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We calculated in nonlinear bosonized theory 1/N̄ corrections to the Landau Fermi-liquid fixed-point (FLFP)
axial-vector coupling constant in nuclear matter gL

A ≈ 1 to which the Landau parameter Fω
1 predominantly

contributes. We obtain the correction to Fω
1 to calculate the correction δgL

A to the axial-vector coupling constant
gL

A at the nuclear saturation density. It comes out to be extremely small, δgL
A ∼ O(10−4). We discuss how the

dilaton-limit fixed-point (DLFP) result gA = 1 can be preserved from finite nuclei to high densities relevant to
massive neutron stars and its possible impact on 0νββ decay processes involved in going beyond the standard
model.
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I. INTRODUCTION

It has been argued [1] that when a many-nucleon system
is treated as interacting fermions in renormalization-group
approach on the Fermi surface, the superallowed Gamow-
Teller transition (with momentum transfer q ≈ 0) is described
by the Fermi-liquid fixed-point coupling constant gL

A cap-
tured entirely by the strong nuclear correlation effects of the
quasiparticle on the surface. This meant that the longstanding
puzzle of the quenched g∗

A ≈ 1 observed in light nuclei [2,3]
can be accounted for in terms of a quasiparticle effective
axial-vector coupling constant in nuclear effective field theory
(EFT) defined by the chiral cutoff scale ≈4π fπ ≈ 1 GeV

g∗
A = gL

A ≈ 1. (1)

This result should apply to not just light nuclei but also to
heavy nuclei and perhaps all the way to massive compact star
matter. How this result could impact on nuclear dynamics in
general and the search for going beyond the standard model
will be commented on in Sec. III.

Up to date there is no ab initio microscopic many-body cal-
culation to confirm or dismiss the prediction (1). Highly pow-
erful Monte Carlo calculations [4] that have been performed
for light nuclei with mass number A � 21 indicate no hint for
such a renormalized coupling constant g∗

A in many nucleon
systems. Modulo possibly small corrections from n-body
(for n � 2) current operators, what could be referred to as
fundamental gA = 1.276 can fully account for the axial tran-
sitions in nuclear medium. But there is no such fully trustful
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microscopic calculation available up to date for heavier
nuclei.

The aim of this paper is to show that the prediction (1)
remains to hold unaffected at least up to �; n0 (where n0 ≈
0.16 fm−3 is the normal nuclear matter density) under cor-
rections to the Fermi-liquid fixed-point approximation that
gave (1). The strategy we use is to apply to nuclear in-
teractions the technique of nonlinear bosonization of Fermi
surfaces anchored on the method of coadjoint orbits developed
in condensed matter physics [5]. For the strong interactions
involved, we need to implement the degrees of freedom as-
sociated with QCD, endowed with both intrinsic and hidden
symmetries, which bring to the problem complexities absent
in, and different from, condensed matter systems.

The calculation involved consists of three elements. The
first is the notion that the theory for strong interactions,
QCD, gives the nucleons, i.e., light-quark baryons, as the
skyrmions—and equivalently the weakly interacting con-
stituent quarks—in the limit of large number of colors Nc →
∞. Embedded in a skyrmion medium, the effective qua-
siskyrmion mass that we could refer to as chiral quasiparticle
mass scales in density as [6]1

mskyrmion∗
N /mN ≈ (g∗

A/gA)1/2 f ∗
π / fπ . (2)

Here and in what follows, ∗ stands for density dependence.
What is taken into account in (2) is, apart from the large Nc

1In this reference, f ∗
χ / fχ ≈ f ∗

π / fπ and the latter is given experi-
mentally in deeply bound pionic atom. This relation most likely does
not hold in other cases, e.g., for dilatonic Higgs models for large
Nf [7].
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limit, scale invariance of the axial coupling to skyrmions at
the classical level and the in-medium dilaton σd condensate
〈σd〉 ∝ 〈χ〉 where χ here is the linearly scale-transforming
conformal compensator field χ = fχeσd / fχ figuring in the ef-
fective field theory Lagrangian. In (2) f ∗

π / fπ replaces f ∗
χ / fχ

as explained later. One can identify (2) as an in-medium
Goldberger-Treiman relation. It is established that in the vac-
uum, the Goldberger-Treiman relation holds very well in the
large Nc limit and we assume that it will also do so in medium.

The next thing we want to establish is the connection be-
tween the chiral effective field theory for nuclear matter and
the effective field theory for Landau Fermi liquid of nucleons.
Extending effective field theory on the Fermi surfaces de-
veloped for condensed matter systems [8,9] to nuclear chiral
effective field theory incorporating hidden (both vector and
scalar) symmetries for strongly interacting nuclear systems
[10], it has been shown that

m∗
L/mN ≈ (1 − F̃1/3)−1, (3)

where m∗
L is the Landau (fixed-point) quasiparticle (a.k.a. nu-

cleon) mass and

F̃1 = (mN/m∗
L )F1 (4)

with

F1 = Fω
1 + Fπ

1 , (5)

where Fω(π )
1 stands for the contribution from the Landau

quasiparticle interaction in the ω(π ) channel. What makes
the nuclear Fermi-liquid system strikingly different from the
electron Fermi liquid is the Landau quasiparticle interaction in
the pion channel Fπ

1 , which will turn out as we will elaborate
below to play a crucial role in nuclear properties.

