. For compari-
son, we also show the results using the dynamic structure
factor for a non-interacting neutron gas with SV,free(q, ω) =
SA,free(q, ω) = Sfree(q, ω) (see Eq. (21) of [9]2). As expected,
the in-medium cross sections are generally suppressed by
10%–30% compared to the ones for a noninteracting neutron
gas, primarily due to the significant reduction in the spin
structure factor resulting from neutron-neutron interactions
(see Fig. 2).

For backward scattering (i.e., cos θ = −1), only the spin
structure factor contributes [see Eq. (32)]. In this case, the
reduction in dσ/d cos θ with Eν = 10 MeV compared to the
noninteracting case is maximal (upper panels of Fig. 5) as
the spin structure factor is suppressed. As cos θ increases,
the density response becomes more relevant, leading to closer
dσ/d cos θ from various treatments to that for the noninter-
acting case. With the dynamic spin structure factors being
more suppressed at higher densities, the density structure fac-
tor could be dominant. As a consequence, dσ/d cos θ will
increase with cos θ [see Eq. (32) and the upper right panel
of Fig. 5]. The differential cross sections as well as the total
cross sections using SV,A(0) and SV,A(q) are very similar. The
reason is that the typical momentum transfer q is of order
Eν � kF ≈ 100 MeV, and the related SV,A(q) ≈ SV,A(0) since
SV,A(q) vary slowly at small q. As Eν (and correspondingly,
the related q) becomes comparable to kF , the cross section us-
ing SV,A(q) becomes slightly large than that based on SV,A(0),
as shown in the lower panels of Fig. 5.

The use of static structure factors instead of the dynamic
one has some apparent limitations. First, the energy of the out-
going neutrino, which determines the scattering phase space
and consequently impacts the scattering cross section [see the
(Eν − ω)2 factor in Eq. (32)], cannot be correctly computed
in the elastic approximation [see the E2

ν factor in Eqs. (33)
and (34)]. For low Eν and correspondingly low energy trans-
fer, the factor (Eν − ω)2 would enhance the scattering cross
section slightly (lower and upper panels of Fig. 5), mainly
due to negative values of ω (see the middle panels of Fig. 5).
Since SV,A(q,−ω) = e−ω/T SV,A(q, ω), the structure factors
with positive ω becomes more dominant with higher values
of ω. Therefore, for high Eν with high energy transfer, the
factor (Eν − ω)2 suppresses the cross section (lower panels
of Fig. 5). The second limitation is about the range of (q, ω)
to be integrated over. For neutrino-nucleon scattering, the
kinetically allowed range is −q � ω � min[2Eν − q, q] for
a given q, while in the definition of SV,A(q), all the range of
−∞ < ω < ∞ has been taken into account [Eq. (7)]. This
effect further reduces the cross sections at high Eν with the
use of dynamic structure factors. Compared to the calculations
based on the static structures, the use of the dynamic structure
factors can enhance (suppress) the total cross sections for low
(high) Eν by 10%–20%.

2Note that, with a different notation, SV,A(q, ω) in [9] should be
divided by 2πn for comparisons with the ones in this work.

We also compare our results with those using SV,A(q, ω)
of Bedaque et al. [22]. As illustrated in the upper panels of
Fig. 5, our dσ/d cos θ are slightly larger and evidently larger
at conditions with z ≈ 0.23 and z ≈ 0.62, respectively. The
primary reason for this discrepancy is that our SA(q, ω) is nor-
malized to a larger SA(q) [and SA(0)]. Note that for z ≈ 0.62,
the BHF calculation of SA(0) should be more preferred than
those calculated via the virial expansion as adopted in [22].
If we instead normalize SA(q, ω) to that of [22], almost the
same dσ/d cos θ and total cross section are obtained (see
the magenta and green lines in the upper panels of Fig. 5).
This suggests that the angular cross section and the total
cross section are not very sensitive to the detailed distribution
of SV,A(q, ω) in ω, and the method we use to construct the
dynamic structure factors using sum rules is effective. The
middle panels of Fig. 5 compare the energy differential cross
sections dσ/dω. Comparing to the noninteracting case, we
find that neutron-neutron correlation mainly reduces dσ/dω

at small ω. The discrepancies between our results with those
of [22] arise from differences in SV,A(q, ω). Note that at n =
0.0126 fm−3, the overly suppressed SA(q, ω) from [22] results
in a dip in dσ/dω around ω = 0 (the middle right panel of
Fig. 5). We find that when employing our SA(q, ω) normalized
to SA(q) of [22], the dσ/dω, although still exhibiting notable
differences, get closer to those obtained from SA(q, ω) of [22].

