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QCD critical point, Lee-Yang edge singularities, and Padé resummations
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I analyze the trajectory of the Lee-Yang edge singularities of the QCD equation of state in the complex baryon
chemical potential (μB) plane for different values of the temperature by using the recent lattice results for the
Taylor expansion coefficients up to eighth order in μB and various resummation techniques that blend in Padé
expansions and conformal maps. By extrapolating from this information, I estimate for the location of the QCD
critical point: Tc ≈ 100 MeV, μc ≈ 580 MeV. I also estimate the crossover slope at the critical point to be α1 ≈ 9◦

and further constrain the nonuniversal mapping parameters between the three-dimensional Ising model and QCD
equations of state.
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I. INTRODUCTION

Mapping the phase diagram of quantum chromodynam-
ics (QCD) for different temperatures and baryon densities,
probed by the baryon chemical potential, μB, is currently
one of the major open problems in nuclear physics. State-of-
the-art lattice simulations offer extensive information about
the thermodynamic properties at vanishing chemical poten-
tial. For instance, it is well established that the transition
between the baryonic phase and quark-gluon plasma is a
smooth crossover [1]. However, the applicability of lattice
QCD at finite chemical potential is severely limited due to
the fermion sign problem (for reviews see, e.g., Refs. [2–4]).
A central question regarding the QCD phase diagram at fi-
nite temperature and chemical potential is whether there is a
second order critical point, and a first-order transition curve
emanating from it [5]. From the experimental perspective,
this question has been the main motivation behind the beam
energy scan program at the Relativistic Heavy Ion Collider as
well as the future compressed baryonic matter experiment at
the Facility for Antiproton and Ion Research [6].

From the theoretical standpoint, the first-principle compu-
tations of the QCD phase diagram at finite chemical potential
requires tackling the fermion sign problem in some way.
The two main approaches that bypass the sign problem are
Taylor expanding around μB = 0 [7], and performing lattice
simulations at pure imaginary chemical potential and analyt-
ically continuing from it [8–12]. In the former approach the
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equation of state is expanded in μB
1 as a Taylor series whose

coefficients are observables evaluated at μB = 0 which can
be computed without a sign problem. At the same time, even
in the absence of the fermion sign problem, the computation
of the higher order Taylor coefficients on the lattice becomes
progressively more difficult due to noise. The state-of-the-art
computations go up to O(μ8

B) (for recent results see HotQCD
[13,14] and Wuppertal-Budapest [15] Collaborations). Cur-
rently, based on the available data, the existence of a critical
point for μB/T � 3 is highly unlikely.

Even with access to a modest number Taylor coefficients,
it is possible extract valuable information regarding the equa-
tion of state that goes beyond approximating it as a truncated
Taylor expansion. The starting point is that, for any temper-
ature, the equation of state possess singularities for complex
values of μ2

B, the Lee-Yang (LY) edge singularities. With
certain assumptions regarding location of the nearest singu-
larity to origin, μB = 0, one could estimate the location of the
singularity from the Taylor coefficients. Furthermore, in the
vicinity of a critical point, the LY singularities obey a par-
ticular scaling form. The key idea is to map the extrapolated
singularity from the Taylor coefficients at different tempera-
tures, referred to as the “Lee-Yang trajectory,” and compare
it with the scaling form predicted by critical scaling. This
approach allows the information extracted from the Taylor
coefficients to extend beyond the region constrained by the
truncated expansion. The idea of extracting the location of LY
singularities from the truncated Taylor expansion goes back to
work of Fisher [16]. The significance of the LY trajectory in
the context of the QCD phase diagram and the critical point
has been pointed out in [17–19]. Recently, based on these
observations, quantitative estimations were made of the LY
trajectory by extracting the radius of convergence or using
Padé type resummations [13,14,20–28].

1More precisely the expansion is in μ2
B due to charge conjugation

symmetry.
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TABLE I. The location of the critical point and the Ising model
mapping parameters given in Eq. (6) extracted from Padé and con-
formal Padé. The sub/superscripts denote the 1σ uncertainty.

Tc μc Crossover slope
(MeV) (MeV) (α1) c2 (MeV1−βδ)

uniformizing 97+18
−18 579+172

−160 9.40◦ +3.89
−3.81 2.22+0.52

−0.86

two-cut 100+18
−18 557+175

−150 8.69◦ +3.91
−3.83 2.56+0.58

−1.21

Padé 108+21
−21 437+114

−50 4.55◦ +3.41
−3.37 3.35+0.82

−1.37

In this paper, I employ an efficient method that improves
Padé resummation in order to construct the LY trajectory.
I utilize the recent HotQCD results [13,14] for the Taylor
coefficients. From the improved resummation, assuming that
the trajectory, in part, can be captured by the scaling behavior
of the critical point, I extrapolate the location of the critical
point and constrain the critical contribution to the equation of
state in its vicinity. This is the main result of this paper and is
summarized in Table I in Sec. IV. My hope is that these results
can be incorporated into the state-of-the-art parametrizations
of the equation of state such as in Refs. [29,30] in to order
to assist the experimental effort for the search for the critical
point. In order to take into account lattice systematics, I also
utilize data from the Wuppertal-Budapest [31].

The rest of the paper is organized as follows. In Sec. II I
summarize the physics of LY singularities in the context of
the QCD critical point and establish the notation that I use
for the rest of the paper. In Sec. III, I build the necessary
mathematical machinery that I use to extract the singulari-
ties from the Taylor coefficients. My results are presented
in Sec. IV. The same analysis is then repeated by using the
Wuppertal-Budapest data in Sec. V and compared with the
main analysis that uses the HotQCD results. I extensively
discuss these results in the final section, Sec. VI.