Third, the basic premise of our theory is that the chiral mass
(2) valid at the large Nc limit can be equated to the Landau
mass (3) in the Fermi-liquid fixed-point approximation

mskyrmion∗
N /mN ≈ m∗

L/mN . (6)

It follows from (2) that

g∗
A ≈ gA

(
1 − 1

3
	∗

χ F̃π
1

)−2

, (7)

where

	∗
χ = f ∗

χ / fχ ≈ f ∗
π / fπ (8)

with the last approximate equality assumed to hold in the
genuine dilaton (GD) model [11,12].

It will be our assertion that one can take the quasiskyrmion
g∗

A to be equivalent to the Landau fixed-point quantity gL
A

gL
A ≈ gA

(
1 − 1

3
	∗

χ F̃π
1

)−2

. (9)

It turns out that the product 1
3	∗

χ F̃π
1 is more or less indepen-

dent of density near n0, so one arrives at

gL
A ≈ 1 (10)

that applies not only to light nuclei but also to nuclear matter at
a density ∼n0. What will be surprising is that gL

A → 1 exactly

at what is called dilaton-limit fixed-point (DLFP) [13] at some
high density near chiral restoration.

What takes place in between is the main topic of this
paper. It will be found that the higher-order corrections found
in the framework adopted in this paper to Eq. (10) are ex-
tremely small, ∼O(10−4), even at the normal nuclear matter
density n0. What this result, if correct, implies both in the
superallowed Gamow-Teller transitions in nuclei as well as in
the 0νββ transitions relevant for going beyond the standard
model will be discussed in Sec. III.

II. GENERALIZED CHIRAL EFFECTIVE
FIELD THEORY: GnEFT

Our approach is anchored on an effective Lagrangian that
incorporates hidden local symmetry (HLS) [14,15] and hidden
scale symmetry (HSS) [11] into chiral EFT mapped to Fermi
liquid applicable to nuclear matter (in place of electron sys-
tems). Hidden local symmetry comprising the lightest vector
mesons ρ and ω is gauge equivalent to nonlinear σ model
[14] so can be simply implemented at the classical level [that
is at the leading-order chiral power counting, O(p2), in the
mesonic sector and O(p) when baryons are coupled]. Hidden
scale symmetry is implemented using the conformal compen-
sator field χ with a suitable dilaton potential Vd appropriate
for the GD scale symmetry. For the problem we are concerned
with we do not need to enter the detailed structure given in the
reviews [16,17]. The formulation made in these reviews in-
volves the mechanism for hadron-quark continuity at a density
above n0, typically ≈3n0, to access the density relevant to the
interior of massive compact stars. Although the precise way
the crossover from hadrons to quarks/gluons takes place may
not matter quantitatively in the properties of compact stars,
for the problem concerned here at near nuclear matter density,
what turns out to be most relevant is the intricate interplay
between the coupling of the pions, the ω and σd to nucleons.
This aspect of the problem has not yet been treated in the
literature.

A. Interplay between ω meson coupling and σd meson coupling

In arriving at Eq. (7), what is involved is an interplay
between the ω and σd mesons in nuclear matter treated as a
Fermi liquid on the Fermi surface. For this matter, what is
most important is the notion of the genuine dilaton (GD for
short) in QCD as put forward by Crewther and collaborators
[11,12]. The GD scheme is characterized by the assump-
tion that there exists an infrared fixed point (IRFP) αIR for
Nf � 3 at which both scale symmetry and chiral symmetry
(in the chiral limit) are realized in the Nambu-Goldstone (NG)
mode, populated by the massless NG bosons π and dilaton
σd whose decay constants are nonzero. The characteristic
of this notion that we espouse is that it accommodates the
massive nucleons � and vector mesons Vμ = (ρ, ω) at the IR
fixed point.

The GD in a chiral Lagrangian plays not only the role of
reducing the nucleon mass from mN to mσ

N by the attractive
coupling to a scalar σ in Walecka mean-field theory [18] but
also endows the BR scaling [6] caused by the vacuum change
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by nuclear medium

m∗
V

mV
≈ m∗

s

ms
≈ f ∗

π

fπ
≡ 	∗

χ , (11)

where V means vector meson, mV the vector meson mass, ms

the scalar (either Walecka’s σ or σd in GnEFT) meson mass.
In mapping to Fermi liquid, we integrate out the ω and π

mesons, leaving local four-fermion and nonlocal four-fermion
interactions, respectively (ρ channel will not figure in the
calculation of gL

A, but will figure in the calculation of the gy-
romagnetic ratio mentioned below). The quasiparticle energy
is

ε(p) = p2

2mσ
N

+ C2
ωn + �π (p), (12)

where mσ
N is the BR-scaled nucleon mass and C2

ω = g2
ω/m∗2

ω

with gω the ω-N coupling constant. �π (p) is self-energy given
by the pionic Fock term. Taking derivatives with respect to
momentum at the Fermi surface

dε(p)

d p

∣∣∣∣
p=pF

= pF

m∗
L

= pF

mσ
N

+ d�π (p)

d p

∣∣∣∣
p=pF

, (13)

where pF is the Fermi momentum. Equation (2), Eq. (3),
Eq. (6), and the Fock term at n0 [19]

F̃π
1 = −3

mN

pF

d�π (p)

d p

∣∣∣∣
p=pF

(14)

lead us to identify gL
A ≈ 1, Eq. (9), as a Landau fixed point

quantity. A quantity that figures importantly to justify this is
the relation

mN

mσ
N

= 	∗−1
χ = 1 − 1

3
F̃ω

1 . (15)

The quantities involved here are taken to be Landau fixed-
point (LFP) quantities. What we will calculate below as 1/N̄
corrections deal with the LFP quantities and the relation (15)
correlates the attractive interaction effect associated with the
dilaton, i.e., the BR scaling, and the repulsion due to ω ex-
change. Although we have not fully understood—a task we
have left for the future work, we think it is this relation that
dictates intricately the size of the 1/N̄ corrections estimated
in this paper.

