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Evidences are updated and strengthened for the two-scales picture of low-energy nucleon structure as a
compact ‘hard’ valence quark core surrounded by a ‘soft’ cloud of quark-antiquark pairs (the meson cloud).
These considerations are quantified by a spectral analysis of the mean-squared radii associated with the isoscalar
and isovector electric form factors of the nucleon. Further supporting arguments come from corresponding
studies of the axial and mass form factors and their inferred radii. Separating low-mass (mesonic) and high-mass
(short-range) contributions in the spectral representations of each of these form factors, we conclude that a
central core with a root mean square radius of about 1/2 fm results consistently as the common feature in all
cases. Implications are discussed for baryonic matter at densities beyond that of equilibrium nuclear matter.
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I. INTRODUCTION

Spontaneously broken chiral symmetry in the low-energy
limit of quantum chromodynamics (QCD) governs the long-
wavelength structure and dynamics of nucleons. Pions play
a distinguished role in this context as (approximate) chiral
Nambu-Goldstone bosons. The coupling of pions to the nu-
cleon adds a ‘soft’ surface degree of freedom to its structure.
Models based on chiral symmetry therefore describe the nu-
cleon as a complex system characterized by two scales: a
compact ‘hard’ core and a surrounding quark-antiquark cloud
in which pions play a prominent role. Decades ago chiral
quark models of the nucleon (in particular, the chiral and
cloudy bag models [1–5]) were designed with this picture in
mind [6]. Such a delineation between a compact core and a
meson cloud [7] also emerged in descriptions of the nucleon
as a chiral soliton (Skyrmion) with vector mesons [8,9].

The idea of a compact core in the center of the nucleon
with a size notedly smaller than the proton charge radius was
also promoted on the basis of deep-inelastic scattering data at
HERA, together with photoproduction of J/ψ and its coherent
scattering on nucleons and nuclei [10,11]. Recent evaluations
of the nucleon size from high-energy nucleus-nucleus cross
sections point in a similar direction [12].

In the meantime the knowledge of nucleon structure in the
low-energy, long-wavelength limit has advanced to a level
that does enable a more quantitative evaluation of the core-
plus-cloud scenario based on analyses of nucleon form factors
and radii. The present work focuses on three such empirical
sources of information: the isoscalar electric charge form
factor, the axial form factor and the mass form factor. The
mean-square radii associated with these form factors are all
significantly different from each other, indicating that there is
no single ‘size’ of the nucleon. However, by spectral analyses
of these form factors, we collect evidence for a common half-
a-fermi sized core inside the nucleon which hosts the three

valence quarks and thus the baryon number. At the same time
this core carries most of the nucleon mass generated by the
(gluonic) trace anomaly. The mesonic clouds surrounding this
core carry the quantum numbers of the currents which give
rise to the respective form factors. These mesonic surfaces are
shown to account for the observed differences in the empirical
radii.

A two-scales structure of the nucleon is supposed to have
far-reaching implications for strongly interacting matter at
low temperatures and high baryon densities as it is realized
in neutron stars [13,14]. This is a prime motivation for inves-
tigating empirical constraints on the sizes of central core and
mesonic surface regions in the nucleon.

In the present work we argue that the proposed two-scales
scenario is indeed manifest in empirical nucleon form factors
and corresponding radii. Each form factor Gα (q2) related to
a current operator Jμ

α with index α (referring, e.g., to the
electromagnetic or the axial current) has a representation in
terms of an unsubtracted dispersion relation,

Gα (q2) = 1

π

∫ ∞

t0

dt
Im Gα (t )

t − q2 − iε
, (1)

with the squared four-momentum transfer q2 = q2
0 − �q 2. The

normalization Gα (q2 = 0) is identified with the ‘charge’ of
the current Jμ

α . Mean square radii are then given as

〈
r2
α

〉 = 6

Gα (0)

dGα (q2)

dq2

∣∣∣
q2=0

= 6

π

∫ ∞

t0

dt

t2
Sα (t ), (2)

where the distribution Sα (t ) = Im Gα (t )/Gα (0) represents the
spectrum of intermediate hadronic states through which the
external probing field couples to the respective nucleon cur-
rent. The low-t regions of these spectral distributions (t �
tc ∼ 1.1 GeV2) are expected to be associated with the mesonic
surface, while the high-t range (t > tc) reflects the nucleon
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core. We shall now enter into a detailed discussion of three
form factors of special interest in this context.