II. LEE-YANG EDGE SINGULARITIES

In their seminal work in 1952, Lee and Yang showed
that phase transitions of a thermodynamic system can be un-
derstood in terms of the complex singularities of the grand
canonical partition function [32,33]. In general, the partition
function, Z (ζ ), of a system with finitely many degrees of free-
dom is a polynomial in fugacity, ζ = eμ/T , and is nonnegative
for ζ > 0. Naturally, being a polynomial, it has zeros for com-
plex values of ζ , which, in the thermodynamic limit, coalesce
into branch points that emanate from the so called Lee-Yang
edge singularities. At a second-order phase transition the LY
edge singularities pinch the real axis.

I will focus on the LY singularities associated with the
three-dimensional Ising model which belongs to the same
universality class as QCD. In the Ising model, there are two
relevant operators, energy density and spin, whose couplings
are the reduced temperature, r, and the magnetic field, h.
The critical point in the phase diagram sits at r = h = 0.
The transition between positive and negative magnetization
phases (probed by h > 0 and h < 0 respectively) is a smooth
crossover for r > 0 and a first order transition for r < 0. It

is convenient to use the scaling variable x = hr−βδ to express
the location the LY singularity which is simply along the pure
imaginary axis:

x = ±ixLY. (1)

Here β and δ are the usual Ising critical exponents [34]. In this
work I use the value computed from conformal bootstrap [35],

βδ ≈ 1.5631. (2)

The value of xLY was computed via functional renormalization
group [36–38] as well as using the Schofield representation
[39]. Based on these works I will use the value

xLY = |zc|−βδ ≈ 0.246. (3)

The LY singularity is a critical point as well and the equa-
tion of state in its vicinity belongs to the same universality
class as the φ3 theory with a pure imaginary coupling [40].
The universal, singular contribution to the magnetization
around the LY singularity is given by

m − mc ∼ (x ± ixLY)σLY (4)

with the critical exponent σLY ≈ 0.074–0.085 [41]. For a more
detailed analysis of the analytical structure of the LY singu-
larities in three- and two-dimensional Ising models I refer the
reader to Refs. [41,42] and [43] respectively. In the latter case,
the physics of the LY singularity is captured by a nonunitary
conformal field theory. In the former case, an analogous ana-
lytical construction does not exist at the moment, and one has
to rely on numerical results such as the epsilon expansion.

The above observations about the three-dimensional Ising
model can now be translated to QCD, given that these two
theories are in the same universality class. In the vicinity of
the critical point, (Tc, μc), the relevant directions in the QCD
phase diagram, T and μB, can be mapped to those of the Ising
model, h and r, via a linear map [29,44],(

r
h

)
:=

(
rT rμ

hT hμ

)(
T − Tc

μ − μc

)
. (5)

This mapping then leads to the following expression for the
trajectory of the LY singularities of QCD in the vicinity of the
critical point [19]:

μLY(T ) ≈ μc − c1(T − Tc) ± ixLYc2(T − Tc)βδ,

where c1 : = hT

hμ

:= tan α1, c2 := rμ
βδ

hμ

(
rT

rμ

− hT

hμ

)βδ

.

(6)

Notice that c1 is the slope of the crossover line, whereas c2

depends on the relative angle, α2, between the h and r axes
[29,44]. Remarkably, the trajectory in Eq. (6) depends not
only on the location of the critical point, but also on the
nonuniversal mapping parameters. My goal is to reconstruct
Eq. (6) and constrain these nonuniversal values from the Tay-
lor series coefficients of the equation of state.

III. RESUMMATIONS AND CONFORMAL MAPS

The main objective is to extract the singular behavior of
the equation of state p(T, μB) from its Taylor series expansion
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around μB = 0,

p(T, μB) − p(T, 0)

T 4
≈

N∑
n=0

χ2n(T )

(2n)!

(μB

T

)2n
. (7)

In practice there is only access to a finitely many terms,
and the truncated Taylor series is a polynomial which obvi-
ously has no singularities. However, even with finitely many
coefficients, one could extract the singular behavior of the
equation of state. Assuming that the nearest singularity to the
origin is the LY singularity, following the extended analyticity
conjecture of Fonseca and Zamalodchikov [43], along with
Darboux’s theorem, it is possible to estimate both |μLY| via
the radius of convergence by using the standard root/ratio
tests [20,45,46], as well as arg μLY [22,23]. However, here, the
leading singularities are in fact a complex conjugate pair [see
Eq. (6)], and consequently the roots/ratios of the coefficients
exhibit oscillatory behavior due to interference between the
phases of the two singularities which render these estimations
numerically challenging.

A better approach is to use Padé resummation, which
approximates the original function, p(μ2

B),2 by a rational func-
tion,

P[p]
(
μ2

B

)
:= q1

(
μ2

B

)
q2

(
μ2

B

) , (8)

where p1 and p2 are polynomials of order [N/2],3 whose coef-
ficients are determined by Taylor expanding PN/2[p](μ2

B) and
matching the coefficients with the original ones in Eq. (7).4

The underlying singularities of p(μ2
B) are then represented

by accumulation points the poles and zeros of P[p](μ2
B). Fur-

thermore, if the underlying singularity is a branch point, the
poles/zeroes lie on curved arcs. Remarkably, the shapes of
these arcs can be understood in terms of a two-dimensional
electrostatic problem of finding a configuration of charges
(poles and zeros) which minimizes an effective capacitance
[47–49]. At the same time, when there is a complex conjugate
pair of singularities, as in QCD, the arcs that emerge from
each singularity coalesce along the real axis. These singu-
larities along the real axis are unphysical, but they are not
numerical artifacts; their existence is unavoidable with Padé
resummation. To make things worse, their number grows as N
increases, limiting the applicability of the Padé resummation
to μ � |μLY|.

In order to overcome this inherent shortcoming of Padé
resummation, the next step is to pair it with a conformal
map. In a way, Padé resummation already introduces its own
conformal map by representing the branches with the curved
arcs that minimize the effective capacitance. It is possible to
further improve convergence properties of Padé, and extend
its domain of applicability by using an additional conformal

2To keep the notation compact, I suppress the temperature argu-
ment, and switch the argument of p to μ2

B.
3In this work I only consider diagonal Padé approximants where

the polynomials p1 and p2 are of the same order.
4Note that even though the coefficients of these polynomials de-

pend on T , they are not necessarily smooth functions of T .

