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Stimulated by the recent suggestion of using a europium compound for the Cosmic Axion Spin Precession
Experiment search for axionlike dark matter, I develop a new method for accurate calculation of Schiff moments
of even-odd deformed nuclei. The method is based on experimental data on magnetic moments and E1 and E3
transition amplitudes in the given even-odd nucleus and in adjacent even-even nuclei. Despite the fact that such
data sets are not yet available for a lot of the interesting nuclei, the full set of data is available for 153Eu. Hence,
I perform the calculation for 153Eu and find the value of the Schiff moment. The value is about 30 times larger
than a typical Schiff moment of a spherical heavy nucleus. The enhancement of the Schiff moment in 153Eu is
related to the low-energy octupole mode. On the other hand the value of the Schiff moment I find is 30 times
smaller than that obtained under the assumption of a static octupole deformation.
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I. INTRODUCTION

The electric dipole moment (EDM) of an isolated quantum
object in a nondegenerate quantum state is a manifestation
of violation of time reversal (T ) and parity (P) fundamental
symmetries. The search for the EDM of a neutron is a long
quest for fundamental P and T violation [1–3]. The EDM of
a nucleus can be significantly larger than that of a neutron [4].
However a nucleus has nonzero electric charge and therefore
in a charge neutral system (atom, molecule, solid) the EDM
of the nucleus cannot be measured [5]. The quantity that can
be measured is the so called Schiff moment (SM) which is
nonzero due to the finite nuclear size [4]. Like the EDM, the
SM is a vector directed along the angular momentum.

The Cosmic Axion Spin Precession Experiment (CASPEr)
searches for QCD axion dark matter via an induced oscillating
nuclear SM. The first-generation CASPEr experiment is based
on the lead titanate ferroelectric [6] (see also Ref. [7]). The
experiment is probing the oscillating SM of the 207Pb nucleus.
There is a recent suggestion [8] to use for the CASPEr exper-
iment the crystal EuCl3 · 6H2O instead of lead titanate. The
major advantage is experimental: a possibility to polarize Eu
nuclei via optical pumping in this crystal may allow an order-
of-magnitude sensitivity improvement. The expected effect in
EuCl3 · 6H2O has been calculated in Ref. [9]. The observable
effect in a solid has four different spatial and energy scales
inside each other: (i) quark-gluon scale, r < 1 fm; (ii) nuclear
scale, 1 � r � 10 fm; (iii) atomic scale, 10 fm < r � 1 Å;
and (iv) solid state scale, r > 1 Å. The calculation [9] is pretty
accurate at the scale (iii), and it has an uncertainty at most by
factor 2 at the scales (i) and (iv). However, the uncertainty at
the scale (ii), the nuclear scale, is two orders of magnitude,
which is the uncertainty in the 153Eu Schiff moment. Such
an uncertainty is typical for deformed even-odd nuclei. The
aim of the present paper is twofold: (i) develop an accurate
method of calculating the SM and (ii) perform the calculation
of the SM of 153Eu. A reliable purely theoretical calculation is

hardly possible. Therefore, our approach is to use the available
experimental data as much as possible.

153Eu has a deformed nucleus. A simple estimate of the SM
of a nucleus with a quadrupole deformation was performed in
Ref. [4], with the Nilsson model as the basis. The result was
an order of magnitude larger than SM of a spherical heavy
nucleus, say SM of 207Pb. Reference [10] then pointed out
that if the nucleus has a static octupole deformation, the SM is
dramatically enhanced. Based on analysis of rotational spectra
of 153Eu the authors of Ref. [11] argued that 153Eu has a static
octupole deformation and, hence, using the idea [10] arrived
at the estimate of SM that is 103 times larger than that of a
heavy spherical nucleus.

In the present paper I analyze the available experimental
data on magnetic moments and amplitudes of E1 and E3
nuclear transitions of 153Eu, in order to elucidate the structure
of the nuclear wave function. As a result of this analysis,
one can confidently claim that the model of static octupole
deformation is incorrect. The Nilsson wave functions of the
quadrupole deformed nucleus are good approximations. How-
ever, this does not imply that the octupole mode is irrelevant.
There is an admixture of the octupole vibration to the Nilsson
states and I determine the amplitude of the admixture. All in
all, this allows one to perform a reliable and accurate calcula-
tion of the SM.

The effect of the dynamic octupole vibration on SM has
been considered previously in Refs. [12,13]. The results of the
present paper disagree with some conclusions and numerical
estimates in these papers. The main difference, however, is
that Refs. [12,13] are aimed at scenario building and rough
general estimates. On the other hand, the present paper per-
forms an accurate SM calculation for the specific nucleus,
153Eu.

Let us emphasize that the present calculation of SM is
based on the analysis of a broad set of data, therefore the
statement is nucleus specific—it is valid for 153Eu and it is
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valid for 237Np. Unfortunately such broad data sets are not yet
available for many other interesting nuclei.

The structure of the paper is as follows. In Sec. II the
lifetimes of the relevant levels in 152Sm and 153Eu are ana-
lyzed and hence the relevant E1 amplitudes are determined.
Section III is the central one, where I discuss the structure
of wave functions of the parity doublet |5/2±〉 in 153Eu.
Section IV determines the quadrupole deformation of 153Eu.
Section V explains the parametrization used for the octupole
deformation. Section VI describes the structure of octupole
excitations. Section VII extracts the value of octupole defor-
mation from experimental data. In Sec. VIII I calculate the T -
and P-odd mixing of 5/2+ and 5/2− states in 153Eu. The EDM
of the 153Eu nucleus is calculated in Sec. IX, and the SM of
the 153Eu nucleus is calculated in Sec. X. Section XI presents
the conclusions of the paper.

