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We have studied the Seebeck and Nernst coefficients of a weakly magnetized hot QCD medium having a weak
momentum anisotropy within the kinetic theory approach. The thermal medium effects have been incorporated in
the framework of a quasiparticle model where the medium dependent mass of the quark has been calculated using
perturbative thermal QCD in the presence of a weak magnetic field, which leads to different masses for the left
(L) and right (R) handed chiral quark modes. We have found that the Seebeck and Nernst coefficient magnitudes
for the individual quark flavors as well as for the composite medium are decreasing functions of temperature and
decreasing functions of anisotropy strength. The Nernst coefficient magnitudes are about an order of magnitude
smaller than their Seebeck counterparts, indicating the Seebeck effect constitutes a stronger response than the
Nernst effect. The average percentage change corresponding to switching between quasiparticle modes (L — R
or R — L) is an order of magnitude smaller for Nernst coefficients, compared to the Seebeck coefficients.

DOLI: 10.1103/PhysRevC.110.015201

I. INTRODUCTION

Heavy ion collisions at ultrarelativistic energies give rise
to a state of matter comprising asymptotically free quarks
and gluons: the quark gluon plasma (QGP). Several observ-
ables are considered signatures of creation of such a medium;
they includes photon and dilepton spectra [1,2], quarkonium
suppression [3-5], elliptic flow [6,7], jet quenching [8-10],
etc. Experimentally, significant evidence now exists of the
observation of these signals, and thus of the creation of QGP
matter in ultrarelativistic heavy ion collisions (URHICs) at
experimental facilities such as the Brookhaven National Lab-
oratory Relativistic Heavy Ion Collider (RHIC) [11-13] and
the CERN Large Hadron Collider (LHC) [14,15]. Right after
the formation of QGP, it expands and cools and transitions
into a mildly interacting collection of hadrons. At very small
baryon chemical potentials (up =~ 0), with massive quarks,
the results of lattice QCD indicate that the transition is ac-
tually an analytic crossover rather than a true phase transition
[16—19]. The sign problem of lattice QCD at finite up makes
it an unreliable tool to explore large parts of the QCD phase
diagram [20,21].
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The QGP lives for a very short period of time and
does not expand at the same rate in all the directions. The
colliding nuclei are Lorentz contracted due to their relativistic
speeds. The overlap volume of such nuclei in a noncentral
collision is anisotropic in the plane perpendicular to the beam
(transverse plane). This spatial asymmetry in coordinate space
gets converted into an opposite asymmetry in the momentum
space which is ultimately reflected in the hadron py spectra.
A convenient way of taking into account the anisotropy of
the medium was introduced by Romatschke and Strickland
wherein the anisotropic distribution function is obtained from
an arbitrary isotropic one by the rescaling of only one di-
rection in momentum space, i.e., by stretching or squeezing
the isotropic distribution function of the medium constituents
(partons) [22]. This parametrization of the anisotropy involv-
ing a single direction and a single anisotropy parameter, &
(spheroidal momentum anisotropy), was used to calculate
the collective modes of finite temperature QCD and study
their impact in thermalization of the QGP medium [22-25].
Hard loop effective theories have also been used to study
anisotropy; its equivalence with the kinetic theory approach
was shown by Mréwczynski and Thoma, who calculated
the self-energies and dispersion relations for QGP partons
[26]. Existence of instabilities associated with gluon collec-
tive modes in an anisotropic QGP has been observed and
their growth rates have also been calculated [27,28]. This
description has also been used to study photon and dilep-
ton production from the QGP [29,30], the QGP heavy quark
potential [31], and bottomonia suppression [32]. In addition
to the case of spheroidal anisotropy, ellipsoidal momentum
anisotropy has also been considered, which is characterized by
two or more independent anisotropic parameters. In particular,
parton self-energies have been calculated in an ellipsoidally
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anisotropic QGP [33]. Anisotropic momentum distributions
have also been used in relativistic hydrodynamic models to
study the evolution of QGP to hadrons [34-38]. In fact,
anisotropic hydrodynamics (aHydro) has been more accurate
than its isotropic counterpart in the description of nonequi-
librium dynamics [39—44]. As such, transport coefficients
like electrical conductivity [45] and heavy quark drag and
diffusion coefficients [46] have also been evaluated in an
anisotropic plasma.

Apart from causing an anisotropic expansion of the created
matter, noncentral heavy ion collisions also lead to creation of
large magnetic fields [47]. These magnetic fields, produced
mainly by the spectator protons moving away from each other
at relativistic speeds, reach magnitudes up to eB ~ 10~'m2
(10" G) for CERN Super Proton Synchrotron (SPS) ener-
gies, eB ~ m% for RHIC energies, and eB ~ 15’"72: for LHC
energies [48]. The decay rate of the magnetic field depends
strongly on the electrical conductivity of the medium which
is exposed to the field [49-58]. Depending on the strength of
the background magnetic field, several interesting phenomena
of the created matter can be probed. A strong background
magnetic field causes separation of charges in a chiral QGP
medium leading to a magnetic field dependent current, which
is non-Maxwellian and has no analog in classical physics.
This is the chiral magnetic effect [59-61]. Other phenomena
induced by strong magnetic fields include magnetic catal-
ysis [62], chiral magnetic wave [63], axial magnetic effect
[64,65], etc. A small electrical conductivity, however, would
lead to only a small fraction of the initial magnetic field
surviving when the created matter thermalizes. This has mo-
tivated several studies where the background magnetic field
is considered to be weak. Further, such a weak field can give
rise to novel phenomenological results like the lifting of mass
degeneracy between the left and right handed quark effective
masses [66]. Transport phenomena in the presence of weak
magnetic field have been under investigation in the recent past
[67-72]

In this article, we study for the first time the thermoelectric
response of an anisotropic QGP medium in the presence of
a weak magnetic field, by incorporating the nondegenerate
left and right chiral quasiparticle masses of quarks. Fluctua-
tions in the initial energy density of heavy-ion collisions can
create large temperature differences between the central and
peripheral regions of the fireball [73]. This, coupled with a
finite chemical potential can potentially give rise to thermo-
electric phenomena: Seebeck and Nernst effects. The ability
to convert a temperature gradient into an electric field is
quantified by the Seebeck and Nernst coefficients. Thermo-
electric phenomena have been previously investigated both in
the presence and absence of a magnetic field in a thermal QCD
medium [74-80].