II. ISOSCALAR ELECTRIC FORM FACTOR AND RADIUS

The nucleon matrix elements (N = p, n) of the electro-
magnetic current operator,

〈N (p′)|Jμ
em|N (p)〉= ū(p′)

[
F1(q2)γ μ+ i

2M
F2(q2)σμνqν

]
u(p),

(3)

define the Dirac and Pauli form factors, F1(q2) and F2(q2). The
four-momentum transfer is qμ = (p′ − p)μ and M denotes the
nucleon mass. The proton and neutron electric form factors
are given by

Gp,n
E (q2) = F p,n

1 (q2) + q2

4M2
F p,n

2 (q2) (4)

with charges Gp
E (0) = 1 and Gn

E (0) = 0. Isoscalar and isovec-
tor form factors are given as the combinations

GS,V
E (q2) = 1

2

[
Gp

E (q2) ± Gn
E (q2)

]
. (5)

The slopes of Gp,n
E at zero momentum transfer determine

the corresponding mean-squared radii. The empirical root
mean square (rms) proton charge radius has been obtained in
electron scattering and muonic hydrogen measurements [15]
reviewed in [16] and consistently updated in [17]: 〈r2

p〉1/2 =
0.840 ± 0.003 ± 0.002 fm. Its combination with six times the
slope of the neutron electric form factor, 〈r2

n〉 = −0.105 ±
0.006 fm2 [18], gives the isoscalar and isovector mean squared
charge radii of the nucleon, 〈r2

S,V 〉 = 〈r2
p〉 ± 〈r2

n〉, resulting in
the following values:√〈

r2
S

〉 = 0.775 ± 0.011 fm, (6)
√〈

r2
V

〉 = 0.901 ± 0.009 fm. (7)

Advanced lattice QCD simulations [19] have now reached
a level of precision that closely approaches these empirical
radii.

The isoscalar electric form factor is a suitable case for
discussing a delineation between the ‘core’ and ‘cloud’ parts
of the nucleon. We write it again as an unsubtracted dispersion
relation

GS
E (q2) = 1

π

∫ ∞

t0

dt
Im GS

E (t )

t − q2 − iε
(8)

normalized as GS
E (0) = 1

2 . The spectrum Im GS
E (t ) =

Im F S
1 (t ) + t

4M2 Im F S
2 (t ) with F S

i = 1
2 (F p

i + F n
i ) starts at

the three-pion threshold, t0 = 9m2
π . It is strongly dominated

by the narrow ω meson while the contribution of the isoscalar
3π continuum in the range t � m2

ω is negligibly small [20].
Additional contributions come from the φ meson, its KK̄ tail
and the ρπ continuum, to be discussed later.

For a quick first estimate, consider the simplest version
of a vector meson dominance model (VDM). In this model
the probing isoscalar JP = 1− photon converts into an omega
meson which couples to the nucleon core (see Fig. 1). The

FIG. 1. Isoscalar electric form factor of the nucleon viewed in
a ‘core plus cloud’ picture. The simplest vector meson dominance
model identifies the isoscalar JP = 1− cloud with the ω meson.

flavor SU(3) Gell-Mann–Nishijima formula, Q = I3 + 1
2 (B +

S), relates the isoscalar charge Q = 1
2 to the baryon number

B = 1 for S = 0. Therefore the isoscalar charge distribution
of the core is also identified with the distribution of baryon
number carried by the three valence quarks in the nucleon.
The surrounding quark-antiquark cloud represented by the
ω meson does not contribute to baryon number and electric
charge but adds to determining the isoscalar radius,

√
〈r2

S〉. In
this picture the isoscalar electric form factor is given by the
following ansatz:

GS
E (q2) = FB(q2)

2
(
1 − q2/m2

ω

) . (9)

The form factor FB(q2) of the baryon number distribution
in the nucleon core [with FB(0) = B = 1] acts as the source of
the ω field that propagates with its mass mω. Introducing the
mean square radius of the baryon core, 〈r2

B〉 = 6 dFB (q2 )
dq2 |q2=0,

the mean squared isoscalar charge radius becomes

〈
r2

S

〉 = 〈
r2

B

〉 + 6

m2
ω

. (10)

Using mω = 783 MeV and the empirical value (6) for 〈r2
S〉1/2,

the estimated core radius is
〈
r2

S

〉1/2

core ≡
√〈

r2
B

〉 
 0.47 ± 0.01 fm. (11)

A nucleon core size of about 1/2 fm is characteristic of chiral
‘core + cloud’ models. We shall now demonstrate that it also
holds up in a more detailed and realistic treatment [17,21]
of the spectral distributions governing the isoscalar nucleon
electric form factor.

In what follows we make use of the precision fits to GS
E (q2)

performed in [17] for both spacelike and timelike regions
of q2 = q2

0 − �q 2. This analysis starts from Eq. (8) in such a
way that the fitted spectral functions, Im F S

1 (t ) and Im F S
2 (t ),

satisfy the normalization GS
E (0) = 1

2 by construction. The
isoscalar mean-squared radius is calculated as

〈
r2

S

〉 = 12

π

∫ ∞

9m2
π

dt

[
Im F S

1 (t )

t2
+ Im F S

2 (t )

4M2t

]
. (12)

The fits include ω and φ meson poles combined with ρπ

and KK̄ continuum contributions as sketched in Fig. 2. The
mesonic contributions to the spectral distributions cover a
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FIG. 2. Schematic spectral functions of mesonic cloud contribu-
tions to the isoscalar electric form factor of the nucleon, showing
ω and φ mesons together with ρπ and KK̄ continuum parts. The
higher-mass region t > tc stands for the nucleon core. Figure adapted
from [22].

range t � tc 
 1.05 GeV2, to be associated with the meson
cloud. The short-distance core part then refers to the region
t > tc and includes information from the timelike domain
measured in e+e− → NN̄ . In the analysis of Ref. [17] this
region is parametrized by a series of high-mass poles summa-
rized in the Appendix.