II. EXPERIMENTAL E1 AMPLITUDES IN 152Sm AND 153Eu

All data used in this section are taken from Ref. [14].
Even-even nuclei in the vicinity of 153Eu have a low-
energy ≈1-MeV collective octupole excitation. There is the
quadrupole ground-state rotational band and the octupole ro-
tational band starting at the energy of the octupole excitation.
As a reference even-even nucleus I take 152Sm. In principle
154Sm could also do the job, but the data for 154Sm are
much less detailed, especially electron scattering data that
are discussed in Sec. VII. The energies of the relevant states
of the octupole band in 152Sm are E (1−) = 963 keV and
E (3−) = 1041 keV. The half-life of the 1− state is t1/2 = 28.2
fs, hence the lifetime is τ (1−) = 28.2/ ln(2) = 40.7 fs. The
state decays via the E1 transition to the ground state, 0+,
and to the 2+ state of the ground-state rotational band. The
decay branching ratio is W (0+)/W (2+) = 0.823. Therefore,
the partial lifetime for the 1− → 0+ transition is τpartial = 90
fs. The 1− → 0+ E1 transition decay rate is given by [15]

1

τpartial
= 4ω3

3(2 j + 1)
|〈 j′||d|| j〉|2, (1)

where ω is the γ -quantum frequency and d is the electric
dipole operator. The reduced matrix element of the dipole mo-
ment can be expressed in terms of dz in the proper reference
frame of the deformed nucleus [16]:

|〈 j′||d|| j〉|2 =
∣∣∣∣√(2 j + 1)(2 j′ + 1)

(
j′ 1 j

−m 0 m

)∣∣∣∣
2

× |〈0|dz|1〉|2. (2)

For the 1− → 0+ transition j = 1, j′ = 0, and m = 0. Hence

〈0|dz|1〉 = +e × 0.31 fm. (3)

Here e = |e| is the elementary charge.
153Eu is a deformed nucleus with the ground state |5/2+〉.

The nearest opposite parity state |5/2−〉 has energy E = 97.4
keV. The half-life of the |5/2−〉 state is t1/2 = 0.20 ns, hence
the lifetime is τ (5/2−) = 0.29 ns. The lifetime is due to the
E1 decay |5/2−〉 → |5/2+〉. Using Eqs. (1) and (2) with j =
j′ = m = 5/2 and comparing with experiments one finds the

corresponding dz in the proper reference frame:

〈5/2+|dz|5/2−〉 = −e × 0.12 fm. (4)

Of course lifetimes cannot be used to determine signs in
Eqs. (3) and (4). Section VI explains how these signs are
determined.

III. THE WAVE FUNCTIONS OF THE GROUND-STATE
PARITY DOUBLET | 5

2
±

) IN 153Eu

The standard theoretical description of low-energy states
in 153Eu is based on the Nilsson model of a quadrupole-
deformed nucleus. In agreement with experimental data, the
Nilsson model predicts the spin and parity of the ground state,
5/2+. It also predicts the existence of the low-energy excited
state with opposite parity, 5/2−. The wave functions of the
odd proton in the Nilsson scheme are |5/2+〉 = |413 5

2 〉 and
|5/2−〉 = |532 5

2 〉. The explicit form of these wave functions
is presented in the Appendix. There are two rotational towers
built on these states.

An alternative to the Nilsson approach is the model of a
static collective octupole deformation [11]. In this model the
odd proton moves in the pear shape potential forming the
� = 5/2 single-particle state. A rotational tower built on this
odd proton state is consistent with the observed spectra, and
this is why the paper [11] argues in favor of the static octupole
deformation. However, two different parity rotational towers
in the Nilsson scheme are equally consistent with observed
spectra. Therefore, based solely on nuclear spectra, one can
conclude only that both the Nilsson model and the static
octupole deformation model are consistent with the data. Ad-
ditional data are needed to distinguish between these two
models.

The Nilsson model explains the 5/2 ground-state angular
momentum, while in the static octupole model this value
appears from nowhere. However, in principle it is possible
that accidentally the single-particle state in the pear shape
potential has � = 5/2.

To distinguish between the two models, let us exam-
ine magnetic moments. The measured magnetic moment of
the ground state is μ5/2+ = 1.53μN (see Ref. [14]). This
value is consistent with prediction on the Nilsson model [17].
The magnetic moment of the 5/2− state has some ambigu-
ity: the measurement led to two possible interpretations, “the
recommended value” μ5/2− = 3.22μN and another value con-
sistent with measurement μ5/2− = −0.52μN (see Ref. [14]).
The recommended value is consistent with the prediction
of the Nilsson model [18]. Thus the magnetic moments are
consistent with the Nilsson model. The static octupole model
predicts μ5/2− ≈ μ5/2+ , which is inconsistent with experimen-
tal data.

While the arguments presented above rule out the static
octupole model, they do not imply that the octupole mode is
irrelevant; actually it is relevant. I will show now that, while
the Nilsson model explains the magnetic moments, it cannot
explain the E1 transition amplitudes.