In what follows, we present the calculation of the ther-
moelectric coefficients of a QGP medium, taking into
account the expansion induced anisotropy of the momen-
tum distribution of the partons, in the presence of a weak
background magnetic field. The paper is organized as fol-
lows: In Sec. II the quasiparticle model used in this work
is described. In Sec. III, the calculation of Seebeck and
Nernst coefficients are outlined for both single-component

and multicomponent mediums. In Sec. IV, the results are plot-
ted and their interpretations discussed. Finally, we conclude
in Sec. V.

II. QUASIPARTICLE MODEL

The central feature of quasiparticle models is that a
strongly interacting system of massless quarks and gluons can
be described in terms of massive, weakly interacting quasipar-
ticles originating due to the collective excitations. There are
many quasiparticle models, such as the Nambu—Jona-Lasinio
(NJL) model and Polyakov-NJL (PNJL) model [81-84] which
are based on the respective effective QCD models, effective
fugacity model [85], and the recently proposed quasiparticle
model based on the Gribov-Zwanziger quantization [86—88].
In this study, we have used the quasiparticle model [89]
which has only a single adjustable parameter and the medium
effects enter through the dispersion relations of the quark
and gluon quasiparticles. The temperature- and magnetic-
field-dependent masses of the quarks and gluons have been
computed from the poles of their resummed propagators
obtained from Dyson-Schwinger equations. The respective
self-energies have been calculated using perturbative thermal
QCD in a strong magnetic field background. The quasipar-
ticle mass of the ith flavor is written phenomenologically
as [89]

m; = mio + N 2miomi 7 + m,-z,T, (H

where m; o and m; 7 are the current quark mass and medium
generated quark mass. m; r has been calculated using the HTL
perturbation theory as [90,91]

22 2
m?T=gT(1+ - ) @)

6 n2T?

where ¢ = /4may refers to the coupling constant, which
depends on the temperature as

I'e . 61
@3- (%)

Aqcp
; 2 M
where Q is set at 27/ T* + 5.

In the presence of a strong magnetic field, the coupling
constant g = «/4mwa, depends on the temperature, chemical
potential and magnetic field as [92]

3

2
oy (A2, eB) = £ _ (A7) “)

AT 1+ big(AY) In (;A5)

with
1

biIn (K‘é) ,

where A is setat 2m,/T? + g—i for quarks, b; = HNI"Z;ZNf, and
Azrs = 0.176 GeV.
Similarly the effective quark mass for the ith flavor in the

case of a weak magnetic field can be parametrized as in the

a(A?) = %)
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earlier cases as

mlzw = mizo + \/Emiomi,L/R + m,'z’L/R’ (6)
where m; ; /g refers to the thermal mass for the left- or right-
handed chiral mode of the ith flavor, which can be evaluated
from the Dyson-Schwinger equation in weak magnetic field,

S*'(P) = P — X(P). (7

% (P) is the quark self energy in the weakly magnetized ther-
mal medium. The general structure of quark self energy in the
covariant form at finite temperature and magnetic field can be
written as [66]

X(P) = —A'P — B'j — C'ysj — D'ysh, (3)
where u"* = (1,0, 0,0) and b* = (0,0, 0, 1) refer to the ve-
locity of the heat bath and the direction of the magnetic field,
respectively. A’, B, C', D" are the structure functions which
can be evaluated by taking the appropriate contractions of
Eq. (8) as [66]

1 Tr[Z(P)P] — (Pu) Tr[Z(P
A/(po,m,pz):z L )lg)u)z( _”) L )14]’ )

1 (=Pu) Tr[Z(P P2 Tr[Z(P
B(po. pi, po) = 3 ((P:f;]f O o0y
C'(po, p1. pz) = —3 Trlys (P, (11)
D'(po, p1.p.) = 3 TrlysZ(P)B). (12)

The explicit forms of the above structure functions have been
calculated as [66]

A'(po, Ipl) = g, [ 22 (13)
Ipl Ipl
2
my
— 14
|p|[|p|Ql<|p|> Q°<| |>] (o
zpz PO (15)
Ipl
2 Lo, (16)
ol |p|

lgiB| (=T T175(3)
B) = — —In24+ —+, (17
=160 \amg M g2 ) 7
where ¢ corresponds to the Riemann zeta function. Qp and

Q) refer to the Legendre functions of first and second kind,
respectively, which are given by

(x—i—l), (18)
x—1

»
I
1
%C (i:) 1 =x0p(x)—1.  (19)

B'(po. Ipl) =

C'(po, Ipl) = —4¢°CrM

D'(po, Ipl) = —48°CrM

where

M*(T, p,

Oo(x) =

01(x) =

The quark self-energy can be recast in the basis of right- and
left-hand chiral projection operators as

X(P)=—Pr AP+ B +Chi+DbP, — P (AP
+ (B — C)k — D'B)Px. (20)