The resulting spectral functions are of the form

Im F S
1,2(t ) = π

∑
i

a(i)
1,2 δ

(
m2

i − t
) + S

1,2(t )core, (13)

where i = ω, φ, . . . collects the mesonic contributions, also
incorporating the ρπ, KK̄ continua parametrized effectively
in terms of equivalent poles [23],

S
1,2(t )core = π

∑
j=S j ,...

a( j)
1,2 δ

(
m2

j − t
)

(14)

refers to the remaining core part in the range t > tc. The pa-
rameters of the residua a(i)

1,2, a( j)
1,2 and the pole positions mi, mj

are listed in Table I in the Appendix. In terms of the latter the
isoscalar mean-square core radius is given by

〈
r2

S

〉
core = 12

∑
j

a( j)
1

m4
j

+ 3

M2

∑
i

a( j)
2

m2
j

. (15)

Using the poles S j and Rs j in Table I, we find the following
result: 〈

r2
S

〉
core = (0.237 + 0.017) fm2 = 0.254 fm2. (16)

The leading number in brackets comes from a( j)
1 while the

smaller piece refers to a( j)
2 . Of the resulting rms core radius,

〈
r2

S

〉1/2

core 
 0.50 fm, (17)

the by far dominant contribution comes from the poles Sj . The
‘resonance’ poles Rs j (which actually include large widths in
the original fit of Ref. [17]), are of minor importance and
contribute less than 2% to Eq. (17).

It is instructive also to take note of the contribution to 〈r2
S〉

from the ω and φ meson poles: 〈r2
S〉ω + 〈r2

S〉φ 
 0.589 fm2.
The remainder of the meson cloud sector comes from the

much smaller ρπ and KK̄ continuum parts. With inclusion
of a (conservative) uncertainty estimate,

〈
r2

S

〉1/2

core 
 0.50 ± 0.01 fm (18)

happens to be remarkably close to the simplest VDM estimate
(11). Hence the 1/2-fermi size scale of the baryonic (valence
quark) core in the nucleon, well distinguished from the much
larger charge radius of the proton, appears to be supported also
by an advanced precision fit analysis of the electromagnetic
form factors.

III. ISOVECTOR ELECTRIC FORM FACTOR AND RADIUS

The isovector form factor, GV
E (q2), involves the difference

of proton and neutron form factors in Eq. (5). In the limit
of perfect isospin symmetry with identical baryonic valence
quark cores of proton and neutron, a first guess would there-
fore lead to expect that these cores cancel in GV

E and the
isovector core radius should vanish: 〈r2

V 〉core = 0.
This expectation is confirmed by an inspection of the

isovector core radius using the series of fitted poles Vj, Rv j

in Table II in the Appendix, [17], with the result〈
r2

V

〉
core = −0.025 fm2. (19)

The small deviation of this value from zero reflects isospin
symmetry breaking effects. The poles Vj are dominant in their
magnitudes. At the same time the different signs of their
residua cause the cancellations leading to the almost vanishing
balance in Eq. (19). The ‘resonance’ poles Rv j play again only
a minor role, contributing 0.003 fm2.

The isovector charge radius of the nucleon thus arises
almost entirely from the interacting two-pion cloud [24] gov-
erned by the ρ meson and the prominently enhanced low-mass
tail that extends down to the ππ threshold, t0 = 4m2

π . The
empirical 〈

r2
V

〉 = 〈
r2

V

〉
ππ

+ 〈
r2

V

〉
core = 0.811 fm2 (20)

follows with the ππ continuum and ρ meson cloud
contribution, 〈

r2
V

〉
ππ

= 0.836 fm2. (21)

The observed cancellation of the proton and neutron ‘core’
parts is in essence an indirect confirmation of the two-scales
core-plus-cloud structure seen in the analysis of the isoscalar
charge radius.