FIG. 1. The original μ2
B plane (right) with radial cuts and its

image in the unit circle (right) under the two-cut map defined in
Eq. (12).

map. The idea is to map the complex μ2
B plane, where the

equation of state is expressed in, to a different (preferably
compact) region, such as the unit disk, denoted by ζ via a
conformal map,

μ2
B := φ(ζ ). (9)

The next step is to expand the equation of state as a series
expansion in ζ and perform the Padé resummation for this
expansion:

CP[p](ζ ) := q̃1(ζ )

q̃2(ζ )
, (10)

where p̃ and q̃ are order N/2 polynomials whose coefficients
are determined by the Taylor coefficients of p(φ(ζ )). This
resummation will be referred to simply as “conformal Padé.”
Different choices of the conformal map, φ, leads to significant
improvements over the usual Padé resummation. Moreover,
extra information such as the singular behavior of the original
function can be “baked in” into the resummation via choosing
an appropriate conformal map. Note that, in contrast, the only
input of Padé resummation is the set of Taylor coefficients.
After performing the Padé resummation in the ζ plane, the
original function is then represented as

f
(
μ2

B

) =
conf. Padé

CP[p](ζ )
∣∣
ζ=φ−1(μ2

B ). (11)

For certain conformal maps, an analytical expression for the
inverse function exists, and for others it does not and the
inversion has to be computed numerically. Similarly to Padé,
the original singularities of the function are represented by
accumulation of zeros and poles of conformal Padé in ζ plane.
They can be mapped back to μ2

B plane via φ(ζ ). Note that the
computation of the singularities does not require the inverse
function. The key point is that for the conformal maps that
are considered here, the spurious poles appear outside the unit
disk and therefore are not present in the μ2

B plane [50,51].
The conformal maps that are used in this work are discussed
below.

The first map, named the “two-cut map,” is defined as

φ2(ζ ) = 4
∣∣μ2

LY

∣∣ζ
[

θ/π

(1 − ζ )2

]θ/π[
1 − θ/π

(1 + ζ )2

]1−θ/π

. (12)

It maps the complex plane μ2
B plane with two radial cuts into

the unit disk as shown in Fig. 1. The branch points located at
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FIG. 2. The original μ2
B plane (right) with vertical cuts and its image in the modular τ plane (center) and the unit circle (right) under the

uniformizing map defined in Eqs. (14) and (15).

μ2
B := |μ2

LY|e±iθ are mapped to the edge of the unit disk with
the angle ψ2 := 2 arcsin(

√
θ/π ):∣∣μ2

LY

∣∣e±iθ → ζLY = e±iψ2 (13)

and the branch cuts are mapped to the edge of the unit disk
as show in Fig. 1. Notably, this map has been used in other
physical applications, mostly within the context of extract-
ing the Borel singularities associated with asymptotic series
[50–54]. As opposed to Padé, conformal Padé with the two-
cut map does not generate unphysical poles along the real axis,
allowing one to reconstruct the original function beyond the
radius of convergence. Furthermore it generally gives a better
estimate for the location of the branch singularities compared
to Padé with the same number of Taylor coefficients [49]. One
shortcoming of the two-cut map, however, is that its appli-
cability is limited to the first Riemann sheet. Namely, even
though it gives a good estimate for the location of the branch
singularities, it does not allow one to actually go through the
branch cuts. This can be seen from the fact that it maps the first
Riemann sheet, bounded with the radial branch cuts, inside the
whole unit disk.

An improvement over the two-cut map is the “uniformizing
map” defined as

φu(τ ) = ∣∣μ2
LY

∣∣(e−iθ + 2i sin θλ(τ )). (14)

Here λ(τ ) = θ4
2 (τ )/θ4

3 (τ ) is the modular lambda function
with θ2(τ ) = ∑∞

n=∞ e2π iτ (n+1/2)2
and θ3(τ ) = ∑∞

n=∞ e2π iτn2

being the usual Jacobi elliptic functions defined in the upper
half-plane Im τ > 0. I further map the upper half-plane into
the unit disk via the following Mobius transformation:

τ → τ (ζ ) = i
K
(

1
2 − i

2 cot θ
) + K

(
1
2 + i

2 cot θ
)
iζ

K
(

1
2 + i

2 cot θ
) − K

(
1
2 − i

2 cot θ
)
iζ

, (15)

where K(m) is the complete elliptic integral of the first kind,

K(m) =
∫ π/2

0

dθ√
1 − m sin2 θ

. (16)

This map “uniformizes” the multisheeted μ2
B plane of the orig-

inal function by mapping the entire multi-sheeted domain into
a simply connected domain. A path that crosses the branch
cuts in the μ2

B plane is represented by a smooth curve in the
mapped plane. How this works can be briefly explained in two
steps.

The first step is to map the μ2
B plane with vertical branches

into the fundamental domain via Eq. (14). This map is shown
in Fig. 2 (center). Notice that the entire μ2

B is mapped into
a subset of the upper half-plane, the fundamental domain.
The remaining half-circular “gaps” are filled by Schwartz
reflection of the fundamental domain. These reflections are
transformations built out of the elementary modular transfor-
mations, S : τ− → −1/τ and T : τ → τ + 1. Each Schwartz
reflection fills in a portion of the semicircular gaps in the
upper half-plane, a process that can in principle continued
ad infinitum, asymptotically filling the whole gap. These
regions are the images of the higher Riemann sheets with
each Schwartz reflection corresponding to a particular sheet.
Therefore, moving across different sheets in the μ2

B plane is
simply represented by moving smoothly in the τ plane. Each
Schwartz reflection generates a progressively smaller region
in the τ plane. Therefore, in order to resolve the higher sheets
one needs progressively more precise information, meaning
more Taylor coefficients.