We can rewrite the inverse fermion propagator (7) using (20)
as

SN P) =P+ RIAP+ (B +Ci+DHBP,
+P[A'P + (B — C')h — D'b] Py, 1)
which can further be simplified as
S*!(P) = PgLLP, + PLRP. (22)

Since PL’R)/M = )/U’PRqL and PLPPL = PRPPR = PLPRP = O,l
and R are given by

L=010+AYP+ B +C)y+ Db, (23)

R=0+ANP+ (B —ChHy— Db (24)

After inverting Eq. (22), we get the effective quark propagator
as

S*(P) = ! [ L2L>2 R + PRRZL;szjI (25)
where
L>=(1+APP +2(1+A)B +C)po—2D'(1 +A)p,
+ (B/ 4 C/)z _ D/Z’ (26)

R*=(1+A)P+2(1 +A)YB —C)py+2D'(1 +A)p,
+(B = C')? = D" 27)
Now in order to get the quark thermal mass in weakly mag-
netized thermal QCD medium, we take the static limit (py =

0, |p| — 0) of L?/2 and R?/2 modes,' and we get (suppress-
ing the flavor index)

L’ ) )
5 lpo=0.pi>0 = M1 4¢°CrM?, (28)
R? 9 )

2 lpo=0,lpl—0 = M7 4g°CrM?, (29)

where, mr and M are as defined in Eqs. (2) and (17), respec-
tively. Here, we can infer that the otherwise degenerate left-
and right-handed modes get separated out in the presence of a
weak magnetic field as

m: =m> + 4g*CrM?, (30)

my = mk — 4g*CrM?. (31)

We will use these thermally generated masses in the disper-
sion relation of the quarks to calculate the Seebeck and Nernst
coefficients in the forthcoming sections.

"We have expanded the Legendre functions appearing in the struc-
ture functions in power series of % and have considered terms only

up to O(g%).

015201-3



KHAN, DEY, AND PATRA

PHYSICAL REVIEW C 110, 015201 (2024)

III. THERMOELECTRIC RESPONSE
OF AN ANISOTROPIC QCD MEDIUM

QGP produced in relativistic heavy ion collisions can pos-
sess a significant temperature gradient between its central and
peripheral regions. A temperature-gradient and a finite chem-
ical potential in a conducting medium create the necessary
conditions for the Seebeck effect. Charge carriers diffuse from
regions of higher temperature to regions of lower temperature.
This diffusion of charge carriers constitutes the Seebeck cur-
rent, which leads to the generation of an electric field. The
diffusion ceases when the strength of the created electric field
balances the thermodynamic gradient. The magnitude of the
electric field thus generated per unit temperature gradient in
the medium is termed the Seebeck coefficient and is evaluated
in the limit of zero electric current [93,94]. The Seebeck coef-
ficient is a quantitative estimate of the efficiency of conversion
of a temperature gradient into electric field by a conducting
medium. The sign of the Seebeck coefficient can be used to
determine the sign of majority charge carriers in condensed
matter systems, as it is positive for positive charge carriers and
negative for negative charge carriers. Upcoming experimental
programs such as the Facility for Antiproton and Ion Research
(FAIR) in Germany and the Nuclotron-based Ion Collider
fAcility (NICA) in Russia, where low-energy heavy ion col-
lisions are expected to create a baryon-rich plasma, could be
the perfect environment for the aforementioned thermoelectric
phenomenon to manifest.

In the presence of a magnetic field, the charged particles
drift perpendicular to their original direction of motion due to
the Lorentz force acting on them. This leads to a thermocur-
rent that is transverse to both the direction of temperature
gradient and the external magnetic field. This is called the
Nernst effect. Like the Seebeck coefficient, the Nernst coef-
ficient is also calculated at the limit of zero electric current,
that is, by enforcing the equilibrium condition. The Nernst
coefficient can be defined as the electric field induced in
the & () direction per unit temperature gradient in the $ (%)
direction, in the presence of a magnetic field pointing in the 2
direction.

Due to a larger expansion rate of the medium along
the longitudinal direction compared to the radial direction,
one develops a local momentum anisotropy. This anisotropy
can be taken into account by introducing an anisotropy
parameter £ in the isotropic distribution function. This
is the Romatschke-Strickland (RS) parametrization of the
anisotropic distribution function with a single anisotropy pa-
rameter. For the case of weak momentum anisotropy (¢ < 1),
and a finite quark chemical potential p, the form of the RS
distribution is given as (suppressing the flavor index) [22]

1
PN PPHE@P+mi—p) 4 ’
which can be expanded in a Taylor series about & =0

(isotropic case). Keeping terms up to linear power in &, we
have

7=

(32)

)2
0 = f0 Sﬂ%f‘kl — 1), (33)

with
1
PN P =) 4 ’

where B = 1/T.The anisotropy parameter £ is defined as

(1)
2{pz)
where p; and pr refer to the longitudinal and transverse
components of p. The 2 in the denominator denotes the
fact that there are two transverse directions with respect
to any given vector. The condition of isotropy occurs
when (pzT) = 2(p%). For pr > 2p;, & is positive. The
aforementioned components are defined with respect to
an arbitrary anisotropy direction, denoted by the vector
n = (sina, 0, cos o), with o being the angle between the di-
rection of anisotropy and the z axis. This parameter is arbitrary
and hence physical quantities should be independent of it. The
longitudinal and transverse momentum components are then
defined as p;, = p-n, pr =p —n - (p - n). In spherical polar
coordinates, p = (psin @ cos ¢, psin 8 sin ¢, pcos ), where,
6 and ¢ are the polar and azimuthal angles, respectively,
and (p-n)? = p*c(0, o, p) = p>(sin® a sin® 6 cos® ¢ +
cos’acos? 6 + sin2a sinf cosf cos¢). Thus, Eq. (33)
ultimately becomes