IV. ISOVECTOR AXIAL FORM FACTOR
OF THE NUCLEON

As another interesting case, we consider next the form
factor GA(q2) associated with the axial vector current of the
nucleon:

〈n|Aμ
−|p〉 = GA(q2) ūn(p′) γ μγ 5 up(p). (22)

It has been deduced [25] from the weak muon capture process
on the proton, μ− p → νμn, from neutrino scattering on the
deuteron and from pion electroproduction, e− p → e−nπ+.
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Given the low-q2 expansion of the axial form factor,

GA(q2) = GA(0)
[
1 + 1

6

〈
r2

A

〉
q2 + · · · ], (23)

determining the mean-squared radius 〈r2
A〉 requires input for

the axial vector coupling constant, gA = GA(0). From neu-
tron β decay, gA = 1.2764(8) [26]. The extraction from pion
electroproduction makes use of the Goldberger-Treiman (GT)
relation, gA = gπNN fπ/Mn. With the pion-nucleon coupling
constant gπNN = 13.1, the pion decay constant fπ = 92.3
MeV and the neutron mass Mn = 939.6 MeV, the resulting
gA differs from the empirical value by less than 1%.

The matrix elements of the axial current that define GA(q2)
involve, in addition, the induced pseudoscalar form factor,
GP(q2). It contains the pion pole at q2 = m2

π and behaves in
such a way that partial conservation of the axial current and
the GT relation are fulfilled (for details see, e.g., [25]).

Determinations of 〈r2
A〉 reported in [25] refer to two sources

of information: a combined dipole fit to the axial form fac-
tor extracted from νd scattering and pion electroproduction,
which gives 〈r2

A〉 = 0.454 ± 0.013 fm2, and a more conser-
vative analysis of νd scattering and μp capture data, without
resorting to an assumed dipole form, which consequently in-
volves larger uncertainties: 〈r2

A〉 = 0.46 ± 0.16 fm2. In either
of these two cases,〈

r2
A

〉1/2 = 0.67 ± 0.01 fm (24)

(from νd scattering and e− p → e−nπ+ dipole fits),

〈
r2

A

〉1/2 = 0.68 ± 0.11 fm (25)

(from νd scattering and μp capture analysis),

the axial radius is evidently smaller than the proton charge
radius by about 20%.

Writing the axial form factor as an unsubtracted dispersion
relation,

GA(q2) = 1

π

∫ ∞

t0

dt
Im GA(t )

t − q2 − iε
, (26)

and recalling the normalization GA(q2 = 0) = gA, the corre-
sponding mean-squared radius is

〈
r2

A

〉 = 6

gA

dGA(q2)

dq2

∣∣∣∣
q2=0

= 6

gAπ

∫ ∞

t0

dt

t2
Im GA(t ). (27)

The isovector JP = 1+ spectrum, Im GA(t ), starts at the three-
pion threshold, t0 = 9m2

π , and prominently features the broad
a1 meson resonance as sketched in Fig. 3.

Let us start again with a simple estimate using a schematic
axial vector dominance picture. It assigns the leading
part of the surface contribution to GA(q2) through the spec-
trum of the a1 meson (with its large width). An approximate
scale of this ‘cloud’ part can be introduced by an a1 pole,
Im GA(t ) = gAπδ(t − m2

a ), with a mass ma 
 1.2 GeV. Using
the empirical 〈r2

A〉 one finds for the remaining ‘core’ size

〈
r2

A

〉1/2

core =
(〈

r2
A

〉 − 6

m2
a

)1/2


 0.54 ± 0.01 fm, (28)

FIG. 3. Axial form factor of the nucleon as measured in muon
capture on the proton and sketched in a ’core plus cloud’ picture.
The meson cloud is dominated by the isovector JP = 1+ three-pion
spectrum in which the a1 meson figures prominently.

if the dipole fit value (24) is taken for reference. Using
Eq. (25) instead the uncertainty in 〈r2

A〉1/2
core increases to about

25%.
A more detailed evaluation requires full account of the

broad isovector JP = 1+ three-pion spectral distribution. We
start from the ansatz:

GA(q2) = gA m2
a

m2
a − q2 + �a(q2) − i ma �a(q2)

. (29)

The real self-energy correction �a(q2), compatible with the
dispersion relation (26), is determined by a twice-subtracted
dispersion relation:

�a(q2) = q2

π

(
q2 − m2

a

) −
∫ ∞

9m2
π

dt

t

ma �a(t )(
t − m2

a

)
(t − q2)

, (30)

where the subtractions leave gA and ma untouched. Results
from τ → πππντ decays can be used to set constraints on
the energy dependence of the a1 width, �a(t ). In the present
work we employ the widths shown in Fig. 4 taken from
[27,28]. In the latter work [28] the a1 → ρπ → 3π amplitude
is integrated over the three-pion phase space, the information
needed in order to identify the meson-cloud sector of GA(q2).
With this input the principal value integral in Eq. (30) is

FIG. 4. Energy dependence of the a1 width �a(t ) according to
[27] (dashed line) and [28] (solid line). The input a1 mass is ma =
1.23 GeV and the on-shell width is �a(m2

a ) = 0.425 GeV (PDG mean
values [29]).