The second step is to further map the fundamental domain
into the unit disk via the Mobius transformation given in
Eq. (15). As seen in Fig. 2 (right), the branch points are
mapped to the edge of the unit disk. Similarly to the two-cut
case, the angle is given by

∣∣μ2
LY

∣∣e±iθ → ζLY = i
K
(

1
2 ∓ i

2 cot θ
)

K
(

1
2 ± i

2 cot θ
) := e±iψu . (17)

The branches, however, are mapped into certain curves that for
a boundary of a compact domain within the unit circle. This
compact, skewed diamond shaped region bounded by these
curves is an image of the first sheet. The remaining gaps in
the unit circle are filled with Mobius transformations of the
Schwartz reflected regions in the modular τ plane. These are
the images of higher sheets. Consequently the entire multi-
sheeted μ2

B space is mapped into the unit circle and crossing
between is represented by smooth paths within the unit circle.

This way, one can reconstruct the original function not
only beyond its radius of convergence, but also in the higher
Riemann sheets, using only the Taylor coefficients of the
expansion around the origin in the first Riemann sheet. In
the context of this work, the higher Riemann sheets encode
the scaling equation of state in the first-order phase transition
region, T < Tc. In Ref. [23] I demonstrated this by recon-
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FIG. 3. The HotQCD data for Taylor coefficients of the equation of state, Eq. (7), for μQ = μS = 0 from Ref. [13]. The bands denote the
continuum extrapolation for χ2 and χ4 and spline extrapolation from the Nτ = 8 data for χ6 and χ8.

structing the equation of state of the mean field Ising model in
the first-order transition region (T < Tc) by using the Taylor
expansion coefficients of the high-temperature (T > Tc) equa-
tion of state obtained in the first Riemann sheet. In addition
to reconstructing the equation of state in the higher sheets,
the uniformizing map also provides a better approximation
to the function compared to Padé and two-cut conformal
Padé.

This work will focus on the first sheet and the uniformizing
map will be uses to get a better estimate for the LY singulari-
ties and the equation of state. This is because having access
to only four Taylor coefficients with sizable statistical un-
certainties makes the analytical continuation to higher sheets
extremely challenging. As opposed to the two-cut map, there
is an analytical expression for the inverse of the uniformizing
map, given as

φ−1
uni

(
μ2

B

) = −i
K(κ+)K

(
κ− + i

2 sin θ

μ2
B

|μ2
LY|

) − K(κ−)K
(
κ+ − i

2 sin θ

μ2
B

|μ2
LY|

)
K(κ−)K

(
κ− + i

2 sin θ

μ2
B

|μ2
LY|

) + K(κ+)K
(
κ+ − i

2 sin θ

μ2
B

|μ2
LY|

) , (18)

where κ± := (1 ± i cot θ )/2 and θ = | arg μ2
LY|.

Notice that both the two-cut map and the uniformizing
map depend on the location of the singularity, μLY which,
in fact, is what one wants to extract from these resumma-
tion techniques. This seemingly paradoxical situation can be
overcome by a simple procedure: (1) guess the location from
ordinary Padé and use this initial guess as the value of μLY

in the conformal map. (2) Extract the poles from confor-
mal Padé in ζ plane whose images in the μ2

B plane gives a
refined estimate for μLY. (3) Iterate the same procedure by
using this refined estimate for the value of μLY in the confor-
mal map. I observed that this iteration converges to a value
which constitutes the final estimate for μLY. This iterative
process is used for different temperatures to construct the LY
trajectory.

Before presenting the results it is worth to comment on
an alternative resummation technique. The equation of state
in the vicinity of the LY singularities has a singular con-
tribution, but this singular contribution actually vanishes at
the singularity for the pressure and generates a cusp for the
density. However, a true divergence occurs for the suscepti-
bility. For real values of μB and T � Tc, the susceptibility
does not diverge but sharply peaks around Re μLY. For this

reason, sometimes performing a Padé resummation for the
susceptibility instead of the pressure can give a better estimate
of the underlying singularities as well as the function itself.
Therefore I also performed resummation for the susceptibil-
ity:

χ (T, μB) = ∂2 p

∂μ2
B

≈
N−1∑
n=0

χ2n+2(T )

(2n)!

(μB

T

)2n
. (19)

Using pressure or susceptibility in the resummation just
amounts to reshuffling the same Taylor coefficients. However
this reshuffling, especially when N is small, does make a
difference. For example in Refs. [22,23], which studied the
Gross-Neveu and the chiral random matrix models, using the
susceptibility led to much more accurate results than the pres-
sure. For QCD, this situation is more complicated due to the
statistical uncertainties in the coefficients, as will be discussed
further in the next section.

IV. RESULTS

The results for estimates for the Lee-Yang singularities
as a function of temperature, obtained by the resummation
methods, are presented in this section. The calculations for the
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FIG. 4. The iterative procedure of extracting the singularities via the two-cut conformal map. Each line represent the trajectory that
corresponds to a set of Taylor coefficients sampled form a Gaussian ensemble. The solid blue (green) disks denote the 1σ uncertainty region
for two-cut and ordinary Padé resummations. Further description is in the text.

locations of the critical point and the nonuniversal mapping
parameters in Eq. (5) based on these estimates are presented
as well, along with results for the susceptibility as a function
of chemical potential for a few different temperatures.

I use the recent results for the Taylor coefficients up to
O(μ8

B) computed by the HotQCD Collaboration [13] for μS =
μQ = 0. The continuum extrapolations for the first two terms,
χ2, χ4, are used. Unfortunately, continuum extrapolations for
the remaining two terms, χ6 and χ8, are not available at the
time this work was completed. I use the spline extrapolation
for the Nτ = 8 data given in Ref. [13]. For sake of complete-
ness the HotQCD data are plotted in Fig. 3.