P=E=0= (34)

E:

—1, (35)

pre0, o, ¢)

5 o4 - 1. (36)
€

=r"—¢p

A. In the absence of magnetic field

In this section, we evaluate the thermoelectric response of
the anisotropic QGP medium in the absence of a background
magnetic field within the kinetic theory framework. Our start-
ing point is the evolution of the single-particle distribution
function, which is given by the relativistic Boltzmann trans-
port equation (RBTE). In the relaxation time approximation
(RTA), the equation reads

tﬂ +qF*° ﬁ = _p_“uu(

/ . = = 1Y), 37
P Poy — (= 1), G

where f? is as defined in Eq. (33). In the absence of a
magnetic field, we only have the p =i, 0 =0 and o =1,
p = 0 components of the electromagnetic field strength tensor
F*°. These components are F% = —E, F© = E. The RBTE
[Eq. (37)] then takes the form

0 fa dfa 0fa 0fa
0 .
Pl R G HaE e amE
plu
== E(fa = £2). (38)

Considering the particles to be on-shell, we use the chain rule
of differentiation

d ap’ 9 i p 9 0

_—— — — —_— = = 4 —_—,

op  dpop® op p’ap°  op
by which the RBTE in the local rest frame becomes

afa afu afll Sfa
. E. - _
ar TP e TR, »

, (39)
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where f, = f0 +8f,, 8f, being the deviation of the dis-
tribution function from the “anisotropic equilibrium” [95]
distribution fao [defined in Eq. (32)], with m as defined in
Eq. (1). Thus, the distribution function is expanded in an
anisotropic background, wherein the leading order term ( ft?)
itself is dissipative. The form of 0 used here was first pro-
posed by Romatschke and Strickland, and has a spheroidal
symmetry. §f, is a measure of the departure of the distri-
bution function from this symmetry. Further, in this study,
we have considered the system to be close to equilibrium,
hence we have taken small values of the anisotropy parameter
(§ =0.3,0.6).

In addition, we are interested in the steady state, so the first
term in Eq. (39) vanishes, finally leaving us with

dfa dfa 8fa

E- = -1 40
ar+c1 op . (40)

p .

T is the relaxation time. Once the system is infinitesimally
disturbed from equilibrium, it takes an average an amount of
time 7 to revert to equilibrium. The relaxation time has been
calculated for the quarks considering 2 — 2 scatterings using
perturbative QCD as [96]

1
5.1Ta2 log ( )[1 +0.1202N, + 1)]

o(T) = . 4D

where o is the running coupling constant (3).

In order to calculate the deviation § f, we assume that the
system deviates only infinitesimally away from equilibrium,
ie., 8f < f°. We then compute the relevant derivatives re-
quired to evaluate the left-hand side (LHS) of Eq. (40):

0 0 2 2 2
%: f|: —EB— {p__g+p__21fo}:|

op  Ip B2 B € e

= %Ll(p, £), (42)
e

= Z—J:)Lz(p, £), (43)
TSRS e A
ar  or 2 € €le — )

= aa—]:)La(P, £), (44)

where, € = \/p? +m?. As expected, the above derivatives
reduce to their isotropic expressions on putting £ = 0. In the
first approximation, f, is replaced with f in the LHS of
Eq. (40). We then substitute the above derivatives in Eq. (40)
to getdf,

5f, = —B*t(e — w)fo(l — fo>§ VTLy(p. §)

P gl — fo)Li(p, £). 45)

E
+1q

Similarly, we calculate the deviation 8 f for the antiquarks.
This is done by replacing the quark distribution function f by

the antiquark distribution function f and changing the sign of
the chemical potential j:

87, = —F*t(e + ol — fo)La(p, é)‘;i VT

E-p A
+TqTL1(p,S)ﬂfo(1 — Jo)s (46)
where the antiquark isotropic distribution function is
1

= eBleti+l” (47)

We consider the temperature gradient to exist in the x-y plane,
ie.,

vi="%+y (48)

Consequently, the induced electric field is also considered to
be planar, i.e., E = E,X + E,§. The induced four-current due
to a single quark flavor can be written as

d’p p*
—Ilgéfa 8fa 49
o) € [q8fa+q8fal, (49)
where, g is the quark degeneracy factor.
Now substituting 6 f and §f in Eq. (49) and putting the
induced current to zero in the steady state we get

E = SVT. (50)

Here, S is the individual Seebeck coefficient, i.e. the Seebeck
coefficient of a hypothetical medium consisting of a single
quark flavor.

Jh =

=1 1)
where
2 d3
=27 / S5 L DT e+ ol — Folla(p.£)
— (e = W1 — fls(p. E)), (52)
2 d3
=1 5L T (= fLi(p.©)

+ fol = fo)Li(p, §)}. (33)

To evaluate the Seebeck coefficient of the composite medium,
we need to take into account the total current due to multiple
quark species. The spatial part of the total four-current is given
by

J= Znglf(z Ve p

Setting the x and y components of the above equation to zero
yields the following equations:

-571) (54)

aT
> [(HQ»EX + (Hy )ia—} =0, (55)
i=u,d X

aT
> [(HZ»Ey + (H, ),-5] =0, (56)
i=u,d
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Solving the above equations and comparing with Eq. (50),

we get
EN_ (Sa O[5 57
E,] \0 Squ/\2L
ay’

S, GG (58)
tot C22 }
with
Ci=)> (H), GC=Y_ (H) (59)
i=u,d i=u,d

In the next subsection, we will see how the weak magnetic
field in the background modulates the thermoelectric response
of the hot QCD medium.