015202-4



SIZES OF THE NUCLEON PHYSICAL REVIEW C 110, 015202 (2024)

FIG. 5. Photoproduction of J/ψ with leading two-gluon ex-
change as a probe of the gluonic structure of the nucleon and its mass
form factor.

performed. This is done over a limited range, 9m2
π � t � tu,

with the upper limit chosen symmetrically as tu = 2m2
a − 9m2

π

for simple practical reasons. Taking the derivative of Eq. (29)
at q2 = 0, the a1 contribution to the squared axial radius is
given by

〈
r2

A

〉
a1

= 6

m2
a

(1 + δa) (31)

with the correction term

δa = −m3
a

π
−
∫ tu

9m2
π

dt
�a(t )

t2
(
t − m2

a

) (32)

depending on the chosen energy-dependent a1 width.
As an example, setting ma = 1.23 GeV and using the

energy-dependent width from [28] shown by the full line in
Fig. 4, one finds δa = 0.12 and 〈r2

A〉a1 = 0.173 fm2, so that

〈
r2

A

〉1/2

core 
 0.53 ± 0.02 fm (33)

with an estimated uncertainty based on Eq. (24) and a cor-
respondingly larger one if Eq. (25) is used. The alternative
choice [27] of the a1 width gives δa = 0.04 and a slightly
larger core radius of 0.54 fm, still consistent within the un-
certainties. Variations of ma by ± 3% and of �a by about
± 40% as indicated by the PDG values for the a1(1260) [29]
lead to only marginal changes well within the uncertainties in
Eq. (33).

The core radius (33) deduced from the axial form factor is
less accurately determined than the core radius (18) extracted
from the analysis of the isoscalar electric form factor. It is
nonetheless remarkable that, starting from two independent
form factors with quite different empirical rms radii, the sepa-
ration of the mesonic parts of the respective spectral functions
from the high-t sections consistently reveals a common half-
fermi scale for the core size inside the nucleon.

V. MASS FORM FACTOR AND RADIUS

A further interesting quantity in this context is the mass
radius of the proton deduced from J/ψ photoproduction data
[11,30]. The cc̄ pair forming the J/ψ acts as a small dipole
(see Fig. 5) that couples to the nucleon through leading
two-gluon exchange in QCD [31–33]. As shown in [30] the
amplitude for this process close to the J/ψ production thresh-
old is proportional to the matrix element of the trace, T μ

μ , of

FIG. 6. Contributions to the spectrum, Im Gm(t ), of the nucleon’s
mass form factor: leading two-gluon exchange component (upper
diagram), ππ and KK̄ contributions (lower diagrams).

the nucleon’s energy-momentum tensor:

Mγ N→ψ N ′ 
 −32π2eCM

3b
〈N (p′)|T μ

μ |N (p)〉, (34)

where C is the coefficient describing the coupling of the
gluon fields to the small-sized cc̄ pair, M is the nucleon
mass and b = 11 − 2Nf /3 = 9 for Nf = 3 light quark flavors.
This result is valid in the chiral limit of massless quarks
with T μ

μ = − bg2

32π2 Ga
μνGμνa. The complete expression includes

small additional terms involving the light quark masses1 and
defines the mass (or ‘gravitational’) form factor, Gm(q2), of
the nucleon, with q2 = (p′ − p)2:

Gm(q2) = 〈N (p′)|T μ
μ |N (p)〉

= 〈N (p′)|β(g)

2g
Ga

μνGμνa

+ml (ūu + d̄d ) + mss̄s|N (p)〉. (35)

Here, β(g) = − bg3

16π2 is the leading QCD β-function, ml =
1
2 (mu + md ) is the average of the light u- and d-quark masses,
and ms is the mass of the strange quark.2 The three terms in
Eq. (35),

Gm(q2) = G(0)
m (q2) + σN (q2) + σs(q

2), (36)

are identified with the gluonic form factor,

G(0)
m (q2) = 〈N (p′)|β(g)

2g
Ga

μνGμνa|N (p)〉, (37)

and the scalar form factors,

σN (q2) = 〈N (p′)|ml (ūu + d̄d )|N (p)〉, (38)

σs(q
2) = 〈N (p′)|mss̄s|N (p)〉. (39)

They represent the pieces illustrated in Fig. 6 from gluon-
dominated short-distance structures, ππ and KK̄ continuum
contributions, respectively.

1Heavy (c, b and t) quarks appear only as virtual QQ̄ loops in gluon
propagators. Their mass terms in T μ

μ cancel against corresponding
heavy-quark sectors in the gluon term.

2These quark masses are actually understood to include the corre-
sponding anomalous mass dimensions.
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A once-subtracted dispersion relation representation of the
mass form factor

Gm(q2) = M + q2

π

∫ ∞

t0

Im Gm(t )

t (t − q2 − iε)
(40)

displays the normalization to the nucleon mass, Gm(0) = M.
By far the largest part of M is generated by gluon dynamics
through the trace anomaly (the gluonic term in T μ

μ ). The
quark mass contributions are given by the pion-nucleon and
strangeness σ -terms,

σN ≡ σN (q2 = 0) and σs ≡ σs(q
2 = 0). (41)

In the overall sum,

M = M0 + σN + σs, (42)

M0 refers to the ‘core’ mass generated by the gluonic trace
anomaly, while the σ -terms account together for less than
10% of the total nucleon mass M.