With four terms in the Taylor expansion, the diagonal Padé
resummation is a ratio of two quadratic polynomials in μ2

B.
Analytical expressions for the poles and zeros of Padé [13]
as well as conformal Padé can be obtained; however, their
functional forms do not play a central role in this analysis,
and to keep the discussion concise they will not be included
here.

In order to take into account the statistical uncertainties,
I sampled an ensemble of coefficients from a Gaussian dis-
tribution and used diagonal (2,2) Padé resummation which
has a complex conjugate pair of poles. Since there are no
other poles to form an accumulation point, these poles are
used as estimators for the LY singularities, |μ2

LY|e±iθ . The LY
trajectory constructed by repeating these steps for different
temperatures is shown in Fig. 7. I also found that the zeros
did not follow any meaningful pattern. This is likely due to N
being relatively small.

With the conformal maps, there is one more step in ex-
tracting the singularity. As mentioned in the previous section,
the conformal maps explicitly depend on the location of the

singularity. I first used the Padé estimate for the singularity in
the conformal map and then followed the iterative procedure
described in Sect. III to refine the estimate for |μ2

LY|e±iθ . The
results of this procedure are shown in Figs. 4 and 5.

Figure 4 shows the trajectory of the iteration for different
set of Taylor coefficients sampled from a Gaussian ensemble.
Each line with color represents the iteration obtained with
fixed set of Taylor coefficients sampled from a Gaussian en-
semble, in the ζ (left) and μB (right) planes. The final estimate
for each trajectory is denoted by a small solid disk. Each
disk and the iteration curve are color coded. The pale blue
disk in the center figure represents the 1σ uncertainty region.
For comparison, the 1σ uncertainty region for the ordinary
Padé resummation with the same temperature and ensemble
of Taylor coefficients is also included. The right figure shows
the evolution of the LY trajectory constructed by averaging
over the Gaussian ensemble with the iteration. Different opac-
ities denote different steps in the iteration, darker being later.
Recall that the image of the true singularity of the equation of
state in the ζ plane is along the unit disk (see Figs. 1 and
2). Remarkably the iteration indeed converges to the edge of
the unit disk. Figure 5 shows the same trajectories for the
uniformizing map. The same ensemble of Taylor coefficients
is used for both ordinary Padé and the two conformal maps.
In Fig. 6 the result of the iteration for a single trajectory
is shown. For both conformal maps, the initial point is the
same Padé pole obtained from the Gaussian ensemble. The
left figure show the convergence towards the edge of the unit
disk.

The LY trajectories constructed from different resumma-
tions are shown in Fig. 7. Each point for conformal Padé is
obtained after 100 iterations as described above. The error

FIG. 5. The iterative procedure of extracting the singularities via the uniformizing conformal map. Each line represent the trajectory that
corresponds to a set of Taylor coefficients sampled form a Gaussian ensemble. The solid blue (green) disks denote the 1σ uncertainty region
for uniformizing and ordinary Padé resummations. Further description is in the text.

015203-6



QCD CRITICAL POINT, LEE-YANG EDGE … PHYSICAL REVIEW C 110, 015203 (2024)

FIG. 6. The convergence of μLY with the iteration procedure. The left figure shows the convergence of the absolute value of the image of
μLY towards the edge of the unit disk and the center/right figures show μLY. These plots represent a single line in Figs. 4 and 5 (left/center).

bars represent the 1σ uncertainties inherited from the statis-
tical uncertainties in the Taylor coefficients.

The next goal is to extract the location of the critical point
from the LY trajectory. The critical chemical potential μc is
the point where Im μLY vanishes, which is clearly beyond
the available data as Im μLY > 0 for the temperature range in
hand. At the same time, the fact that Im μLY is decreasing with
decreasing temperature is suggestive that if there is a critical
point it lies at Tc < 135 MeV. By extrapolating the trajectory
to the point where Im μLY = 0 I estimate μc and Tc using the
following fits for the extrapolation:

Re μLY(T ) = a0 + a1(T − Tc) + a2(T − Tc)2, (20)

Im μLY(T ) = a(T − Tc)βδ, (21)

whose form is motivated by the scaling form given in Eq. (6).
The results for the best fits for different resummations are
shown in Fig. 7 as solid lines. In these fits, I used the first
20 terms in the trajectory with 134.5 � T � 144. Finally,
the location of the critical point, as well as the nonuniversal
mapping parameters, the slope of the crossover line at the
critical point, α1, and c2 as given in Eq. (6), extrapolated from
these fits, are listed in Table I.

The final set of results concerns the Padé and conformal
Padé resummations by using the Taylor coefficients of the

susceptibility given in Eq. (19). A particularly interesting
result obtained from this resummation is the susceptibility as
a function of chemical potential, shown in Fig. 8. The band
denotes the 1σ uncertainty as before. Finally Fig. 9 shows the
singularities obtained this way. For comparison, uniformizing
map results for the singularities obtained from the expansion
of pressure are also shown in the same figure (in purple).

Notice that using the coefficients of susceptibility repro-
duces qualitatively the expected behavior of χ as a function
μB, namely exhibiting a peak at some nonzero value of μB/T ,
albeit with sizable statistical uncertainty. At the same time, the
singularities extracted this way are less reliable compared to
using the coefficients of pressure. I found that the conformal
Padé singularities in the ζ plane were much further away
from the edge of the unit disk than those obtained from the
coefficient of pressure. Furthermore the statistical errors are
very large, especially for T � 145 MeV. This is ultimately
because the Padé and conformal Padé singularities depend
rather sensitively on χ6, which changes sign around 140 MeV,
making the relative error quite large. Due to the difference
in the functional dependence of the Padé singularities in the
coefficients, this is not the case for the expansion of pressure.
Therefore I conclude that using coefficients of pressure in the
estimates for the location of singularities, using pressure as
opposed to susceptibility is more reliable. However, using the

FIG. 7. The Lee-Yang trajectory constructed via different resummations. The solid lines denote the best fits for real and imaginary parts
given in Eq. (21). The dashed vertical lines denote the best fit extrapolation to μ2

c . Where the fit for the real part intersects the dashed lines
leads to the extrapolation of Tc. The bars and ellipses on the left/right figures represent 1σ uncertainty stemming from the noise in the Taylor
coefficients.
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FIG. 8. The susceptibility as a function of μB for four different temperatures calculated via the uniformizing conformal Padé from the
Taylor coefficients of the susceptibility given in Eq. (19).

susceptibility seems to reproduce the qualitatively expected
form of the equation of state better. A more detailed analysis
of this observation is left for future work.