Within the Nilsson model one can calculate the E1 dipole
transition matrix element 〈5/2+|dz|5/2−〉. A straightforward
calculation with wave functions (A4) gives the dipole matrix
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element

dz = e(1 − Z/A)

〈
532

5

2

∣∣∣∣z
∣∣∣∣413

5

2

〉

= e(1 − Z/A)
z0√

2
(0.527 − 0.510 + 0.017)

= e × 0.036 fm. (5)

Here the effective proton charge (1 − Z/A) = 0.59 has been
accounted for. The calculated matrix element (5) is three times
smaller than the experimental one (4). The first impression is
that the disagreement is not bad, having in mind the dramatic
compensations in Eq. (5). However, there are the following
two observations.

(i) It has been pointed out in Ref. [4] that the compensa-
tion in (5) is not accidental: the compensation is due to
the structure of Nilsson states, and the matrix element
〈532 5

2 |z|413 5
2 〉 is proportional to the energy splitting

E5/2− − E5/2+ . The matrix element is small because
the splitting is small, compared to the shell model
energy ω0 ≈ 7.7 MeV. The value (5) is calculated
with wave functions from Ref. [19] that correspond to
E5/2− − E5/2+ ≈ 450 keV. On the other hand, for 153Eu
E5/2− − E5/2+ ≈ 97 keV. Therefore, the true matrix
element must be even smaller than the value (5).

(ii) The electric dipole operator is T even. Therefore, there
is a suppression of the matrix element due to pairing
of protons, dz → dz(u1u2 − v1v2), where u and v are
pairing BCS factors. This further reduces the matrix
element (see Ref. [20]).

The arguments in the previous paragraph lead to the con-
clusion that, while the Nilsson model correctly predicts the
quantum numbers and explains the magnetic moments, the
model does not explain the electric dipole transition ampli-
tude. The experimental amplitude is an order of magnitude
larger than the Nilsson one. This observation has been made
already in Ref. [4] and confirmed in Ref. [21].

An admixture of the collective octupole to Nilsson states
resolves the dipole moment issue. The first time this explana-
tion was suggested was probably in Ref. [21]. Let us expand
the 153Eu nuclear wave functions

|+〉 =
∣∣∣∣5

2

+〉
=

√
1 − α2

∣∣∣∣413
5

2

〉
|0〉 − α

∣∣∣∣532
5

2

〉
|1〉,

|−〉 =
∣∣∣∣5

2

−〉
=

√
1 − α2

∣∣∣∣532
5

2

〉
|0〉 − α

∣∣∣∣413
5

2

〉
|1〉, (6)

where α is a mixing coefficient and the states |0〉 and |1〉
describe the collective octupole mode: |0〉 is the symmetric
octupole vibration and |1〉 is the antisymmetric octupole vi-
bration. The state |0〉 corresponds to the ground state of 152Sm
and |1〉 corresponds to the octupole excitation at energy ≈1
MeV. Section VI discusses the specific structure of the states
|0〉 and |1〉, explains why the mixing coefficient in both states
in (6) is the same, and explains why α > 0.

Using (6) and neglecting the small single-particle contribu-
tion, the transition electric dipole moment is given by〈

5

2

+∣∣∣∣dz

∣∣∣∣5

2

−〉
= −2α

√
1 − α2〈0|dz|1〉. (7)

Hence, using the experimental values (3) and (4) one finds

α ≈ 0.12

2 × 0.31
= 0.20. (8)

Thus the weight of the admixture of the collective vibration
to the simple Nilsson state is just α2 = 4%. This weight is
sufficiently small to make the Nilsson scheme calculation of
magnetic moments correct. On the other hand, the weight is
sufficiently large to influence electric dipole transition matrix
elements.

Let us note that, under the approximation that proton and
neutron distributions are identical, the octupole vibration does
not have an electric dipole transition matrix element, due to
the elimination of the zero mode. However, a small shift of the
neutron distribution with respect to the proton distribution, in
combination with the octupole deformation, does give rise to a
nonzero value of the dipole matrix element: 〈1|dz|0〉 �= 0 (see,
e.g., Refs. [22–24]). While this issue is important theoreti-
cally, pragmatically it is not important for the present analysis
since I take both values of matrix elements (3) and (4) from
experiment.

It is worth noting also that in the static octupole model one
expects 〈5/2+|dz|5/2−〉 = 〈0|dz|1〉 = +e × 0.31 fm, which
is, like magnetic moments, inconsistent with experimental
data.

IV. THE QUADRUPOLE DEFORMATION OF 153Eu

The standard way to describe nuclear deformation is to use
parameters βl . In the corotating reference frame the surface of
a quadrupole-deformed nucleus is given by

R(θ ) = R0(1 + β2Y2,0),

R0 = r0A1/3,

r0 ≈ 1.2 fm, (9)

where A is the number of nucleons and β2
2 is neglected com-

pared to 1.
Let us determine β2 using the known electric quadrupole

moment Q in the ground state of 153Eu. There are two con-
tributions in Q: (i) the collective contribution due to collective
deformation and (ii) the single-particle contribution of the odd
proton. Using the Nilsson wave functions it is easy to check
that the single-particle contribution is about 3–4% of the ex-
perimental value of Q, so it can be neglected. The collective
electric quadrupole moment is given by density of protons ρp:

Q0 = Qzz =
∫

ρp(3z2 − r2)dV = 4

√
π

5

∫
ρpr2Y20dV

= 3ZR2
0√

5π
β2

[
1 + 2

√
5

7
√

π
β2 + 12

7
√

π
β4

]
. (10)

Here I also include β4 and Z is the nuclear charge.
Equation (10) gives the quadrupole moment in the proper
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reference frame. In the laboratory frame, for the ground state
J = � = 5/2, the quadrupole moment is Q = 5

14 Q0 [see
Sec. 119 (Deformed Nuclei) in Ref. [16]]. The experimental
value of the ground-state quadrupole moment of 153Eu is
Q = 2.412 b [14]. From here, assuming β4 = 0.07, one
finds the quadrupole deformation of the 153Eu nucleus in the
ground state:

β2 ≈ 0.29. (11)

The values β2 ≈ 0.29 and β4 = 0.07 are in agreement with
those in 152Sm, determined from electron scattering [25].

The electric quadrupole moment of the 151Eu nucleus in the
ground state is Q = 0.903 b [14]. Therefore the quadrupole
deformation of 151Eu, β2 ≈ 0.12, is significantly smaller than
that of 153Eu.

V. THE NUCLEAR DENSITY VARIATION
DUE TO THE OCTUPOLE DEFORMATION

The standard way to describe the static octupole deforma-
tion β3 is to use the parametrization (9):

R(θ ) = R0(1 + β1Y10 + β2Y2,0 + β3Y3,0 + . . . ). (12)

This equation describes the surface of the nucleus in the
proper reference frame. The dipole harmonic Y10 is necessary
to eliminate the zero mode, i.e., to satisfy the condition

〈z〉 =
∫

ρ(r)rY10dV = 0 (13)

where ρ(r) is the number density of nucleons. From Eq. (13)
one finds

β1 = −xβ2β3, x =
√

243

140π
≈ 0.743. (14)

Rather than using Eq. (12), for our purposes it is more conve-
nient to use a slightly different parametrization:

ρ ′ = β3
3A

4πR2
0

δ[r − R0(1 + β2Y20)](Y30 − xβ2Y10), (15)

where ρ ′ is the octupole component of the nuclear density and
δ is the δ function. Due to this δ function, ρ ′ is nonzero only
at the surface of the nucleus. Parametrizations (12) and (15)
are equivalent: they both satisfy the constraint (13) and both
give the same octupole moment:

Q30 =
√

4π

7

∫
ρr3Y30dV = β3

3A√
28π

R3
0. (16)

VI. THE STRUCTURE OF THE VIBRATIONAL
STATES |0〉 AND |1〉

The picture described in Secs. IV and V is purely classical,
with static quadrupole and octupole deformations. In reality,
while the quadrupole deformation is static the octupole one
is dynamic. There are two different approaches to describe
the octupole dynamics. Within the standard textbook approach
[19], based on noninteracting phonons, the octupole vibration
in a deformed nucleus is similar to that in a spherical nucleus.
In this language the dynamic octupole phonon corresponds to

FIG. 1. A schematic representation of the states |0〉 and |1〉.

the |3−〉 excited state in the laboratory frame. An alternative
approach (see, for example, Refs. [12,26]) considers the oc-
tupole deformation dynamics along the z axis, defined by the
static quadrupole deformation. The pear dynamics along the z
axis is described by a double well potential. Hence, there is a
hidden octupole deformation in both the ground state and the
“octupole excitation.” The difference between the ground state
|0〉 and the octupole excitation |1〉 is only in the symmetry of
the wave function, as it is illustrated in Fig. 1. For physical in-
tuition one could call the first approach the “atomiclike basis”
and the second approach the “molecularlike basis.” In both ap-
proaches only the off-diagonal matrix element of the octupole
deformation is nonzero: β3 ∝ 〈3−|β̂3|0〉 �= 0. If β3 is extracted
from experiment and if the octupole excitation energy �E
is much larger than all other energy scales in the problem
both approaches give the same answer. In 153Eu and 152Sm
the energy �E ≈ 1 MeV is large and hence any approach is
applicable. However, the aim of this paper is not only to per-
form calculation of SM for 153Eu, but to also develop a general
calculation method that is valid for small �E . This is why in
this paper the second approach is employed. It should be noted
that a recent mean-field nuclear DFT calculation [27] does not
indicate a double well structure in 152Sm. However, in 152Sm
the tunneling matrix element between the wells is ∼�E ∼
1 MeV. The validity of a mean field approach with such fast
tunneling is questionable. In any case, for such a large �E , the
final answer is independent of the approach, since the relevant
matrix elements are extracted from experiment.

Tunneling between the two orientations of the pear leads to
the energy splitting and to formation of symmetric and anti-
symmetric states |0〉 and |1〉, as shown in Fig. 1. In 152Sm the
tunneling energy splitting, �E ∼ 1 MeV, is much larger than
the rotational energy splitting, �Erot ∼ 20 keV. Hence, there
are well defined rotational towers built on |0〉 and |1〉 states
(see Ref. [14]). Note that the approach I am using is valid
even if the pear tunneling amplitude is comparable with the
rotational energy, �E ∼ �Erot. Of course a calculation of SM
in this case is more involved because one has to diagonalize
the pear tunneling and pear rotations simultaneously. Note that
the case �E ∼ �Erot is still not the static deformation case.
To have a truly static octupole one needs to have �E � �Erot.