B. Mesonic fields

As stated, in formulating renormalization group ap-
proaches to interacting nucleons, it is more astute to introduce
mesonic fields ab initio that are massive such as the
light-quark vector mesons (ρ, ω) in addition to the pseudo-
Nambu-Goldstone bosons π , σd , etc. For very low-energy
excitations or densities, the bosonic fields can be integrated
out with higher derivative terms appearing. In fact even the
pions can be integrated out leading to pionless EFT, which
can be treated in terms of the power series. The pionless
EFT will breakdown if the excitation involves the scale higher
than the pion mass. The standard chiral EFT (SχEFT) an-
chored on the chiral Lagrangian with nucleons and pions
has been shown to work well up to the scale correspond-
ing to the scale of the masses of the mesons integrated out,

say O(mρ ). The power expansion goes typically to NqLO
for q � 3 and is to breakdown when the scale involved
goes above mρ . The SχEFT therefore is expected not to
work for compact-star densities where the density involved is
≈(4–7)n0.

The approach mentioned in the previous section that maps
GnEFT Lagrangian to the Landau Fermi-liquid fixed-point
theory of many-nucleon systems can circumvent such diffi-
culty. When the nucleons are put on the Fermi surface, the
Fermi-liquid fixed-point (FLFP) approximation corresponds
to taking 1/N̄ to zero, where N̄ = pF /� with � the cutoff
with respect to the Fermi surface. It becomes more reliable as
density increases. When we consider � to be a finite quantity
small compared to pF , the 1/N̄ correction should enter into
the fixed-point result Eq. (1). This is the double-decimation
procedure applied in Vlow K RG in finite nuclei [20]. The main
result of this paper is that Eq. (1) still holds when 1/N̄ correc-
tion enters.

Before going into the 1/N̄ corrections, it should be noted
that the pion and ω contribute differently to the FLFP result.
To illustrate this, we explain how the gyromagnetic ratio for
the proton in heavy nuclei gp

l comes out in the FLFP approx-
imation in GnEFT. The calculation is essentially the same
as the simplified chiral Lagrangian with HLS fields imple-
mented with the hidden scale symmetry used in Ref. [21]. We
will therefore simplify the discussion, leaving the details to
Ref. [21].

In GnEFT, the Lagrangian taken at the mean-field (viz,
FLFP) approximation [8,10] gives the Migdal formula [22]
for the quasiparticle convection current

J = p
mN

gl = p
mN

(1 + τ3

2
+ 1

6
(F̃1 − F̃ ′

1 )τ3

)
, (16)

where F̃1 = F̃π
1 + F̃ω

1 , F̃ ′
1 = F̃ ′π

1 + F̃ ′ρ
1 , and gl = (1 +

τ3)/2 + δgl , where δgl is the anomalous gyromagnetic ratio
δgl = δg0

l + δg1
l with (0,1) standing for (isoscalar, isovector).

It was found [10] that

δg0
l = 0, (17)

δg1
l = 4

9

[
	∗−1

χ − 1 − 1

2
F̃π

1

]
τ3. (18)

It turns out that the prediction (18) agrees precisely with the
available experiment [23].

Now going from the EFT chiral Lagrangian to the Migdal
formula is highly nontrivial, the details of which are found
in Refs. [10,21]. The intricacy comes in two ways. First,
the nucleon mass that figures in the Lagrangian is the BR
scaled mass mσ

N , so the single-nucleon convection current will
be J1-body = p

mσ
N

1+τ3
2 . As explained in Ref. [21], this would

violate the UEM(1) gauge invariance. Second, the same holds
when mσ

N is replaced by the Landau mass m∗
L. This problem

known in condensed matter systems as Kohn effect can be
remedied when two-body exchange currents involving the
vector meson exchange currents are taken into account [21].
What figures there is what is known as back-flow current
that is required by Ward identity. It effectively restores the
U (1) gauge invariance. This means that whatever figures as
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corrections in Fω
1 should be constrained by the gauge invari-

ance involving Ward identity.
Now the U (1) gauge invariance says nothing about the

isovector part, Eq. (18), so there is no such constraint in the
ρ channel. However, in deriving Eq. (18), the nonet relation
C2

ρ = C2
ω/9 was used, so the ρ channel contributes in the

same way as ω channel except for the coupling constant
and the isospin matrix; so we have F̃ ′ρ

1 = F̃ω
1 /9, which also

holds when 1/N̄ corrections are included. The contribution
of the ρ channel in Eq. (18) was represented by 	∗

χ through
Eq. (15). The fact that Eq. (18) agrees well with experiments
tells us that the corrections to F̃π

1 and F̃ ′ρ
1 should cancel

each other significantly or both be small, otherwise the good
result Eq. (18) will be spoiled. The above theory based on
the chiral Lagrangian implemented with hidden local and
scale symmetries in the FLFP approximation gives satisfying
results for gL

A and δgp
l . The renormalizations of the vertices

involved are in one-to-one correspondence with the nucleon
self-energy except for the isospin index. Given that the F̃ ′ρ

1 is
closely related to Fω

1 , whose correction turn out to be small,
we will assume the possible corrections to Fπ

1 are ignorable,
i.e., corrections to F̃π

1 and F̃ ′ρ
1 are both small to preserve the

good result for gyromagnetic ratio.
What is important in our problem concerned here is the ω

meson contribution to the BR-scaled nucleon mass (15). At
the mean-field level (that is, in the FLFP approximation), it
is connected to the universal BR scaling 	∗

χ . However, if one
goes beyond the FLFP approximation—that is higher order in
1/N̄–F̃ω

1 will be modified and as a consequence, the nucleon
mass will scale differently from the universal BR scaling
	∗

χ = f ∗
π / fπ .