V. SYSTEMATICS

In addition to the statistical uncertainties that are present in
any stochastic computation, and the uncertainties in extracting
the singularities due to finite number of Taylor coefficients,
there are also systematic uncertainties inherited from the lat-
tice computations. The statistical uncertainties are already
quantified in my analysis. The uncertainties due to the finite
number of Taylor coefficients are more difficult to quantify
but they can be gauged by analyzing how close the images
of the extrapolated singularities are to the edge of the unit
disk in the conformal plane, as explained in the previous
section. At the same time, the systematic uncertainties are
much more challenging to quantify. In order to shed light on
these systematic uncertainties, in this section the same anal-
ysis described above is repeated by using a different data set
of Taylor coefficients computed by the Wuppertal-Budapest

FIG. 9. The poles of Padé and conformal Padé extracted from the
Taylor coefficients of susceptibility compared with those extracted
from the pressure.

(WB) Collaboration [31]. The WB simulations are done at
imaginary chemical potential with the same physical volume
as HotQCD, in particular on 483 × 12 (WB) and 323 × 8
(HotQCD) lattices.

Even though there are four coefficients in the Taylor expan-
sion, via rescaling p and μ2

B, one can show that the Padé poles
can be expressed as a function of two variables, χ2χ6/χ

2
4 and

χ8χ
2
2 /χ3

4 , up to an overall factor of χ2/χ4. By using the same
normalization in Ref. [13], these parameters computed by the
two lattice collaborations are shown in Fig. 10 for the temper-
ature range that this work focuses on. Notably the coefficients
are quantitatively different (whereas the overall factor χ2/χ4

varies by a few percent between WB and HotQCD data),
signaling the importance of the systematics in any kind of
resummation framework that is based on Taylor coefficients.

Based on the observation that the original Taylor coef-
ficients computed by different collaborations are different,
one might expect that the LY singularities obtained from
Padé resummations would also differ substantially. However,
I found that this is not entirely the case. Before doing so,
it is worth commenting on the statistical uncertainties first.
Even though the overall statistical errors in the WB results
are smaller in magnitude, the overall signal-to-noise ratio for
the LY singularities is actually higher compared to HotQCD

FIG. 10. The comparison between the Taylor coefficients ob-
tained by the Wuppertal-Budapest (WB) and HotQCD collaborations
for the temperature range 135-165 MeV increasing in 5 MeV inter-
vals. For both datasets the temperature increases from right to left.
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FIG. 11. Trajectories of the iteration procedure described in
Sec. IV obtained by using the Wuppertal-Budapest data for T = 150
MeV. The blue and green uncertainty regions correspond to Padé and
conformal Padé, compared with the results obtained from HotQCD
data (in red).

results. This is because χ8 is closer to zero. As an illustration,
the trajectories of the iteration procedure described in Sec. IV
for two different conformal maps are shown in Fig. 11. As
explained in Sec. IV, each line represents a trajectory whose
initial point is the Padé singularity associated with the Taylor
coefficients sampled from a Gaussian ensemble, and the final
point is obtained after 100 iterations of the conformal map.
For comparison, the results obtained from the HotQCD Col-
laboration are shown in red. The qualitative behavior of the
trajectories is similar; however, the WB results have larger
statistical uncertainties, most likely due to the small mean
value of χ8 as mentioned.

The LY trajectory for different temperatures is shown in
Fig. 12. Qualitatively, it looks similar to the one obtained
from the HotQCD data (see Fig. 7). In particular, its imaginary
part decreases with decreasing temperature. This behavior is
consistent with what one would expect if there is a critical
point, since at a critical point the imaginary part vanishes.
Although the error bars are too large to determine the exact
functional form of the trajectory with good accuracy, using the
functional form assuming the Z2 scaling form given in Eq. (6)
leads to reasonable values for the critical temperature listed in

FIG. 12. The LY trajectory as a function of temperature ob-
tained from the Wuppertal-Budapest data with the same fits given
in Eq. (21). For comparison I have included the trajectory obtained
from the HotQCD data via the uniformizing map.

TABLE II. Tc and c2 extracted from Padé and conformal Padé
using the WB data. The sub/superscripts denote the 1σ uncertainty.

Tc (MeV) c2 (MeV1−βδ)

uniformizing 91+25
−25 2.73+0.87

−1.81

two-cut 92+25
−25 2.87+0.92

−1.98

Padé 98+24
−24 3.43+0.99

−1.86

Table II. These results are consistent with those obtained from
the HotQCD data (see Table I) albeit with larger statistical un-
certainties. At the same time, even though the real part of the
LY trajectory is qualitatively similar to the one obtained from
HotQCD data, the systematic difference is more pronounced.
Furthermore, due to the larger statistical uncertainties com-
bined with those that already enter the estimation of Tc, it
is not possible to meaningfully extract μc with the available
data.

In conclusion, the most robust feature of the Lee-Yang
trajectory constructed from two separate lattice computations,
HotQCD and Wuppertal-Budapest, is that its imaginary part
decreases temperature, consistent with the existence of a crit-
ical point. However, it does not vanish within the available
temperature range (within 1σ uncertainty), signaling that, if
it exists, the critical point is likely at Tc < 130 MeV. Deter-
mining the quantitative features of the LY trajectory is more
challenging with the current data; however, the extrapolation
of using the Z2 scaling ansatz leads to a robust value of
Tc ≈ 100 MeV, for both the WB and HotQCD data. Due to the
statistical and systematic uncertainties, estimating the value
of the critical chemical potential is even more challenging. At
the same time, the current lattice data is consistent with the
estimation μc ≈ 600 MeV.