The JP = 0+ two-gluon system couples strongly to the
scalar-isoscalar two-pion continuum. The lower limit in the
spectral integral (40) is therefore at t0 = 4m2

π . Unlike the
prominent low-mass ππ spectrum with JP = 1− in the isovec-
tor electric form factor, the ππ continuum contribution to
Gm(q2) is however suppressed in this case because of the
small ratio σN/M.

The squared radius of the mass distribution,

〈
r2

m

〉 = 6

M

dGm(q2)

dq2

∣∣∣
q2=0

= 6

Mπ

∫ ∞

t0

dt

t2
Im Gm(t ), (43)

has been extracted from the differential J/ψ photoproduction
cross section measured by GlueX [34–36]. The result quoted
in [30],

〈
r2

m

〉1/2 = 0.55 ± 0.03 fm, (44)

is based on a dipole fit to dσ (γ p → ψ p)/dq2 in the form
Gm(q2) = M(1 − q2/�2)−2. The resulting � = 1.24 ± 0.07
GeV translates into the radius 〈r2

m〉1/2 = √
12/�.

The assumed proportionality to Gm(q2) of the coherent
J/ψ production amplitude (34) relies on leading t-channel
two-gluon exchange at small q2. Alternative mechanisms have
been discussed in the literature [36], such as open-charm
coupled-channel loops involving D, D∗, and �c intermediate
states [37]. In the t-channel exchange processes relevant to
the slope of dσ/dt at leading q2, such heavy-mass objects
would enter at scales corresponding to distances far below
the 〈r2

m〉1/2 given in Eq. (44). They are therefore counted as
processes taking place deeply inside the ‘core’ region, even
if they may contribute significantly to the γ + p → J/ψ + p
total cross section.

The result (44) for 〈r2
m〉1/2 is inferred from data restricted to

the threshold region of J/ψ production. At the same time it is
notable that an analysis of diffractive J/ψ electroproduction
at high energies, systematically including both coherent and
incoherent processes [38,39], points to characteristic proton
size scales with values comparable to Eq. (44).

The elements of the spectral distribution illustrated in
Fig. 6, namely short-distance two-gluon exchange plus longer

range ππ and KK̄ components, imply the following decom-
position of the mean-squared mass radius:

〈
r2

m

〉 = M0

M

〈
r2

0

〉 + σN

M

〈
r2
ππ

〉 + σs

M

〈
r2

KK̄

〉
. (45)

The dominant gluonic trace anomaly contribution with mass
M0 
 860 MeV is identified with the squared ‘core’ radius,
〈r2

0〉 ≡ 〈r2
m〉core, while the small corrections from ππ and KK̄

‘cloud’ pieces involve the σ -terms (41). With the aim of
estimating the core size, 〈r2

m〉core, based on the empirical value
(44) of the mass radius, we proceed now with a discussion of
the σ -terms and the associated radii in Eq. (45).

For the σ -term σN there is as yet not a fully consistent
picture. Recent lattice QCD (LQCD) computations [40] give
σN = 43.7 ± 1.2 ± 3.4 MeV. A similar result was found in
[41]. Such values are close to the result obtained decades ago
in the time-honored work of [42]: σN = 45 ± 8 MeV, together
with a large radius of the isoscalar s-wave ππ distribution in
the nucleon surface, 〈r2

ππ 〉1/2 
 1.3 fm. For a derivation of the
scalar-isoscalar form factor of the nucleon see also [43]. More
recent evaluations [44,45] based on a detailed analysis of
updated pion-nucleon scattering data have raised this σ -term
to σN = 55.9 ± 3.5 MeV. The origin of this larger value of σN

is interpreted in [45] as being related to virtual excited reso-
nance states in πN scattering. A similar value, σN = 57 ± 7
MeV was extracted from a large-scale fit to pionic atom data
[46]. Both observations are at variance with the LQCD result
and the previous determination. In the following evaluation
we can take these differences as a rough measure of possible
uncertainties.

The strangeness σ -term σs is taken from LQCD [40]: σs =
28.6 ± 6.2 ± 3.5 MeV. An estimate of the corresponding ra-
dius of the KK̄ cloud can be plausibly obtained by assuming
that the size scales of the mesonic ππ and KK̄ surfaces are
related to the inverse masses of the corresponding thresholds
in the spectral function: 〈r2

KK̄〉 = (mπ/mK )2〈r2
ππ 〉. In any case

the strange quark contribution to the mass radius turns out to
play only a very minor role.