We denote the modification as the nucleon mass shift asso-
ciated with the ω exchange

mσ
N → mσ

N + δmω
N . (19)

It is important to note that this modified scaling should not
affect the U (1) gauge invariance.

C. 1/N̄ corrections

Now let us return to the gA problem (9). We would like
to see how gL

A ≈ 1 is modified by corrections to the FLFP
approximation and also by the increase of density beyond
the normal matter density n0. Let us mention that the gL

A at
higher density is not an academic curiosity. In fact, as already
mentioned, it is closely linked to the possible property of the
GD at what is termed DLFP at the density at which 〈χ〉 goes to
zero [13]. It is also connected to the possible precocious onset
of the pseudoconformal sound speed [17]. What is at issue
in the behavior of gL

A is the product of the two quantities F̃π
1

and 	∗
χ , which also figure in the convection current discussed

above. The question then is how these quantities are modified
by the corrections.

We first consider F̃ω
1 . From Eq. (15)

mN

mσ
N

= 1 − 1

3
F̃ω

1 . (20)

We see that the scaling of the nucleon mass by the BR scaling
capturing the role of the attraction brought by the dilaton field

is tied to the property of the ω contribution to the Landau
parameter. At the Fermi-liquid fixed point, it is given by
the universal BR scaling factor 	χ . Going beyond the FLFP
approximation, it will depend on the vector meson (ρ or ω)
exchanged. Here it will be the ω channel whereas in δg1

l ,
Eq. (18), it will be the ρ channel. In principle they could be
different.

Now we focus on calculating δmω
N in Eq. (19). For this we

need the standard textbook notations for Landau-Fermi-liquid
theory applied to nuclear systems. The variation of the energy
of the system is given by

δE =
∑

p

εpδ f (p) + 1

2V

∑
p,p′

F (p, p′)δ f (p)δ f (p′), (21)

where εp is the quasiparticle energy, δ f (p) is the deviation
of the fermion occupation number from the ground state, V
is the volume, F (p, p′) are quasiparticle interactions on the
Fermi surface,

F (p, p′) = f (cos θ ) + f ′(cos θ )(τ · τ′) + g(cos θ )(σ · σ′)

+ g′(cos θ )(τ · τ′)(σ · σ′) (22)

with

f (cos θ ) =
∞∑

l=0

flPl (cos θ ), f ′(cos θ ) =
∞∑

l=0

f ′
l Pl (cos θ ),

(23)
where Pl (cos θ ) are Legendre polynomials. The dimensionless
Landau parameters we use are

Fl = N fl , F ′
l = N f ′

l , (24)

where N is the fermion density at the Fermi surface

N = νm∗
L pF

2π2
, (25)

where ν is degeneracy factor, and m∗
L the Landau effective

mass.

1. Fermi-liquid fixed-point approximation

We first calculate Fω
1 in the Landau Fermi-liquid fixed-

point approximation. This can be done by first reducing the
GnEFT Lagrangian to Walecka’s linear σ/ω model [18,24]

L = �̄(i/∂ − mN )� + 1

2

(
∂μσ∂μσ − m2

s σ
2
)

− 1

2

(
1

2
ωμνω

μν − m∗2
ω ωμωμ

)

+ gs�̄�σ − gω�̄γμ�ωμ (26)

and then doing relativistic mean-field calculation. It corre-
sponds to taking one-loop term in Fig. 1.
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FIG. 1. Two-body interactions by ω exchange; the thick wavy
line represents the full ω propagator, the thin wavy line the free ω

meson propagator, the solid line the nucleon with Walecka effective
mass mσ

N .

From Fig. 1 one can write down the two-body nuclear
interaction as

f ω(p, p′) = ū(p)γ μu(p)Dωū(p′)γμu(p′)

+ ū(p)γ μu(p)Dω�μνDωū(p′)γ νu(p′) + · · · ,

(27)

where Dω is the free ω meson propagator

Dω = g2
ω

m∗2
ω − qμqμ

(28)

and �μν is the polarization tensor of ω meson field. Tak-
ing in the polarization tensor �μν the forward scattering
limit |q|/q0 → 0 one finds that only the �ii component is
nonvanishing

�ii ≈ n

EF
, (29)

where EF =
√

mσ2
N + p2

F and n is the nuclear matter density.
We equated the shifted scalar mass in the mean-field calcula-
tion to the BR-scaled nucleon mass. Using Eq. (28), Eq. (29),
and the spinor u, we get Fω

1 [with the Legendre polynomial
P1(cos θ ) = cos θ ],

1

3
Fω

1 = 1

3
f1 · N = −1

3
C2

ω

p2
F

E2
F

(
1 + C2

ω�ii
) · νpF m∗

L

2π2
. (30)

We see that it is the polarization tensor �ii that controls Fω
1 .