VI. SUMMARY AND DISCUSSION

The task of extracting the location of the Lee-Yang sin-
gularities from the presently available lattice QCD data is a
challenging one. Currently, there is only access to four co-
efficients with sizable statistical uncertainties. In this paper,
I utilized various conformal maps to improve the accuracy
of the usual Padé resummation. By choosing appropriately
designed conformal maps, I incorporated further analytical
information regarding the equation of state, in addition to the
Taylor coefficients; namely the closest singularities must be
complex conjugate pair, i.e., the equation of state must be
defined on a two-cut Riemann surface. I then conformally
mapped this surface into the unit disk and extracted the Padé
singularities there. Performing Padé resummation on a com-
pact space gave a better handle in pinning down the location
of the true singularity.

In order to take into account the statistical uncertainties
in the Taylor coefficients, they are sampled from a gaussian
ensemble whose variance is matched by the lattice data. The
error due to the small number of Taylor coefficients, on the
other hand, is harder to quantify. For large number of Taylor
coefficients, there is a scaling relation between the magni-
tude of noise in the Taylor coefficients and the expansion
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order before (conformal) Padé resummation breaks down
[55]. However, it is an asymptotic result whose applicability
to four terms is unclear.

In order to refine the estimation for the location of the
singularity a novel iterative tool is used. Remarkably for both
conformal maps, the iteration brought the images of the singu-
larities extracted from conformal Padé closer to the edge of the
unit disk where the real singularity lies, as seen in Figs. 4 and
5. This observation increases the confidence in the results of
conformal Padé. Note that the uniformizing map is exponen-
tially sensitive to the location of the singularity. Therefore it
is not surprising that the poles in ζ plane for the uniformizing
map are further away from the edge of the unit disk since nei-
ther the number Taylor coefficients is large enough nor their
precision high enough to resolve singularity with exponential
accuracy. It is also worth pointing out that the final results
for the LY trajectory obtained from both conformal maps
agree with each other and systematically differ from those
from ordinary Padé, with the conformal Padé results being
slightly less sensitive to the statistical uncertainties compared
to Padé which can be seen in Figs. 4, 5, and 6. Furthermore, as
explained in, e.g., Ref. [49] conformal maps provide a better
estimate for the singularity compared to ordinary Padé. The
various test cases where the ordinary and conformal Padé
predictions can be compared with the exact results also con-
firm this observation [22,23]. For these reasons, I think that
conformal Padé results are more trustworthy than those of
Padé.

Then, from the LY trajectory constructed via the resum-
mations, I extrapolated the location of the critical point, as
well as constrained values of the nonuniversal mapping pa-
rameters in its vicinity. These results are given in Table I.
This is the central result of this paper. Notice that several
significant figures are used in these extrapolations. This is not
to claim such precision in the final estimate, but to illustrate
the quantitative differences between different resummations.
The fact that they all lie in the same overall region is encourag-
ing. Furthermore, the results obtained from two independent
lattice computations indicate a robust trend in Im μLY con-
sistent with Tc ≈ 100 MeV. My results also agree with other
results computed via similar Padé type resummations [28],
as well as other methods such as functional renormalization
group, (Tc, μC ) = (107, 635) MeV [56] and truncated Dyson
Schwinger equations, (Tc, μC ) = (117, 600) MeV [57,58].
The estimate based on the best fit, μc/Tc ≈ 6, is also con-
sistent with the constraints from the recent lattice QCD data
which strongly disfavor the existence of a critical point for
μc/Tc � 3 [15].

Because the extrapolated Tc (≈100 MeV) is fairly lower
than the minimum available temperature (135 MeV) I had
to rely on best fits for the estimates for the critical point.
Especially Re μLY, from which μc is extrapolated, depends
sensitively on the quadratic fit. Combined with the current
statistical and systematic uncertainties in the Taylor coeffi-
cients, such an extrapolation introduces a sizable uncertainty
in the estimate for μc. Having access to lattice data for lower
temperatures in the future would reduce the sensitive reliance

on the extrapolation and therefore significantly improve the
accuracy of the estimation of the location of the critical point.

Another important point worth discussing is that I assumed
the equation of state obeys the scaling obtained from the
universality class of the “Z2 critical point” for part of the
available temperature range for the LY trajectory in order to
extrapolate the data to μc and Tc. In this scaling, the relevant
axes mapped to the Ising parameters h and r, are identified as
μB and T . At the moment, it is unclear whether this scaling is
valid at these temperatures. It is widely believed that around
the pseudocritical temperature, the closest singularity is asso-
ciated with the “O(4) critical point” (more precisely a line of
second order points) that is located at mu,d = 0 and belongs
to the O(4) universality class. Therefore the LY trajectory
should obey the “O(4) scaling” which has a different form
than the Z2 scaling used in Eq. (6). This is because the O(4)
scaling identifies one of relevant axes with the quark mass.
Even though the agreement between the data and the form
predicted by the Z2 scaling seems suggestive that, at least for
T ∈ (130–145) MeV range, the Z2 scaling is valid, this point
requires further investigation. This issue will be addressed in
a forthcoming publication.