The Hamiltonian for the odd proton reads

H = p2

2m
+ U (r), (17)

where U (r) is the self-consistent potential of the even-even
core. It is well known that the nuclear density ρ(r) has ap-
proximately the same shape as the potential

U (r) ≈ U0

ρ(0)
ρ(r), (18)
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where U0 ≈ −50 MeV and ρ(0) = 3/(4πr3
0 ). Hence the vari-

ation of the potential related to the octupole deformation is

δU = U0

ρ(0)
ρ ′=β3U0R0δ[r − R0(1 + β2Y20)](Y30 − xβ2Y10).

(19)

This is the perturbation that mixes single-particle Nilsson
states, with simultaneous mixing of |0〉 and |1〉. The mixing
matrix element is

M = 〈1|
〈
532

5

2

∣∣∣∣δU

∣∣∣∣413
5

2

〉
|0〉 =

∫
ρSP(r)δU (r)dV,

ρSP(r) = 〈ψ∗
532(r)ψ413(r)〉. (20)

Here ρSP is the off-diagonal single-particle density of Nilsson
wave functions (A4), the density depends on r, and the brack-
ets 〈..〉 in ρSP denote averaging over spin only. Numerical
evaluation of the mixing matrix element is straightforward:
the answer at β2 = 0.29 is M ≈ 5β3 MeV. The value has a
slight dependence on β2: at β2 = 0 the value of M is 10%
smaller.

In Sec. III, Eq. (6) the mixing between single-particle
Nilsson states was parametrized by the coefficient α, given
by

α = M

�E
, (21)

where �E ≈ 1 MeV. Equations (20) and (21), together with
the positive value of M, explain why the coefficient α is the
same in both of Eqs. (6) and why α > 0.

Moreover, comparing Eq. (21) with the value of α ex-
tracted from experimental data [Eq. (8)], one determines the
octupole deformation: β3 = 0.04. While the value is reason-
able, unfortunately there is no certainty that it is accurate.
The shape approximation (18) is not very accurate. Even more
importantly, it is not clear how the BCS factor influences ρSP.
The BCS factor can easily reduce ρSP by factor ∼2–3, hence
increasing β3 by the same factor. Theoretical calculations of
β3 give values from 0.05 [24], to 0.075 [28], and even 0.15
[29].

VII. THE VALUE OF THE OCTUPOLE
DEFORMATION PARAMETER β3

With the wave functions schematically shown in Fig. 1
one immediately finds the electric octupole matrix element
between states |0〉 and |1〉:

〈1|Q(e)
30 |0〉 = e

Z

A
Q30, (22)

where Q30 is given by Eq. (16). I am not aware of di-
rect measurements of Q(e)

30 in 152Sm. Reference [19] presents
the “oscillator strengths” for corresponding E3 transitions in
152Sm and 238U. For 152Sm, B3 = 1.2 × 105 e2 fm6, and for
238U, B3 = 5 × 105 e2 fm6 (Table 6.14 in Ref. [19]). How-
ever, these values have not been determined from direct
electromagnetic measurements, but were instead indirectly
extracted from deuteron scattering from the nuclei. For 238U
there is a more recent value determined from the electron

FIG. 2. The spectrum of scattered electrons from 152Sm at 93.5◦.
Incident electron energy: 76 MeV. Aside from the ground-state ro-
tational band, the 3− level at 1.041 MeV and the 2+ level at 1.086
MeV are seen (channel 210). The plot is taken from Ref. [25].

scattering [30]: B3 = (6.4 ± 0.6) × 105 e2 fm6. All in all,
these data give β3 ≈ 0.08 for both 152Sm and 238U.

Fortunately, existing electron scattering data of Ref. [25]
allow us to accurately determine β3 in 152Sm. The goal of
Ref. [25] was to determine β2 and β4, and their results, β2 =
0.287 ± 0.003 and β4 = 0.070 ± 0.003, are remarkably close
to that obtained for 153Eu in Sec. IV.

Let us reanalyze the inelastic scattering spectrum of
Ref. [25], a copy of which is shown in Fig. 2. The first
inelastic peak at E = 122 keV (≈ channel 73) corresponds
to the 2+ excitation of the rotational ground-state band. The
peak, after background subtraction, is shown in Fig. 3(a).
Red dots are experimental points and the solid curve is the
Gaussian fit:

I = Ae−(x−x0 )2/σ 2
,

A = 7.23, x0 = 72.9, σ = 5.21. (23)

Hence, the half width is � = 2 ln(2)σ = 49.3 keV, where I
take into account that one channel step is 6.82 keV. This

FIG. 3. Excitation peaks with subtracted background. Red dots
are experimental data and black curves are Gaussian (double
Gaussian) fits. (a) The 2+ excitation of the ground-state rotational
band. (b) The combined peak of the 3− octupole and the γ 2+ state of
the rotational γ band.
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energy resolution is 0.065% of the electron energy 76 MeV.
This is slightly smaller than but close to the “typical value”
0.08% mentioned in Ref. [25]. The peak in Fig. 2 near channel
210 is a combination of the 3− octupole (E = 1041 keV) and
of the γ 2+ state of the γ band (E = 1086 keV). This peak,
after background subtraction, is shown in Fig. 3(b). I fit the
peak by the double Gaussian:

I = B[e−(x−x1 )2/σ 2 + e−(x−x2 )2/σ 2
],

B = 0.670, x1 = 207.6, x2 = 214.2, σ = 5.21. (24)

In this fit B is the only free parameter. The value of x1 is fixed,
corresponding to E = 1041 keV; the value of x2 is fixed,
corresponding to E = 1086 keV; and σ is fixed at the best-fit
value in Eq. (23). The fit shows that the intensities of the 3−
and γ 2+ lines cannot differ by more than 5%, so I set them to
be equal.