B. In the presence of weak magnetic field

The RBTE [Eq. (37)] in three-vector notation, in the pres-
ence of the Lorentz force, can be written as
3 fa [y 0 fa 8fa

: E B). Yo _ % (g0
o TV p TAEAVXB) o - 0

In the first approximation, we replace f, by fy in the
LHS above, similarly to the B = 0 case. We know that the

J

derivative % ocv. The term (v x B) - 3;2) in Eq. (60) can

be replaced with (v x B) - %Ll(p, &) according to Eq. (43).
Thus,

0
03{; is also proportional to v, and therefore the term

(vxB)- % also vanishes. The contribution to the Lorentz
force thus comes solely from & f,. Additionally, we work in
the static approximation, where both £, and £ do not depend
on time, so that the first term in Eq. (60) drops out. The RBTE
thus gets reduced to
0 0
V- a +qE 0 +

or = ap
As seen earlier, f, = f0 +§f, with §f, < 2. To solve for
8 f, we take an ansatz, similar to a trial solution for solving
any differential equation [75]:

4V B)3(8fa) _ _5fa_ 1)
ap T

P 0
8fa=(- %) é (62)

where X depends on the temperature gradient, magnetic field,
and electric field. The general form of X can be written as

Y=o E+awb+a3(Exb)+asVT 4+ a5(VT x b)
+a6(VT x E), (63)

which is basically an expansion in terms of all possible vector
formations from those available in the system. Here, o/, oy,
o3, a4, a5, and o are unknown coefficients which need to be
solved for. Using Egs. (63) and (62) in Eq. (61), we get

B*(e — W fo(l — fo)Ls(p, €)v - VT — Bqfo(l — fo)Li(p, &)V - E — Bqfo(l — fo)La(p, &)
x {—a1|B|V - (E x b) + a3|B|v - E — a4|B|v - (VT x b) + as|B|v - VT)

=21 = fOL(p, E);{alv "E+av-b+azv-(Exb)+asv-VT +asv- (VT x b)}. (64)
Now, comparing the coefficients of tensor structures from both sides of the above equation, we get
“aLy(p.§) = —asqlBIL(p. ) — gLi(p. £), (65)
“aLa(p.§) =0, (66)
“aLo(p.§) = arqlBILa(p. ). (67)
“auLa(p.§) = Ble — WLs(p. §) = asqlBILp.€). (68)
ZasLo(p. §) = asglBILAp. §). (69)
We find the values of ¢, o, a3, a4, and a5 from the above equations, which come out to be
T Li(p,
T +C(Iogr2) ng, 2 70
a, =0, (1)
2w Li(p,
= (T e ity ™
0 =T Ble =) Li(p.§) (73)

€ (1+ w2t?) La(p, )’
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? w.B(e — ) L3(p, &)

a5 = — , 74
P e (1+ w21 La(p.§) ™
c Li(p,
5f=;p-{(—€E—th Exb))M (75)
(1+w27?) € € Ly(p, §)
€ — Tw.(€ — L;(p, 910
+(ﬂ( Wy, Bred m(VTxb)) A(p s>}i L) 6
€ Ly(p, &)
Similarly,we can compute the deviation in the anti quarks distribution function as
_ e Li(p,
5F = T p~{(c—]E—th b)) _I(P £) 77)
(T+o2e)’ |\~ e Ly(p,§)
€+ (€ + Ls(p, 910
+<ﬁ( W g Bro M)(VTxb)> 3(p S)}i Lip. ). 78)
€ € Ly(p, &)
[
The x and y components of the induced current density can be Jx = J, = 0. We can write, from Eqgs. (79) and (80),
written as
oT oT
LhE, +LE, +L—+1,— =0, (86)
oT oT ox ay
Jo=hE,+LE, + 3— + 1,—, (79)
ox dy oT aT
oT oT —hLE, + LE, — 148_ +13a— =0, 87)
Jy = —hE, + LE, — 148_ +138—- (80) * y
X
Y We can further write Eqs. (86) and (87) as
The electric field components are related to the temperature . ( L+ DL ]4> oT < LI — 1, 14) oT 9)
radients and the Seebeck and Nernst coefficients via a matrix = \"" 22 t\ e e
‘z’quaﬁon P+ ) ox ;Z+5 )y
’ e 1113 + LI\ T LI — LI\ 0T &9
oT T P+12 )ay +1E ) ax’
E.\ S NIBI\ [ &r @1
E,) — \—-NI|B| S %, where
’ (LI + L1y)
S=—-———, (90)
where I+
LIz — 1L
_q gﬁ/ &p PP NIB| = % 1)
@2n) 62 + 0?21?) L+15

X {fo(l = fo)Li(p, &) + fol = fo)Li(p, £)}  (82)

PR B A
27 / Q) € (1 + wlt?)

x {fo(l = f)Li1(p, &) — fo(1 — f)Li(p, §)}  (83)
I qgp®> [ &’p p*
3T 73 Q) e (14 w?272)

x {(e + w) fo(1 = fo)Ls(p, &)

— (e — w)fo(l = fo)Ls(p, &)} (84)
. qgB*> [ d’p p*  wr?
=

3 ) @rp (1 +20?)
x {—=(e — ) fo(1 = fo)Ls(p, §)
— (e + ) fo(1 = fo)Ls(p, ). (85)

In the state of equilibrium, the components of the in-
duced current density along x and y directions vanish, i.e.,

The integrals I, and I; vanishes in the absence of the magnetic
field. As a result, the Nernst coefficient also vanishes.