With this input an estimate of the ‘core’ radius can be per-
formed. Using in Eq. (45) the values σN 
 50 MeV, 〈r2

ππ 〉 

1.6 fm2, and the quantities in the strangeness sector as indi-
cated, the radius of the compact gluonic core of the nucleon
that contains most of its mass becomes〈

r2
m

〉1/2

core ≡ 〈
r2

0

〉1/2 = 0.48 ± 0.05 fm, (46)

once again close to the common ‘1/2-fermi rule’ for the nu-
cleon core regions observed in the isoscalar electric and axial
form factors analysed in this study. The LQCD values for σN

and σs including their errors, as well as possible variations of
σN between 40 and 60 MeV, are covered by the uncertainty
range given in Eq. (47).

VI. SUMMARY AND CONCLUSIONS

Analyses of spectral functions in dispersion relations have
been performed to extract radii from the electric, axial, and
mass form factors of the nucleon. The aim is to delineate the
size scales associated with the quark-gluon core from those
of a quark-antiquark surface. Evidence is found supporting
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a picture of the nucleon as containing a compact half-fermi
sized ‘hard’ core in which the three valence quarks with
their baryon number are confined. This core also hosts the
dominant part of the nucleon mass, the one driven by gluons
and the trace anomaly. It is surrounded by a ‘soft’ surface of
quark-antiquark pairs forming the mesonic clouds. The spec-
tral distributions of these mesonic clouds are characterized
by the quantum numbers of the underlying nucleon currents.
They account for the variety of r.m.s. radii associated with the
different respective form factors.

It should be pointed out that while the localized distri-
butions of charge, axial current, and mass in the nucleon
are frame-dependent, the mean-squared radii discussed in the
present work are well-defined frame-independent quantities
as they are given by the slopes of invariant form factors at
q2 = 0. They can therefore serve as characteristic size scales
independent of a given frame of reference.

The results are summarized as follows:
(i) For the isoscalar electric form factor of the nucleon the

separation of core (high-t) and mesonic (low-t) sectors in the
spectral function yields an rms core radius〈

r2
S

〉1/2

core = 0.50 ± 0.01 fm.

The qq̄ cloud parts, dominated by the ω and φ mesons
and supplemented by ρπ and KK̄ continuum contributions,
establish a squared meson-cloud radius 〈r2

S〉cloud 
 0.35 fm2

such that the empirical isoscalar charge radius, 〈r2
S〉1/2 =√

〈r2
S〉core + 〈r2

S〉cloud 
 0.78 fm, is reproduced. These results
are based on a precise parametrization of form factors mea-
sured in both space- and timelike domains. The core radius
deduced from the isoscalar electric form factor (which coin-
cides with the radius of the baryon number distribution) is
in fact the most accurately determined one of all core radii
analyzed in the present study. An additional successful test
is provided by the isovector electric form factor in which
the individual proton and neutron core parts are expected to
cancel in the limit of exact isospin symmetry.

(ii) The radius empirically extracted from the form factor
associated with the isovector axial current of the nucleon is
significantly smaller than the proton charge radius. However,
after separating the broad three-pion spectrum dominated by
the a1 meson from the dispersion relation representation of
this form factor, the remaining ‘core’ part reveals once again
a radius compatible with an approximate half-fermi scale:〈

r2
A

〉1/2

core 
 0.53 fm

with an uncertainty of about ±4% if the empirical dipole fit of
〈r2

A〉 is taken for reference (and a correspondingly larger error
if the dipole constraint is released).

(iii) A third independent source of information is the
squared mass radius, 〈r2

m〉, derived from the nucleon matrix
element of the trace of the QCD energy-momentum ten-
sor. This information is accessible in the forward differential
cross section for near-threshold photoproduction of the J/ψ .
It is dominated by the leading short-range two-gluon ex-
change mechanism between the color-dipole cc̄ pair and the
nucleon, and it receives additional contributions from long-
range scalar-isoscalar ππ and KK̄ components. The latter

corrections are weighted by the pion-nucleon and strangeness
σ -terms, σN and σs, which measure the small u, d , and strange
quark contributions to the nucleon mass M. By far the largest
part comes from the gluonic trace anomaly which generates
more than 90% of M. Subtracting estimates of the ππ and
KK̄ cloud contributions from the empirical 〈r2

m〉 one arrives at
a radius of the central core in the nucleon which hosts almost
all of its mass: 〈

r2
m

〉1/2

core 
 0.48 ± 0.05 fm.

The uncertainty includes the error from a dipole fit to the γ +
p → J/ψ + p differential cross section together with possible
variations of the σ -terms.