To reproduce the FLFP result in Ref. [10], we resort to the
nonrelativistic form

�ii = n

mσ
N

,
1

3
Fω

1 = −C2
ω

nm∗
L

mσ
N

(
mσ

N + C2
ω�iimσ

N

) . (31)

2. To go beyond the FLFP approximation

It is possible to go beyond the FLFP approximation by
using the Vlow k renormalization-group approach [20]. A brief
remark will be given below regarding this approach. We find
a more systematic and possibly more powerful method is to to
apply the nonlinear bosonized theory (NBT) [5]. We will first
reproduce the polarization tensor in Eq. (31) using the NBT
and then calculate the corrections to the polarization tensor
denoted δ�ii.

The nonlinear bosonized theory uses bilinear fermion op-
erators as exponential of bosonic degrees of freedom, which
can be seen as particle-hole excitations on the Fermi surface.
The Lagrangian is

S =
∫

dt〈 f0,U −1(∂t − ε)U 〉, (32)

(a) (b)

FIG. 2. The leading-order corrections to the free ω propagator,
the dashed line represents the bosonic field φ, the wavy line the
spatial component of the ω meson. The black dots represent different
vertices in the Lagrangian.

where f0(p) = �(|p| − pF ) is the ground-state fermion oc-
cupation number and U = exp(−φ) with φ the dynamical
bosonic degree of freedom that characterizes nonlinear struc-
ture of Fermi surface, φ lives on both momentum space and
coordinate space.∫

dt〈A, B〉 =
∫

dtdxd pA · B, (33)

U −1AU = A + {φ, A} + 1

2!
{φ, {φ, A}} + · · · , (34)

where {, } is the Poisson bracket.
The first term in Eq. (32) is the Wess-Zumino-Witten

(WZW) term that captures the geometric phase when the
Fermi surface evolves with time, while the second term is the
normal quasiparticle energy term. For convenience, we use the
nonrelativistic ε = p2/2mN .

As in Sec. II, we incorporate σ and ω fields, use Walecka’s
mean-field approximation by integrating out the σ meson and
change mN → mσ

N (which can be considered as the BR-scaled
mass)

S =
∫

dt

〈
f0,U −1

(
∂t − ω0 − (p + ω)2

2mσ
N

)
U

〉
+ Sω, (35)

where Sω is the ω meson sector, ω0 and ω are the four-
component ωμ.

With U expanded in different orders in φ, we can calculate
the ω propagators systematically. The details of the power
counting and calculations are given in the Appendix. The
leading-order corrections to the free ω propagators are shown
in Fig. 2.

As in the fermion description, we are interested in �ii, so
only the spatial components of the ω meson are involved. The
leading-order corrections, the details of which are relegated to
Appendix B, are

�ii = − νp3
F

6π2mσ
N

mσ
N |q0|

2pF |q| log
mσ

N |q0| − pF |q|
mσ

N |q0| + pF |q| . (36)

In the limit |q|/q0 → 0, �ii = n/mσ
N , the same as Eq. (31).

The next-order diagrams are 1/N̄ = �/pF suppressed.
There are more diagrams at this order. However, it turns out
that in the limit q0 → 0, |q| → 0 and |q|/q0 → 0, only one
diagram Fig. 3 survives.

Notice that the nonlinear structure has not yet entered in
the diagrams we have dealt with so far. The reason is that
no vertices that connect two dashed lines appear in these
diagrams. Such vertices will appear at higher orders or if we
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FIG. 3. Next-order corrections to the free ω meson propagator.

loosen the constraint that q0 and |q| approach zero in the way
|q|/q0 → 0 as shown in Fig. 4.

The calculation of Fig. 3 involves large momentum transfer
[8] as presented in Appendix B 2. We will designate this
diagram as 1/N̄ correction to the ω meson propagator and also
to Fω

1 . The result is (see Appendix B)

δ�ii = − ν�g2
ω

64π4mσ2
N

∫ 2pF

�

dk
k4

k2 + m∗2
ω − k2

√
k2+m∗2

ω

2mσ
N

. (37)

We have assumed that the ω-meson-exchange Landau param-
eter Fω

1 and the pion exchange Fπ
1 are not correlated at the

order considered as at the FLFP limit [10]. Since we are near
the FLFP, we consider this to be reasonable.

3. 1/N̄ correction to gL
A

We have derived the 1/N̄ corrections to the ω propagators
in Sec. II C 2. The corrections to the ω meson propagators
will directly modify the Fω

1 induced by the exchange of the ω

meson. According to the argument made in Sec. II A, Eq. (15)
is essential for preserving gauge invariance. We propose as in
Eq. (19) that since Eq. (12) corresponds to the FLFP result,
when we are away from the FLFP, mσ

N should be replaced by
mσ

N + δmω
N . We define

ζ = mσ
N + δmω

N

mN
. (38)

The quasiparticle energy becomes

ε(p) = p2

2
(
mσ

N + δmω
N

) + C2
ωn + �π (p). (39)

Therefore in Eq. (9) and Eq. (15), we need to replace 	∗
χ by ζ

mN

mσ
N + δmω

N

= ζ−1 = 1 − 1

3
F̃ω

1 , (40)

gL
A + δgL

A

gA
=

(
1 − 1

3
ζ F̃π

1

)−2

, (41)

where δgL
A is the 1/N̄ correction to the axial coupling constant

in medium.
Using Eq. (31) with the corrections included, we have

ζ−1 = 1 + C2
ωnmN

mσ
N

[
mσ

N + C2
ω(�ii + δ�ii )mσ

N

] . (42)

FIG. 4. The left graph is the higher-order correction to the
ω meson propagator, the right graph is the next-to-leading order
correction.