In what follows, we will compute the Seebeck and Nernst
coefficients for the medium composed of the u and d quarks.
In the medium the x and y components of the induced current
in the medium can then be written as the sum of the individual
flavour contributions as

oT aT
Jy = Z [(h);E + (R)iE, +(I3)1 +(14)1 ] 92)

i=u,d

=Y [—(12),»Ex+(11>,»Ey—(14)%+<13>,»3—y]. 93)

a=u,d

We extract the Seebeck and Nernst coefficients for the QCD
medium composed of u# and d quarks by imposing the equi-
librium condition (i.e., putting J, = J, = 0) as

(K1 K5 + K2Ky)

sB = — , 94
= o4
(K2K3 — K1Ky)
N|B| = 23T 218 (95)
Kl + K2
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eB=0, =40 MeV

(a) 26

u quark Seebeck coefficient

0.2 0.25 0.3 0.35 0.4
Temperature (GeV)

eB=0, p=40 MeV

(b) 13

N
n

'
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|
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d quark Seebeck coefficient
o !
W

+
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'
W

| | | . I .
0.2 0.25 0.3 0.35 0.4
Temperature (GeV)

550 ;

FIG. 1. (a) Temperature dependence of u quark Seebeck coefficient in the absence of B, at a fixed value of w. (b) Temperature dependence
of d quark Seebeck coefficient in the absence of B, at a fixed value of w. The different curves correspond to different values of £.

where

K = Z(Il)i, K, = 2(12)1',

i=u,d i=u,d
Ky=Y (L), Ki= ) () (96)
i=u,d i=u,d

IV. RESULTS AND DISCUSSION

We begin with the results obtained at B = 0, followed by
those obtained at finite B. Figures 1(a) and 1(b) show the
temperature variation of individual Seebeck coefficients. That
is, if the medium were composed exclusively of a single
species of quark (u or d), the Seebeck coefficients would
vary with temperature as shown in the aforementioned fig-
ures. The positively charged u quark gives rise to a positive
Seebeck coefficient, while the same is negative in the case of
the negatively charged d quark, which concurs with previous
results [74,76]. Positivity of the Seebeck coefficient indicates
that the induced electric field is along the direction of the
temperature gradient, whereas a negative value indicates that
the induced electric field is in the direction opposite to the
direction of the temperature gradient. It should be noted that
we have used the convention where the direction of increasing
temperature is considered positive. The magnitudes of both
the individual Seebeck coefficients (S,, S;) decrease with
temperature. Importantly, the magnitudes also decrease with
the strength of anisotropy parameter £. S, decreases by 5.32%
while going from £ = 0 to § = (.3, averaged over the entire
temperature range. From & = 0.3 to £ = 0.6, the decrease is
7.11%. Interestingly, the corresponding values for S, are iden-
tical up to two decimal places. Figure 2 shows the Seebeck
coefficient of the composite medium composed of u and d
quarks: the total Seebeck coefficient (Sy), as a function of
temperature. Sy is positive and decreases with temperature.
So, the induced electric field points in along the temperature
gradient. Also, note that even though the magnitude of d quark
Seebeck coefficient is larger than that of the u quark at a given

temperature, the total coefficient is positive. This reflects the
fact that a u quark carries double the electric charge than a d
quark. Again, a finite anisotropy decreases the magnitude of
Siot- It decreases by 5.31% in going from £ =0 to § = 0.3,
and by 7.11% when & changes from 0.3 to 0.6. The decrease
in the magnitude of transport coefficients with anisotropy has
been observed earlier [45].

Figures 3 and 4 show the variation with temperature of
u quark and d quark Seebeck coefficients, respectively. The
coefficient is positive for the positively charged u quark and
negative for the negatively charged d quark, which is along
expected lines. As can be seen from the figures, the coef-
ficient magnitudes are decreasing functions of temperature.
One can also see the effect of anisotropy on the coefficient
magnitudes. Compared to the isotropic (§ = 0) result, the
anisotropic medium leads to a lesser value of the Seebeck

eB=0, u=40 MeV

1.1 T T T T T

—

o
=)

o
o0

o
=)

Total Seebeck coefficient
o
~

o
n

<o
~

| |
0.3 0.35 0.4
Temperature (GeV)

|
0.2 0.25

FIG. 2. Seebeck coefficient of the composite medium in the ab-
sence of B as a function of temperature.
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L mode, eB=0.1 mnz, n=40 MeV
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u quark Seebeck coefficient
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|
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Temperature (GeV)
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—- E=03
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u quark Seebeck coefficient

L
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1 |
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Temperature (GeV)

|
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FIG. 3. (a) Temperature dependence of # quark L mode Seebeck coefficient at fixed values of eB and . (b) Temperature dependence of u
quark R mode Seebeck coefficient at fixed values of eB and . The different curves correspond to different values of &

coefficient magnitude for a particular value of temperature
and magnetic field. Also, with the increase in the extent of
anisotropy, the coefficient magnitude decreases. Comparing
the graphs for the L and R modes shows that the Seebeck coef-
ficient magnitudes for the R mode are slightly smaller than its
L mode counterpart. This is due to the smaller effective mass
of the R mode compared to the L mode at the same values
of temperature and magnetic field. Specifically, the difference
between the magnitudes of the L and R modes is greatest at
lower temperatures and decreases as the temperature rises.
We can take the average in the entire temperature range and
define an average percentage change corresponding to each
value of £. We found that the percentage decrease in the u
quark coefficient magnitude as one goes from the L mode
to the R mode is ~9.95% for & =0, ~9.86% for & = 0.3,
and ~9.68% for & = 0.6. This shows that as the strength
of anisotropy increases, the difference between the L and R

L mode, eB=0.1 mnz, u=40 MeV

(a) -1.5 T T T T T

d quark Seebeck coefficient

| |
0.3 0.35
Temperature (GeV)

0.4

magnitudes decreases. Taking the mean of the three values
corresponding to the three & values, we arrive at a mean
percentage decrease value of ~9.83%. Interestingly, for the d
quark Seebeck coefficient, these values are ~3.06% for & = 0,
~3.03% for & = 0.3, and ~2.97% for & = 0.6. So, the effect
of the difference in L and R mode quasiparticle masses is
suppressed for the d quark Seebeck coefficient compared to
the u quark result.