In the RPA results presented in Fig. 5, we use the RPA
SA(q, ω) from [14] and the SV (q, ω) for a noninteracting
neutron gas to compute the differential and the total cross sec-
tions [Eq. (32)]. At n = 0.004 fm−3, the RPA yields different
dσ/d cos θ but similar dσ/dω when compared to our results.
As the RPA spin structure factor is higher and meanwhile, the
density structure factor for a free neutron gas is lower that
those of ours, the resulting total cross sections derived are sim-
ilar to ours (the lower left panel of Fig. 5). At a higher density,
the density structure factor becomes more important, and our
total cross sections using enhanced SV (q, ω) are higher than
the RPA calculations.

VI. DISCUSSION AND SUMMARY

In this work, we have calculated the static structure factors
in the long wavelength limit for pure neutron matter at sub-
saturation densities using the BHF approach. The obtained
results are generally consistent with those from the virial
expansion at low and intermediate densities. Moreover, the
BHF results are believed to be reliable at high densities, ex-
tending beyond the applicability of the virial expansion. We
find that SA(0) decreases monotonically with density, while
SV (0) increases firstly and then decreases. Consequently,
the neutrino-neutron scattering cross section is suppressed.
The numerical results at selected values of temperatures and
densities are also accessible as Supplemental Material [57].
Moreover, we have also provided analytical fits to z and
SV,A(0).

Due to a large scattering length and a relatively short ef-
fective range, the dilute neutron gas could resemble a unitary
gas and thereby shares similar properties in terms of the static
and the dynamic structure factors. By extrapolating the behav-
iors of SV,A(q) for a unitary gas at supernova conditions, we
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determine SV,A(q) for the neutron gas using SV,A(0) obtained
from either the BHF approach or the virial expansion. Addi-
tionally, we introduce a phenomenological approach to derive
the dynamic structure factors with simple analytical expres-
sions based on the sum rules.

The in-medium neutrino-neutron scattering cross sec-
tions are calculated using the obtained SV,A(0), SV,A(q), and
SV,A(q, ω). Overall, all the cross sections are suppressed
compared to the one for a non-interacting neutron gas by
10%–20%. As SV,A(q) vary slowly at small q, relevant to
neutrino-nucleon scattering, the cross sections using SV,A(0)
and SV,A(q) are very similar to each other. When the dynamic
structure factors are used, the differential and the total cross
section could be altered by 10%–20%, depending on the en-
ergy of the incoming neutrino. These modifications, though
relatively small, could significantly impact the dynamics of
CCSNe.

The study presented in this work can be improved in
many aspects. For a more comprehensive study, the three-
body forces need to be considered for our BHF calculation,
even though their impact is expected to be modest at sub-
saturation densities near the neutrinosphere. Our reliance on
the similarities between the neutron gas and a unitary gas
to derive the structure factors should be validated through
more independent studies such as [22]. We have assumed
that the dynamic structure factors can be described by a
double-Gaussian-peak structure and that SA obeys the f -sum
rule as SV . These assumptions will fail at high-density re-
gions since the nucleon-nucleon interaction can violate the
normalization condition for SA(q, ω) given by Eq. (28) and
enhance SA(q, ω) at high ω due to multiparticle excitations.
Therefore, the dynamic spin structure factor at high densities
and high ω may require a separate treatment [58,59]. The

exploration of other many-body methods to derive the static
or dynamic structure factors is also highly encouraged. For
instance, a recent work considering both mean field effects
and RPA correction using the χEFT potential is a step in this
direction [60]. The incorporation of full dynamic structure
factors for neutrino transport in CCSN simulations is highly
desired in future studies. The study in this work is limited to
pure neutron matter. To apply the results to CCSN simulations
with a wide range of conditions, it will be important to include
neutrino-proton interactions and extend similar investigations
to asymmetric nuclear matter [21]. We plan to work on these
aspects in the future.
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