FIG. 5. Dependence of δgL
A on the cutoff �.

Finally ignoring higher-order corrections to Fπ
1 that we ar-

gue to be ignorable, we can make an estimate of the 1/N̄
correction to gL

A.
With the degeneracy factor ν = 2 and gω = 10.15 from

Eq. (15), taking the cutoff on top of the Fermi surface to be
� ≈ 10 MeV for illustration, we obtain with (37)

δgL
A = 1.8 × 10−4 at n = n0  0.16 fm−3. (43)

The correction is extremely small. One can see roughly how
it comes about as follows: The denominator in the integral
of Eq. (37) in the range m∗2

ω − 1.3m∗2
ω giving the integrand

∼k4/m∗2
ω mσ2

N comes out always less than 1 in the integral
region. Multiplied by the remaining factor �g2

ω/32π4, δ�ii

turns out to be a tenth of MeV2, while �ii = νp3
F /6π2mσ

N ≈
103 MeV2. The quantity ζ is insensitive to �ii given that the
leading-order ω exchange contribution without polarization
tensor [first diagram on the right-hand side of Fig. (1)] is
the main contribution to the Landau parameter Fω

1 . Reflecting
on the difference between ζ and 	∗

χ and δgL
A [Eq. (41)], the

correction to gL
A becomes of ∼O(10−4).

The dependence of δ�ii on the cutoff � is almost linear,
because the integrand in Eq. (37) contribute little when k is
small. Therefore δgL

A is almost linear in � as well, as seen in
Fig. 5.

Now if one applies the same reasoning to the anomalous
gyromagnetic ratio δgi

l , one finds that the inclusion of 1/N̄
correction also receives small corrections ∼O(10−4) by sub-
stituting 	∗

χ . This would confirm that the pion contribution
should also be unaffected in δgi

l .

4. 1/N̄ correction in the Vlow k-RG approach

Before closing this subsection on how nonlinear mesonic
fields contribute to δgL

A, we briefly comment on how the cor-
rection to the Fermi-liquid fixed-point (FLFP) approximation
calculated in the Vlow k-RG approach [20] would compare with
what is obtained above. In fact the connection between Vlow k

and FLFP was discussed in Ref. [25,26], where the Vlow k

matrix element is used to calculate Landau parameters with
a cutoff �Vlow k ≈ 2.1 fm−1. The chosen cutoff is where for
the given nucleon potentials, phenomenological or chiral EFT,
the Vlow k becomes RG invariant [27]. Notice that the �Vlow k

is different from the cutoff � in Fig. 1 in Landau Fermi liquid.
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In Ref. [28] the RG calculation for Vlow k (using, e.g., Paris po-
tential) result showed that the β function of Vlow k approaches
zero when �Vlow k is in the region �Vlow k ≈ 2.0 fm−1. In
Ref. [29], the authors calculated the neutron matter ground-
state energy E0 by summing up the two-particle two-hole
ring diagrams to all orders using the Vlow k. It was found that
ξ = E0/E free

0 (where E free
0 is the ground-state energy without

quasiparticle interaction) has a remarkably mild dependence
on the cutoff �Vlow k. As shown in Fig. 6 in Ref. [29],
dξ/d�Vlow k ≈ 10−4 (with the unit changed to MeV) is of
the same magnitude as the correction to the dimensionless
parameter Fω

1 in our case. Our result therefore is in agreement
with the calculation in the Vlow k approach.

Now approaching the gA problem in the formalism
Vlow k-RG, the Landau Fermi-liquid parameter would be the
spin-isospin term carrying the Migdal interaction G′

0 to which
the tensor force would intervene. At any given density, the
Vlow k potential becomes RG invariant roughly at the scale
�Vlow k ≈ 2.1 fm−1 [30]. With the intricate cancellation be-
tween the pionic and ρ meson-exchange tensor forces suitably
implemented with the BR scaling [31] the net tensor force
becomes RG invariant in single-nucleon and many-nucleon
interactions. Hence the net effective G′

0 interaction will be
at the Fermi-liquid fixed point [32]. It appears certain that
how the effective Vlow k forces for other channels behave under
RG scaling would be a very interesting topic as noted in the
monopole matrix element in complex nuclei [33].

III. CONCLUDING REMARKS

In this work, we calculated 1/N̄ corrections to ω-meson
propagators using the nonlinear bosonization of Fermi surface
approach, and mapped the corrections to the FLFP result gL

A at
n0. We ignored possible corrections to the pionic Fock term on
the ground that its effect in the anomalous gyromagnetic ratio
subject to a similar pionic correction can be safely ignored.
We showed that the corrections δgL

A are of order 10−4 and
will tend to go to zero reaching the dilaton-limit fixed point.
This result is connected with the intricate interplay mentioned
above between the attraction due to the scalar excitation, i.e.,
dilaton, and the repulsion due to the ω excitation effective
from low density to high density. The nonlinear structure of
the Fermi surface in nuclear correlations does not enter into
the leading-order and next-to-leading-order corrections to the
ω meson propagator. This feature of the nonlinear bosonized
theory (shown graphically in Appendix B 2) may be seen as a
result of the unscaling of gωNN in one-loop order in Ref. [31],
which is important for nuclear matter to be stable in the half-
skyrmion phase.