In summary, the striking feature of all three investigated
form factors is the approximate equality of the extracted nu-
cleon core radii:〈

r2
S

〉1/2

core 
 〈
r2

A

〉1/2

core 
 〈
r2

m

〉1/2

core ≡ Rcore 
 1
2 fm. (47)

By its shared properties with the different underlying currents
and operators, this core encloses at the same time the baryon
number (i.e., the three valence quarks) and almost all of the
nucleon mass (i.e., its gluonic trace anomaly part). In par-
ticular the combined spectral analyses of the isoscalar and
isovector electric form factors imply that the baryon number
B = 1, identified with twice the isoscalar charge, is entirely
located in the compact core. Together with the size informa-
tion from the gluon-dominated mass form factor this suggests
indeed that the three valence quarks, dressed by strong gluon
fields, are confined within the half-fermi core.

The soft quark-antiquark clouds which form the nucleon
surface differ in their mesonic quantum numbers and thus
account for the differences, e.g., in observed charge, axial,
and mass radii. In the case of the mass radius, the large
size of the scalar-isoscalar two-pion cloud is down-scaled by
being weighted with the small nucleon σ -term which gives
only a few-percent correction to the total nucleon mass, and
this therefore explains why the empirical 〈r2

m〉 is close to its
gluonic ‘core’ part.

With a common core size Rcore ∼ 1/2 fm of Eq. (47)
and a cloud range typically around Rcloud ∼ 1 fm, there is
a significant separation of volume scales for a nucleon in
vacuum: (Rcloud/Rcore)3 ∼ 8. This two-scales scenario has im-
plications for the behavior of nucleons in dense baryonic
matter. The hard-core and soft-surface sectors of the nucleons
behave differently with increasing baryon density. At ρ 

ρ0 = 0.16 fm−3, the density of equilibrium nuclear matter, the
tails of the meson clouds of nucleon pairs overlap, resulting in
two-body exchange forces. As the average distance between
nucleons decreases with increasing density the soft clouds
of qq̄ pairs expand and mediate many-body forces involving
larger numbers of nucleons. Their strength increases with
characteristic powers of density. The compact cores, on the
other hand, are expected to stay intact and isolated until they
begin to touch and overlap at average nucleon-nucleon dis-
tances d � 1 fm, corresponding to baryon densities ρ � 6 ρ0.
Note also that random close packing [47] of hard spheres
with a radius R = 0.5 fm takes place at a density ρ 
 8 ρ0.
The overlapping of nucleon cores and the deconfinement of
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valence quarks proceeds at a high cost of energy: further com-
pression of baryonic matter still has to overcome the strongly
repulsive short-distance hard core in the nucleon-nucleon
interaction.

As an outlook, recent analyses of neutron star data
[48,49] including the heaviest so far observed pulsar (the 2.3
solar-mass black widow pulsar PSR J0952-0607), require a
sufficiently stiff neutron star matter equation of state. As a
consequence, baryon densities reached in the cores of even
very heavy neutron stars do not exceed about five times the
density of normal nuclear matter. With the suggested scale
separation between a compact 1/2 fm valence quark core and
a surface mesonic cloud, the valence quarks from overlapping
cores would be released, if at all, only in the deep interior of
extremely heavy neutron stars.
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APPENDIX

Here, we summarize the positions and residua of the poles
used in the precision fits of Ref. [17] to the isoscalar and
isovector combinations of electric proton and neutron form
factors, both in the spacelike and timelike regions of squared
four-momentum transfer q2. Tables I and II collect the high-t
poles that represent the short-distance ‘core’ sectors in the
nucleon. These parameters determine the core radii given in
Eqs. (18) and (19). Table I also includes the parameters of the

TABLE I. Parameters for the meson and core sectors of the spec-
tral distribution (18) representing the isoscalar nucleon form factor
GS

E (q2). (Adapted from [17]).

i a(i)
1 [GeV2] a(i)

2 [GeV2] mi [GeV]

ω 0.701 0.338 0.783
φ −0.526 −0.997 1.019

j a( j)
1 [GeV2] a( j)

2 [GeV2] mj [GeV]

S1 0.422 3.655 1.120
S2 0.122 −0.228 1.019
S3 0.955 −1.122 1.827

Rs1 4.953 0.501 1.879
Rs2 −2.653 −1.753 1.903
Rs3 −3.069 2.017 1.914

ω and φ meson poles used in the evaluation of the isoscalar
meson cloud.

The parameters denoted Si and Vi refer to zero-width poles.
In the original fits of Ref. [17] the high-mass resonance poles
Rsi and Rvi also have large widths but their effects on the radii
analysed in the present work are marginal so that these widths
can be ignored in practice.

TABLE II. Parameters for the core sector of the spectral distri-
bution (18) representing the isovector nucleon form factor GV

E (q2).
(Adapted from [17]).

j a( j)
1 [GeV2] a( j)

2 [GeV2] mj [GeV]

V1 0.782 −0.132 1.050
V2 −4.873 −0.645 1.323
V3 3.518 −0.987 1.368
V4 2.243 −3.813 1.462
V5 −1.422 3.668 1.532

Rv1 −0.985 1.061 2.220
Rv2 −1.947 0.551 2.253
Rv3 2.552 −1.217 2.256
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