Finally, a related issue concerns the shape of the LY trajec-
tory. In various models that exhibit similar critical phenomena
to the conjectured QCD phase diagram, the LY trajectory
can be exactly calculated. Among them are the Gross-Neveu
model [22], quark meson model [59], and the chiral ran-
dom matrix model [19,23] where Re μLY(T ) and Im μLY(T )
are monotonically decreasing and increasing functions of T
respectively, for T > Tc. As seen in Fig. 7, the QCD data
indicate that Re μLY is not monotonically decreasing in T .
For T � 145 MeV, it is actually increasing. If this behavior
is indeed representative of the physical LY trajectory and
not an artifact of the resummations due to a combination
of noise and small number of Taylor coefficients, it asks
for further investigation. In fact, at higher temperatures, the
shape of the LY trajectory is expected to be controlled by yet
another singular point, the Roberge-Weiss singularity [60];
and for some T = TRW the trajectory should pass through
the point(s) Re μLY(TRW) = 0, Im μLY(TRW) = ±π . A recent
estimate for the Roberge-Weiss temperature based on multi-
point Padé approximants is TRW ≈ 170 MeV [27]. This means
that, if the nonmonotonic behavior is correct, then for some
T ∈ (160–170) MeV, Re μLY(T ) has to peak and then go
down to zero. At the same time, because χ8 crosses zero
around T ≈ 170 MeV, the Padé singularities are too noisy
around these temperatures to lead to any meaningful esti-
mation of μLY. Note that the Roberge-Weiss point is related
to confinement/deconfinement transition and therefore is not
present in any of the aforementioned models. This discussion
is left for future work as well.

ACKNOWLEDGMENTS

I thank M. Stephanov and G. Dunne for fruitful dis-
cussions. The author is supported by the National Science
Foundation CAREER Award No. PHY-2143149.

015203-10



QCD CRITICAL POINT, LEE-YANG EDGE … PHYSICAL REVIEW C 110, 015203 (2024)

[1] Y. Aoki, G. Endrodi, Z. Fodor, S. D. Katz, and K. K. Szabo, The
order of the quantum chromodynamics transition predicted by
the standard model of particle physics, Nature (London) 443,
675 (2006).

[2] O. Philipsen, Lattice QCD at finite temperature and density, Eur.
Phys. J.: Spec. Top. 152, 29 (2007).

[3] P. de Forcrand, Simulating QCD at finite density, PoS
LAT2009, 010 (2009).

[4] H.-T. Ding, F. Karsch, and S. Mukherjee, Thermodynamics of
strong-interaction matter from Lattice QCD, Int. J. Mod. Phys.
E 24, 1530007 (2015).

[5] A. Bzdak, S. Esumi, V. Koch, J. Liao, M. Stephanov, and N. Xu,
Mapping the phases of quantum chromodynamics with beam
energy scan, Phys. Rep. 853, 1 (2020).

[6] D. Almaalol et al., QCD Phase structure and interactions at high
baryon density: Continuation of BES physics program with
CBM at FAIR, arXiv:2209.05009.

[7] C. R. Allton, S. Ejiri, S. J. Hands, O. Kaczmarek, F. Karsch,
E. Laermann, C. Schmidt, and L. Scorzato, The QCD thermal
phase transition in the presence of a small chemical potential,
Phys. Rev. D 66, 074507 (2002).

[8] P. de Forcrand and O. Philipsen, The QCD phase diagram for
small densities from imaginary chemical potential, Nucl. Phys.
B 642, 290 (2002).

[9] M. D’Elia and M.-P. Lombardo, Finite density QCD via
imaginary chemical potential, Phys. Rev. D 67, 014505
(2003).

[10] R. Bellwied, S. Borsanyi, Z. Fodor, J. Günther, S. D. Katz, C.
Ratti, and K. K. Szabo, The QCD phase diagram from analytic
continuation, Phys. Lett. B 751, 559 (2015).

[11] C. Ratti, Lattice QCD and heavy ion collisions: a review of
recent progress, Rep. Prog. Phys. 81, 084301 (2018).

[12] S. Borsányi, Z. Fodor, J. N. Guenther, R. Kara, S. D. Katz,
P. Parotto, A. Pásztor, C. Ratti, and K. K. Szabó, Lattice
QCD equation of state at finite chemical potential from an
alternative expansion scheme, Phys. Rev. Lett. 126, 232001
(2021).

[13] D. Bollweg, J. Goswami, O. Kaczmarek, F. Karsch, S.
Mukherjee, P. Petreczky, C. Schmidt, and P. Scior (HotQCD
Collaboration), Taylor expansions and Padé approximants for
cumulants of conserved charge fluctuations at nonvanishing
chemical potentials, Phys. Rev. D 105, 074511 (2022).

[14] D. Bollweg, D. A. Clarke, J. Goswami, O. Kaczmarek, F.
Karsch, S. Mukherjee, P. Petreczky, C. Schmidt, and S. Sharma
(HotQCD Collaboration), Equation of state and speed of sound
of (2+1)-flavor QCD in strangeness-neutral matter at nonvan-
ishing net baryon-number density, Phys. Rev. D 108, 014510
(2023).

[15] S. Borsanyi, Z. Fodor, J. N. Guenther, R. Kara, S. D. Katz, P.
Parotto, A. Pasztor, C. Ratti, and K. K. Szabo, QCD crossover
at finite chemical potential from lattice simulations, Phys. Rev.
Lett. 125, 052001 (2020).

[16] M. E. Fisher, Critical point phenomena - the role of series
expansions, Rocky Mt. J. Math. 4, 181 (1974).

[17] M. Halasz, A. Jackson, and J. Verbaarschot, Yang-Lee zeros of
a random matrix model for QCD at finite density, Phys. Lett. B
395, 293 (1997).

[18] S. Ejiri, Lee-Yang zero analysis for the study of QCD phase
structure, Phys. Rev. D 73, 054502 (2006).

[19] M. A. Stephanov, QCD critical point and complex chemical
potential singularities, Phys. Rev. D 73, 094508 (2006).

[20] S. Mukherjee and V. Skokov, Universality driven analytic
structure of the QCD crossover: radius of convergence in
the baryon chemical potential, Phys. Rev. D 103, L071501
(2021).

[21] A. Connelly, G. Johnson, S. Mukherjee, and V. Skokov, Uni-
versality driven analytic structure of QCD crossover: radius
of convergence and QCD critical point, Nucl. Phys. A 1005,
121834 (2021).
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