It is highly notable that gL
A remains more or less unaffected

by density from finite nuclei to dense baryonic matter. A simi-
lar phenomenon seems to be in action in the pseudoconformal
sound velocity v2

s /c2 ≈ 1/3 in dense compact-star matter at
n�3n0. As suggested in Ref. [1], it could also reflect a hidden
scale symmetry in action in nuclear correlations.

That gL
A in nuclear matter is close to 1 has two important

implications in physics that have not been duly recognized up
to date: one in nuclear dynamics and the other in going beyond
the standard model.

(i) Implication in nuclear dynamics. As for the first, the
question is what gL

A represents in what is observed in nu-
clear weak processes. The gL

A as phrased in terms of Landau
Fermi-liquid theory is the axial coupling constant gA with
which a quasiparticle on top of the Fermi sea makes the
zero momentum and zero energy transfer Gamow-Teller tran-
sition, such that q/ω → 0, taking place in infinite nuclear
matter. In real nuclear processes involving finite nuclei as
discussed in Refs. [2,3], phrased in shell model, the closest
to the Fermi-liquid result is the extreme single-particle shell
model (ESPSM) applicable in superallowed Gamow-Teller
transitions in doubly magic-shell nuclei. The heaviest nuclear
system so far studied is the 100Sn nucleus. It has been argued
that the constant gL

A obtained in the Fermi-liquid model can be
closely mapped to what enters in the superallowed Gamow-
Teller transition where a proton in the filled proton magic
shell makes the transition to the lowest neutron in the empty
neutron magic shell with q/ω → 0. Ideally it should involve
a single unique daughter state. In reality the daughter state
may not be unique. However with as small an uncertainty
as in the doubly magic-shell nucleus, gL

A should correspond
closely to q times gA where gA is the axial coupling constant
in (free-space) neutron β decay and q is the quenching factor
[3]. What this means is that q should capture the full or exact
nuclear correlations leading to the full quenching factor that
gives the effective axial constant geff

A ≈ 1 observed in nature.
In nuclear physics, this implies that if one were to do the
full calculation in the sense of Ref. [2], the axial coupling
constant applicable in nuclear effective field theory defined at
the chiral symmetry scale �χ ≈ 4π fπ ≈ 1 GeV should be the
free-space value gA = 1.276... measured in neutron β decay.

(ii) Implication in beyond standard model (BSM). Secondly,
gL

A ≈ 1 with q ≈ 0.78 can have a big impact on the effort to go
beyond the standard model by measuring 0νββ processes in
nuclei. It appears that there can be a nontrivial renormalization
of gA in heavy nuclei induced by quantum anomaly [1] com-
ing from the degrees of freedom integrated out of the chiral
symmetry scale. Up to date, there has been no smoking-gun
indication for a fundamental quenching of gA in any nu-
clear processes, but the most recent measurement—heralded
to have been improved—at RIKEN [34] in the superallowed
GT transition in the doubly magic-shell nucleus 100Sn, if
confirmed, would indicate the basic axial-vector coupling
constant gA would undergo a quenching as big as 30–40 %
reduction in all nuclear weak processes, this independent of
the nuclear correlation effects associated with gL

A. This would
imply a huge reduction in the decay rate in 0νββ processes
for going beyond the SM. This calls for revisiting the 100Sn
β-decay process, both experimentally and theoretically.

APPENDIX A: POWER COUNTING OF THE NONLINEAR
BOSONIZED THEORY

The action of the nonlinear bonsonized theory coupled
with mesons can be written schematically as

S =
∫

x,p
dt

〈
f , ∂t − ω0 − (p + ω)2

2mσ
N

〉
+ Sω, (A1)
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(d)(a) (c)(b)

(f) (h)(e) (g)

(i) (j)

FIG. 6. Corrections to the ω meson propagator in nonlinear
bosonized theory.

where

f = f0 − {φ, f0} + 1
2 {φ, {φ, f0}} − · · ·

= �(pF − |p|) + δ(|p| − pF )nθ · ∇xφ + · · · .
(A2)

The fermion density is

n(t, x) = ν

∫
p

f = νp3
F

6π2
+ νp2

F

(2π )3

∫
d2θnθ

·∇φ(t, x, θ ) + · · · . (A3)

In the action expanded in terms of φ, the free propagator of
φ comes out

〈φφ′〉(q0, q) = i
(2π )3

p2
F

δ2(θ − θ ′)
nθ · q

(
q0 − pF

mσ
N

nθ · q + iε
) . (A4)

The details are relegated to Ref. [5].
The density operator n has mass dimension 3. The mass

dimension as well as the scaling dimension of the bosonic
degrees of freedom φ(t, x, θ ) is zero. Note that φ always
comes with one ∇x/pF .

Let us count how many times pF appears. Figure 6(a) has a
vertex coming from Eq. (A1) ∼p3

F /mσ
N , with mσ

N ∼ pF at n0,
Fig. 6(a) is ∼p2

F . Figure 6(b) has two vertexes ∼p3
F /mσ

N and a
internal φ line ∼p−2

F , so Fig. 6(b) is ∼p2
F .

For loop diagrams in the bosonic theory, every internal
ω meson line contributes p−2

F because m∗
ω ∼ pF . Every loop

integral contributes p4
F . Figure 6(c) has two vertices ∼p2

F /mσ
N ,

a loop ∼p4
F , two internal lines ∼p−2

F . There is a caveat here as
will be elaborated in Fig. 7; a φ line carrying large momentum
k is suppressed by a factor �/pF [8]. So Fig. 6(c) is ∼pF .