Figures 5(a) and 5(b) show the temperature dependence of
Seebeck coefficient of the composite medium composed of u
and d quarks. The total Seebeck coefficient is positive, which
means that the induced electric field of the medium points in
the direction of increasing temperature. The coefficient mag-
nitude decreases with temperature and also decreases with
increase in the anisotropy parameter &. As in the case of
the individual coefficients, the R mode Seebeck coefficient
magnitude is slightly smaller than that of the L mode, which

R mode, eB=0.1 mn2, u=40 MeV

(b)-1.57 E— -

d quark Seebeck coefficient

L |
0.4

|
0.35

|
0.3
Temperature (GeV)

FIG. 4. (a) Temperature dependence of d quark L mode Seebeck coefficient at fixed values of eB and . (b) Temperature dependence of d
quark R mode Seebeck coefficient at fixed values of eB and p. The different curves correspond to different values of &.
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2 2
L mode, eB=0.1 m_, u=40 MeV R mode, eB=0.1 m_, u=40 MeV
(a)1 1 1 ' ' \ (b) 1 T
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oo —- &=0.6 1 - [ —- &=06 1
5% E08P
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0.4 I ] 0.4
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| \ \ . \ . \ . 0.3 | | | \ .
0.2 0.25 0.3 0.35 0.4 0.2 0.25 0.3 0.35 0.4
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FIG. 5. (a) Variation of total Seebeck coefficient of the medium (L mode) with temperature at fixed values of eB and w. (b) Variation of
total Seebeck coefficient of the medium (R mode) with temperature at fixed values of eB and p. The different curves correspond to different

values of &.

again can be attributed to the smaller effective mass of the R
mode quasiquark. The average (over T and £ both) percent-
age decrease as one goes from the L mode to the R mode
composite Seebeck coefficient is ~4.61%. Here also, the per-
centage difference between the two modes decreases with
increasing anisotropy strength. Thus, anisotropic expansion of
the medium hinders the ability of a thermal QCD medium to
convert a temperature gradient to electric field.

Figures 6(a) and 6(b) show the variation with temperature
of the Nernst coefficient corresponding to the L and R modes,
respectively, of a medium composed exclusively of u quarks.
Similarly to the Seebeck coefficient, the Nernst coefficient
magnitude decreases with temperature and also decreases
with the value of the anisotropy parameter £&. Comparison
between the graphs corresponding to the L and R modes
reveals that R mode magnitudes are slightly more than those

L mode, eB=0.1 m_°, p=40 MeV

0.15

0.12

u quark Nernst coefficient

0.09

0.06 — -

L \ . \
0.2 0.25 0.3 0.35 0.4

Temperature (GeV)

of the L mode. This trend is opposite to the individual Seebeck
coefficient case where R mode magnitudes were less than their
L mode counterparts. Also, the extent of difference between
the two modes is much smaller compared to the Seebeck co-
efficient case. Specifically, for the u quark Nernst coefficient,
the temperature averaged percentage decrease as one goes
from R mode to L mode is 0.051% for & = 0, ~0.65% for
& =0.3, and ~1.43% for & = 0.6. Taking the mean of the
values corresponding to the different & values gives us an
average value of 0.71%. Compared to the u quark Seebeck
coefficient, these values are almost an order of magnitude
smaller. Also, unlike in the case of the Seebeck coefficients,
the percentage change between the L and R modes increases
sharply with increase in the strength of anisotropy,

The d quark Nernst coefficients corresponding to the L and
R modes shown in Figs. 7(a) and 7(b) respectively show that

R mode, eB=0.1m ’, p=40 MeV

(®) 024 ' ' ' .
— &=0 ,

- =03
021 -— =06 ]

u quark Nernst coefficient
o
o
T

| |
0.3 0.35 0.4
Temperature (GeV)

|
0.2 0.25

FIG. 6. (a) Variation of u quark L mode Nernst coefficient with temperature at fixed values of eB and w. (b) Variation of u# quark R mode
Nernst coefficient with temperature at fixed values of eB and u. The different curves correspond to different values of &.
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L mode, eB=0.1m_’, u=40 MeV
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FIG. 7. (a) Variation of d quark L mode Nernst coefficient with temperature at fixed values of eB and . (b) Variation of d quark R mode
Nernst coefficient with temperature at fixed values of eB and w. The different curves correspond to different values of &..

the magnitudes of Nernst coefficients corresponding to both
modes decrease with temperature. Also, the magnitudes de-
crease with increase in the degree of anisotropy, parametrized
by the value of &. Similarly to the u quark Nernst coefficient,
the L mode absolute values of d quark Nernst coefficients are
smaller than their R mode counterparts; the averaged (over
T) percentage decrease is 0.015% for & = 0, ~0.192% for
& = 0.3, and ~0.422% for & = 0.6. Averaging also over the
different £ values yields a mean percentage decrease value
of 0.21%. This trend is similar to the individual Seebeck
coefficient case where the percentage changes for d quark
Seebeck coefficient were much smaller than that for the u
quark. Also, from the magnitudes of the individual Seebeck
and Nernst coefficients (both u and d quarks), it can be seen
that magnitudes of the Nernst coefficients are &~ 1 order of
magnitude smaller.