Based on Eqs. (23) and (24) one finds the ratio of the
spectral weights:

S(3−)

S(2+)
= B

A
= 0.093. (25)

Here 2+ is the ground-state rotational state, but, interestingly,
the analysis can also give the spectral weight of the γ 2+ state.
This could allow one to determine the magnitude of the γ

deformation. However, this issue is irrelevant to the Schiff
moment and therefore I do not analyze it further.

The Coulomb potential of the Eu nucleus at r ≈ R0 is 15
MeV, which is significantly smaller than the electron energy
76 MeV. Therefore the electron wave function can be approx-
imated as a plane wave. The momentum transfer is

q = 2p sin(93.5◦/2) ≈ 111 MeV ≈ 0.562 fm−1. (26)

Using the expansion of the plane wave in spherical harmon-
ics, together with the Wigner-Eckart theorem, the spectral
weights can be expressed as integrals in the corotating ref-
erence frame:

S(2+) ∝
∣∣∣∣
∫

Y20 j2(qr)ρ(r)dV

∣∣∣∣
2

,

S(3−) ∝
∣∣∣∣
∫

Y30 j3(qr)ρ ′(r)dV

∣∣∣∣
2

, (27)

where jl (qr) is the spherical Bessel function [16], ρ(r) is the
nuclear density with quadrupole deformation, and ρ ′ is the
octupole component of the nuclear density, given by Eq. (15).
The coefficient of proportionality in both of Eqs. (27) is the
same and therefore I skip it. Evaluation of integrals in (27) is
straightforward; it gives∫

Y20 j2(qr)ρ(r)dV ∝ β2 j2(qR0) = 0.302β2,∫
Y30 j3(qr)ρ ′(r)dV ∝ β3 j3(qR0) = 0.205β3. (28)

Comparing the theoretical ratio with its experimental value
(25) and using the known quadrupole deformation one finds
the octupole deformations β3 = 0.45β2 = 0.130.

In the previous paragraph the plane wave approximation
has been used for the electron wave function, neglecting

the Coulomb potential ≈15 MeV compared to the electron
energy 76 MeV. A simple way to estimate the Coulomb cor-
rection is to change q → q′ ≈ q(1 + 15/76) = 0.673 fm−1.
This results in β3 = 0.090. This rough correction probably
overestimates the effect of the Coulomb potential. An accurate
calculation of the distorted electron wave functions would
allow one to determine β3 very accurately. For now I take

β3 = 0.10. (29)

VIII. THE T - AND P-ODD MIXING OF 5/2+

AND 5/2− STATES IN 153Eu

The operator of the T - and P-odd interaction reads [4]

HT P = η
G

2
√

2m
�σ · �∇ρ, (30)

where m is the nucleon mass, G ≈ 1.03/m2 is the Fermi
constant, η is a dimensionless constant characterizing the
interaction, �σ is the Pauli matrix corresponding to the spin
of the unpaired nucleon, and ρ is the nuclear number density.
The single-particle matrix element of HT P between Nilsson
states can be estimated as (see Ref. [4])

〈532|HT P|413〉
∝ 〈532|∇ρ|413〉 ∝ 〈532|∇U |413〉
∝ 〈532|[p, H]|413〉 ∝ (E532 − E413)〈532|p|413〉
∝ (E532 − E413)〈532|[r, H]|413〉
∝ (E532 − E412)2〈532|r|413〉.

Thus, the matrix element is suppressed by the small param-
eter [(E532 − E412)/ω0]2, with E532 − E412 ≈ 100 keV and
ω0 ≈ 8 MeV. Hence the single-particle matrix element can
be neglected.

The matrix element between the physical states, given in
Eq. (6), also contains the collective octupole contribution:

〈−|HT P|+〉 = −α

〈
532

5

2

∣∣∣∣〈1|HT P|0〉
∣∣∣∣532

5

2

〉

−α

〈
413

5

2

∣∣∣∣〈0|HT P|1〉
∣∣∣∣413

5

2

〉
. (31)

Integrating by parts one transforms this to

〈−|HT P|+〉 = αηG

2
√

2m

∫
[ρ532(r) + ρ413]ρ ′(r)dV,

ρ532(r) = ∂z〈532|σz|532〉,
ρ413(r) = ∂z〈413|σz|413〉, (32)

where ρ ′ is the octupole density given by Eq. (15). Note
that the “spin densities” ρ532 and ρ413 depend on r, since the
brackets 〈..〉 in the definitions of the densities in (32) denote
averaging over spin only. Note also that the spin densities
are T odd. Therefore, the BCS factor practically does not
influence them. Numerical evaluation of integrals in Eq. (32)
with Nilsson wave functions (A4) is straightforward, and the
result is

〈−|HT P|+〉 = αηβ3
G

2
√

2m

3A

4πR4
0

[I413 + I532]. (33)
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FIG. 4. Dimensionless matrix elements I413 and I532 vs
quadrupole deformation.