FIG. 7. The phase space restriction when momentum transfer k
is large.

Other diagrams are shown in Fig. 6, with Fig. 6(d) meaning
the diagram is ∼pD

F .
The Figs. 6(a)–6(b) are the leading-order corrections to the

free ω meson propagator. There are many diagrams in the
next-to the leading orders. However, most diagrams do not
contribute in the limit that the external momentum q/q0 → 0.
The next-to-leading-order contributions to the meson propa-
gator should be the D = 1 diagrams, which contain Figs. 6(c),
6(d) 6(e), 6(g), 6(h). This power counting is valid for one-loop
graphs. For higher loop diagrams, however, there are more
suppressions coming from phase space arguments with which
we are not concerned in this work.

APPENDIX B: CORRECTIONS
TO THE ω MESON PROPAGATOR

1. Leading-order corrections

Amputating the ω line, Fig. 6(a) is simply n/mσ
N with n =

νp3
F /6π2. And the Fig. 6(b) is given by

(B) = −i
p4

F

(2π )6

∫
d p

(2π )3
δ(|p| − pF )nθ

· iq
∫

d p′

(2π )3
δ(|p′| − pF )n′

θ · i(−q)〈φφ′〉 p · p′

mσ2
N

= p2
F

(2π )3

νp2
F

3mσ2
N

∫
d2θ

nθ · q
q0 − pF

mσ
N

nθ · q

= − νp3
F

6π2mσ
N

(
1 + mσ

N |q0|
2pF |q| log

mσ
N |q0| − pF |q|

mσ
N |q0| + pF |q|

)
, (B1)

where qμ = (q0, q) is external momentum. The sum of
Fig. 6(a) and 6(b) reproduces Eq. (36).

2. Next-to-leading-order corrections

To calculate in Fig. 6(c), we have to divide the loop mo-
mentum into two parts, one from 0 to �, denoted as part I,
and the other from � to 2pF , denoted as part II. While the
part I is not suppressed by phase space argument, the part
II is suppressed by a factor �/pF [8]. However, the part I
is suppressed by (�/pF )3 compared to the part II due to the
integration region, so the region II should give the dominant
contribution

(C) =
∫

II

d3kdk0

(2π )4

1

mσ2
N

−ig2
ω

(qμ − kμ)2 − m∗2
ω + iε

νp2
F

2(2π )3

×
∫

d2θ
nθ · k

k0 − pF

mσ
N

nθ · k + iε
, (B2)

where kμ = (k0, k) is the loop momentum. The reason why
the part II is suppressed by �/pF is shown in Fig. 7, given in
the fermionic description

When we take � → 0, then all fermions 1-6 lie at the
Fermi surface. Suppose the difference between k3 and k1 is
k. When the momentum transfer |k| is within �, i.e., |k| → 0,
the loop momentum k5 runs freely at the Fermi surface. How-
ever, when k is large like the one in Fig. 7, k5 is restricted
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in a specific point at the Fermi surface corresponding to the
polar angle θ . When � is not exactly zero, the specific point
will expand to a region of angle �/pF . This argument is
made in two dimensions. In three dimensions, there is an
extra azimuthal angle that allows the fermions 5 and 6 to run
freely.

In the bosonic theory, the second integral in Eq. (B2) is
easy to work out. When the angle θ is in a fixed region
rather than the whole Fermi surface, the integrand is a quantity
dependent of |k| and independent of angle. The integral will
be replaced by the integrand times the angle region. After
some manipulation, nθ · k = −k2/2pF . So Fig. 6(c) becomes

(C) = i
ν�pF

2(2π )2mσ2
N

∫
II

dkdk0

(2π )4

g2
ω

(qμ − kμ)2 − m∗2
ω + iε

k2

2pF

k0 + k2

2mσ
N

+ iε

= i
ν�g2

ω

16π2mσ2
N

∫
II

dkdk0

(2π )4

k2

[
k0 − (

q0 + √
(q − k)2 + m∗2

ω

) + iε
][

k0 − (
q0 − √

(q − k)2 + m∗2
ω

) − iε
](

k0 + k2

2mσ
N

+ iε

)

= − ν�g2
ω

64π4mσ2
N

∫ 2pF

�

dk
k4

k2 + m∗2
ω − k2

√
k2+m∗2

ω

2mσ
N

. (B3)

The nonlinear bosonized theory has some similarity to
nonlinear σ model. For this reason, Figs. 6(d)–6(f) vanish
in the limit the momentum transfer goes to zero. It can
be shown that Figs. 6(g) and 6(h) also vanish in the limit.
Therefore Fig. 6(c) is the only diagram that needs to be
calculated.

In the limit |q|/q0 → 0, q0 → 0, the nonlinear structure
of the Fermi surface does not affect the next-leading-order

corrections to the ω meson propagator because Fig. 6(c) does
not contain the vertex that connects two dashed lines. The
Figs. 6(d) and 6(e) can actually be seen as loop corrections
to the φ-ω vertex. If not amputated, the φ-ω vertex in the
nonlinear bosonized theory corresponds to the ω-N-N vertex
in Ref. [31]. So Figs. 6(d) and 6(e) vanishing in the limit
|q|/q0 → 0 should be seen as a result of unscaling of gωNN

in one fermion-loop order.
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