L mode, eB=0.1 mnz, u=40 MeV

(a) T T I T T T
0.24 — — _
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The major point of difference with the Seebeck coefficient,
however, is that the Nernst coefficient for both u and d quarks
is positive. To understand this, let us consider positively
charged quarks moving in the +X direction under the influence
of a temperature gradient. On application of a magnetic field
in the Z direction, the Lorentz force will cause them to drift in
the —9 direction. This will result in an induced electric field
in the +9y direction. If the electric charge of the quarks were
negative instead, they would drift towards the +7J direction
and pile up there. This would again lead to an induced electric
field in the +79 direction. Thus, the direction of the induced
field does not depend on the sign of the electric charge of the
quark, unlike in the case of the Seebeck coefficient, resulting
in positive Nernst coefficients for both u# and d quarks.

Figures 8(a) and 8(b) show the temperature variation of the
Nernst coefficients of the composite medium corresponding

R mode, eB=0.1 m nz, u=40 MeV

® . ‘

0.24 0.1 . ; -
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0.06 " | | | I l ]
0.2 0.25 0.3 0.35 0.4
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FIG. 8. (a) Variation of total Nernst coefficient of the medium (L mode) with temperature at fixed values of eB and p. (b) Variation of total
Nernst coefficient of the medium (R mode) with temperature at fixed values of eB and . The different curves correspond to different values

of &.
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to L mode quasiparticles and R mode quasiparticles, respec-
tively. The total Nernst coefficient of the medium is positive,
and is a decreasing function of temperature. Like its See-
beck counterpart, its magnitude decreases with the strength
of anisotropy. Compared to the individual Nernst coefficient
magnitudes, the total Nernst coefficient magnitudes are an
order of magnitude smaller. Also, compared to the total See-
beck coefficient, its values are an order of magnitude smaller.
This suggests that the Nernst effect in a weakly magnetized
thermal QCD medium is a weaker effect compared to the
Seebeck effect. Just as in the case of the individual Nernst
coefficients, the L mode values of the total Nernst coefficient
are slightly smaller in magnitude than their R mode counter-
parts; the averaged (over T') percentage decrease being 0.04%
for £ =0, ~0.47% for &€ = 0.3, and ~1.14% for & = 0.6.
The mean of the three values corresponding to different &
is 0.55%. Interestingly, these numbers are approximately an
order of magnitude bigger than corresponding numbers for
the individual Nernst coefficients, and an order of magnitude
smaller than the corresponding values for the total Seebeck
coefficient. Such a drastic change in going from the individual
to the total coefficients was not observed for the Seebeck
coefficient. Thus, the sensitivity to the mass difference be-
tween the L and R modes of quarks is much amplified for the
composite medium, compared to a single flavor medium.

V. CONCLUSION

We have estimated the thermoelectric response of a decon-
fined hot QCD medium in the presence of a weak external
magnetic field, taking into account the anisotropic expansion
of the QGP fireball. The strength of the response, i.e., the
ability to convert a temperature gradient into an electric field,
is quantified by two coefficients, viz., the Seebeck coefficient
and Nernst coefficient. We have calculated the individual
as well as the total response coefficients of the medium
and checked their variation with temperature and anisotropy
strength. We have presented results both in the absence
and presence of a background magnetic field B. Our plots
for finite B have been generated for a constant background
magnetic field of strength eB = 0. lmi, and a constant chemi-
cal potential £ = 40 MeV. We have found that the magnitudes
of both the individual as well as the total coefficients, both
Seebeck and Nernst, are decreasing functions of temperature
and decreasing functions of anisotropy strength, characterized
by the anisotropy parameter &. It is important to note that

the Seebeck coefficient vanishes for . = 0 irrespective of the
magnetic field strength, and the Nernst coefficient vanishes
for |B| = 0, irrespective of the value of ;. We have analyzed
the sensitivity to the L and R modes, i.e., to the difference in
quasiparticle effective masses of the coefficient magnitudes;
both for individual and total coefficients. To that end we have
calculated the average percentage change in the coefficient
magnitude as one goes from the L mode to the R mode or vice
versa. For the Seebeck coefficient, the average (over T and &)
percentage change for the u quark is ~9.83%, whereas for the
d quark it is ~3.02%. This shows that the d quark Seebeck
coefficient is comparatively less sensitive to differences in
quasiparticle masses. For the total Seebeck coefficient, the
average percentage change in going from the L mode to the
R mode is ~4.61%, which is in between the values for the
individual coefficients.

Certain differences arise in the case of the Nernst co-
efficient. First, for both the individual and total Nernst
coefficients, the absolute values of the R mode coefficients are
greater than those of the L mode. This is opposite to the case of
Seebeck coefficients. The average percentage change in going
from the R mode to the L mode in case of the u quark Nernst
coefficient is ~0.71%:; for the d quark Nernst coefficient, this
value is ~0.21%. Compared to their Seebeck counterparts,
these numbers are an order of magnitudes smaller, indicating
that the individual Nernst coefficients are comparatively much
less sensitive to the change in quasiparticle modes. A major
difference between the individual Nernst and Seebeck coef-
ficients is that while positively (negatively) charged quarks
lead to positive (negative) Seebeck coefficients, the individual
Nernst coefficients are independent of the electric charge of
the quark. For the case of the total Nernst coefficient, the
average percentage decrease from R to L modes is ~0.55%.
A nonzero value of the Seebeck coefficient will modify the
electric as well as heat currents in the medium. So a better un-
derstanding of the thermoelectric transport phenomena in the
medium is necessary to estimate the lifetime of the magnetic
field and phenomenology of the QGP.
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