The dimensionless quantities I413 and I532 are plotted in Fig. 4
versus β2. At the physical deformation β2 = 0.29, as in
Eq. (11), their values are I413 = −0.66 and I532 = −1.05.
Hence one arrives at the following value of the mixing matrix
element:

〈−|HT P|+〉 = −0.24αηβ3 eV. (34)

The numerical coefficient in this equation depends on the
explicit form of the Nilsson orbitals, given in Eq. (A4). The
coefficients in the orbitals depend on the quadrupole defor-
mation β2, and, even though β2 = 0.29 is known, there is an
uncertainty in the coefficients related to a possible lack of
accuracy of the Nilsson model. The plots of integrals I413 and
I532 versus β2, presented in Fig. 4, allow an estimate of the
related uncertainty in Eq. (34). The integrals change with β2

mainly due to the variation of the coefficients in the Nilsson
orbitals’ decomposition (A4). At β2 = 0 the value of the rel-
evant combination of integrals is I413 + I532 = −1.85 and at
β2 = 0.3 the same combination is −1.7. This variation is less
than 10%. There may be other unaccounted components in the
Nilsson orbitals. However, it is extremely unlikely that these
small unaccounted components can change by more than 10%
the value of the numerical coefficient 0.24 in Eq. (34).

IX. THE ELECTRIC DIPOLE MOMENT
OF THE 153Eu NUCLEUS

I need to determine the signs in Eqs. (3) and (4). In the
accepted notation β3 > 0 corresponds to the pear orientation
with respect to the z axis shown in Fig. 5. According to
Refs. [22–24] protons in an octupole-deformed nucleus are

FIG. 5. The octupole pear shape with β2 = 0.29 and β3 = 0.10.

shifted in the positive z direction. Hence, dz in Eq. (3) is
positive, and, using Eqs. (6), one concludes that the sign in
Eq. (4) is negative.

Using Eqs. (4) and (34), one finds the T - and P-odd electric
dipole moment in the ground state:

dT P
z = 2

〈+|dz|−〉〈−|HT P|+〉
E+ − E−

= −0.59 × 10−6αβ3η [e fm]

= −1.18 × 10−8η [e fm]. (35)

For the numerical value I take α = 0.20 [see Eq. (8)] and
β3 = 0.10 [see Eq. (29)]. Equation (35) gives the EDM in
the corotating reference frame. The EDM of 153Eu in the
laboratory reference frame is

dT P = 5

7
dT P

z = −0.84 × 10−8η [e fm]. (36)

This EDM is comparable with that of a heavy spherical nu-
cleus (see Ref. [4]).

X. THE SCHIFF MOMENT OF THE 153Eu NUCLEUS

The SM operator reads [4]

Ŝz = 1

10

[∫
ρqr2zdV − 5

3
r2

qdz

]
. (37)

It is a vector. Here ρq is the charge density and

r2
q ≈ 3

5 R2
0 (38)

is the rms electric charge radius squared. With the static oc-
tupole deformation (15), the first term in Eq. (37) is given by

Sintr = 1

10

∫
ρqr2zdV = 9

20
√

35π
eZR3

0β2β3. (39)

Here I use the same notation Sintr as that in Refs. [11,31]. The
matrix element of the first term in (37) between the states (6)
is

〈+|Ŝ1z|−〉 = −2αSintr = −α
9

10π
√

35
eZR3

0β2β3. (40)

Combining this with Eq. (34), one finds the expectation value
over the ground state:

〈+|Ŝ1z|+〉 = 2
〈+|Ŝ1z|−〉〈−|HT P|+〉

E+ − E−

= −0.24 × 10−6eZR3
0α

2β2β
2
3η. (41)

Hence, the Schiff moment is

Sz = 〈+|Ŝz|+〉 = 〈+|Ŝ1z|+〉 − 1

10
R2

0dT P
z

= [ − 4.0 × 10−3α2β2β
2
3 + 2.4 × 10−6αβ3

]
η [e fm3]

= −4.16 × 10−7η [e fm3]. (42)

For the final numerical value I take α = 0.20 [see Eq. (8)],
β2 = 0.29 [see Eq. (11)], and β3 = 0.10 [see Eq. (29)]. Note
that the first term in the middle line of Eq. (42) is proportional
to α2β2

3 and the second term is proportional to αβ3. This is
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because one power of αβ3 is “hidden” in the experimental
dipole matrix element given by Eq. (4). The second term is
about 10% of the first one. Equation (42) gives the Schiff
moment in the corotating reference frame. The Schiff moment
of 153Eu in the laboratory reference frame is

S = 5
7 Sz = −2.97 × 10−7η [e fm3]. (43)

This result is based on the single-particle T - and P-odd
Hamiltonian (30). I believe that the theoretical uncertainty
of the result is about a factor 2. This is mainly due to the
uncertainty of the octupole deformation β3, and can be further
reduced by a more sophisticated analysis of inelastic electron
scattering data [25], as pointed out in Sec. VII. However,
the single-particle Hamiltonian (30) is obtained by mapping
the two-nucleon T - and P-odd interaction to the effective
single nucleon Hamiltonian. The two-nucleon T - and P-odd
interaction itself originates from the quark level and also
has some uncertainty. Reference [9] estimates the theoretical
uncertainty of this mapping to be a factor 2. This estimate,
based on the existing literature, is far from being certain and
the problem requires further study. Let us note that the map-
ping from quark level to Eq. (30) is not nuclear specific. The
mapping is irrelevant to the collective octupole deformation.
Therefore, the mapping issue is separate from the collective
octupole effect. The focus of the present paper is the calcu-
lation of the collective octupole contribution to the nuclear
Schiff moment.

In the 151Eu nucleus the energy splitting E− − E+ is 3.5
times larger than that in 153Eu, and the quadrupole defor-
mation is 2.5 times smaller. Therefore, the Schiff moment
is at least an order of magnitude smaller than that of 153Eu.
Unfortunately, there are not enough available data to perform
an accurate calculation for 151Eu.

Another interesting deformed nucleus is 237Np. Performing
a simple rescaling from our result for 153Eu one gets the
following estimate of the 237Np Schiff moment, S ∼ −1.5 ×
10−6η [e fm3]. This is 40 times larger than the single-particle
estimate [4]. Following our method and using 238U as a ref-
erence nucleus (like the pair 153Eu and 152Sm in the present
paper), one can perform an accurate calculation of the 237Np
Schiff moment. Data for 238U are available in Ref. [30].

XI. CONCLUSIONS

The Hamiltonian of nuclear time and parity violating in-
teraction is given by Eq. (30). The connection between the
dimensionless interaction constant η and the QCD axion θ

parameter is discussed in Ref. [9]. The interaction (30) gives
rise to the Schiff moment of a nucleus. In the present paper
a method of calculating the Schiff moment of an even-odd
deformed nucleus has been developed. This method is based
on experimental data on magnetic moments and E1 and E3
transition amplitudes in the given even-odd nucleus and in
adjacent even-even nuclei. Unfortunately such sets of data are
not yet available for most of the interesting nuclei. Fortunately
the full set of necessary data does exist for 153Eu. Hence, using
the new method, I perform the calculation for 153Eu. The result
is given by Eq. (43). The theoretical uncertainty of this result,
about factor 2, is mainly due to the uncertainty in the value

of the octupole deformation. A more sophisticated analysis of
the available electron scattering data can further reduce this
uncertainty.

The Schiff moment (43) is 20–50 times larger than that in
heavy spherical nuclei [4] and it is three times larger than what
Ref. [9] calls a “conservative estimate.” On the other hand it
is a factor of 30 smaller than the result of Ref. [11], based on
the model of a static octupole deformation.

Using the calculated value of the Schiff moment, it is easy
to rescale the results of Ref. [9] for the energy shift of the
153Eu nuclear spin and for the effective electric field in the
EuCl3 · 6H2O compound. The result of this rescaling is

δEo = 0.9 × 10−9θ [eV],

E∗
o = 0.3 MV/cm. (44)

These are the figures of merit for the proposed Cosmic Axion
Spin Precession Experiment with EuCl3 · 6H2O [8].

ACKNOWLEDGMENTS

I am grateful to A. O. Sushkov for stimulating discus-
sions and interest in the paper. This work has been supported
by the Australian Research Council Centre of Excellence
in Future Low-Energy Electronics Technology (Grant No.
CE170100039).

APPENDIX: NILSSON WAVE FUNCTIONS

The parameters of the deformed oscillator potential used in
the Nilsson model are as follows:

ωz = ω0

(
1 − 2

3
δ

)
, z0 = 1√

mωz
,

ωρ = ω0

(
1 + 1

3
δ

)
, ρ0 = 1√

mωρ

,

ω0 = 41 MeV

A1/3
, (A1)

where m ≈ 940 MeV is the nucleon mass. The parameter δ is
related to β2 used in the main text:

δ = 3
√

5

4
√

π
β2 ≈ 0.946β2. (A2)

The oscillator wave functions defined in Ref. [19] are

z = z/z0,

|0〉z = 1

(
√

πz0)1/2
e−z2/2,

|1〉z =
√

2

(
√

πz0)1/2
ze−z2/2,

|2〉z = 1

(2
√

πz0)1/2
[2z2 − 1]e−z2/2,

|3〉z = 1

(3
√

πz0)1/2
z[2z2 − 3]e−z2/2,

ρ = ρ/ρ0,
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|2, 2〉ρ = 1√
2πρ0

ρ2e−ρ2/2e2iϕ,

|3, 3〉ρ = 1√
6πρ0

ρ3e−ρ2/2e3iϕ,

|4, 2〉ρ = 1√
6πρ0

ρ2(ρ2 − 3)e−ρ2/2e2iϕ,

|5, 3〉ρ = 1√
24πρ0

ρ3(ρ2 − 4)e−ρ2/2e3iϕ. (A3)

The Nilsson wave functions for the quadrupole deformation
δ = 0.3 written in the oscillator basis (A3) are [19]∣∣∣∣413

5

2

〉
= 0.938|1〉z|3, 3〉ρ | ↓〉 − 0.342|2〉z|2, 2〉ρ | ↑〉

+ 0.054|0〉z|4, 2〉ρ | ↑〉,∣∣∣∣532
5

2

〉
= 0.861|3〉z|2, 2〉ρ | ↑〉 + 0.397|2〉z|3, 3〉ρ | ↓〉

+ 0.310|1〉z|4, 2〉ρ | ↑〉 + 0.075|0〉z|5, 3〉ρ | ↓〉.
(A4)
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