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We extend the investigation of jet transport coefficients within the effective dynamical quasiparticle model
(DQPM)—constructed to describe nonperturbative QCD phenomena of the strongly interacting quark-gluon
plasma (sQGP) in line with the lattice QCD equation of state—by accounting for inelastic 2 → 3 reactions with
gluon radiation in addition to the elastic scattering of partons. The elastic and inelastic reactions are calculated
explicitly within leading-order Feynman diagrams with effective propagators and vertices from the DQPM by
accounting for all channels and their interferences. We present the results for the jet transport coefficients such
as the transverse momentum transfer squared q̂ per unit length as well as the energy loss dE/dx per unit length
in the sQGP and investigate their dependence on the temperature T and momentum of the jet parton depending
on the choice of the strong coupling constant αs in thermal, jet parton, and radiative vertices. For the latter, we
consider different scenarios used in the literature and find a very strong dependence of q̂ and dE/dx on the
choice of αs. Moreover, we explore the relation of q̂/T 3 to the ratio of specific shear viscosity to entropy density
η/s and show that the ratio T 3/q̂ to η/s has a strong T dependence—especially when approaching Tc—on the
choice of αs in scattering vertices.
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I. INTRODUCTION

Jets are considered as one of the penetrating probes that
allow one to obtain information about the strong interac-
tions in the quark-gluon plasma (QGP) medium created in
heavy-ion collisions. As observed experimentally at Relativis-
tic Heavy Ion Collider (RHIC) [1,2] and at Large Hadron
Collider (LHC) [3,4], jets produced in these A + A collisions
are modified compared to those produced in proton-proton
(p + p) collisions due to the scattering of partons from the jet
shower with the partons from the QGP environment. Theoret-
ical understanding of the experimental data on jet attenuation
in heavy-ion collisions stimulated a lot of theoretical efforts
on an understanding of jet properties in both equilibrium and
nonequilibrium cases [5–25]. The jet energy loss in the QGP
medium occurs due to elastic 2 → 2 partonic scatterings as
well as by radiative 2 → 3 processes with the emission of a
gluon. The soft gluon radiation is screened in the medium due
to the coherence effect called Landau-Pomeranchuk-Migdal
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(LPM) effect [26,27], which has to be accounted for in the
interpretation of experimental data. The first calculations of
the gluon Bremsstrahlung processes with the non-Abelian
LPM effect in the context of perturbative quantum chromo-
dynamics (QCD) [12,28–31] showed a suppression of soft
gluon radiation due to the destructive interference of the emit-
ted gluons in the medium, contrary to the vacuum; cf. also
Refs. [13,14,32–37]. A further formulation of radiative energy
loss—as a dynamical process in the QGP medium of the ther-
mal scattering centers—has been derived by Arnold, Moore,
and Yaffe (AMY) within thermal field theory [16,38,39] and
developed further in recent years by going beyond the limita-
tions of soft-emission approximations [40,41]. Also, progress
has been achieved in the resummation of multiple scatterings
[24,42,43].

Since the jets are multiscale objects, the microscopic sim-
ulation of jet propagation and interactions with the QCD
medium is notoriously difficult. The description of partonic
energy loss in the QGP is widely studied in the literature
in terms of transport coefficients, such as the transverse mo-
mentum transfer squared q̂ per unit length to characterize the
jet transverse momentum broadening in the medium, as well
as the energy loss dE/dx per unit length to account for the
modification of jet energy during propagation in the medium.

The q̂ represents a measure of the interaction between a
high-energetic jet and the QGP medium, which is defined
as the amount of momentum transfer that the hard parton
experiences per unit length as it travels through the dense
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QGP medium. The value of this coefficient depends on several
factors, including the coupling strength of the interaction, the
nature of the plasma (whether it is dominated by quasiparticles
or not), and the underlying microphysics of many-body QCD
matter.

Recently, in Ref. [44] the jet transport coefficients q̂ and
dE/dx have been studied for elastic 2 → 2 interactions of
partons within the effective dynamical quasiparticle model
(DQPM), constructed to describe the nonperturbative prop-
erties of the strongly interacting quark-gluon plasma (sQGP)
at finite temperature T and baryon chemical potential μB in
terms of strongly interacting off-shell partons (quarks and
gluons) with dynamically generated spectral functions, whose
properties are adjusted to reproduce the lQCD EoS for the
QGP in thermodynamic equilibrium. It has been shown that q̂
and dE/dx show a strong temperature dependence due to the
growing strong coupling αs(T ) when approaching the critical
temperature Tc. However, additionally to elastic scattering, the
gluon radiative processes 2 → 3 are also important for an un-
derstanding of the high energetic jet attenuation in heavy-ion
collisions, whose contribution grows with increasing energy
of jet partons—cf. Refs. [23,25,45] and references therein.

In Ref. [46] the massive gluon radiation processes from the
off-shell quark-quark (q + q) and quark-gluon (q + g) scatter-
ings have been calculated explicitly (for the first time) within
the DQPM based on leading order Feynman diagrams with
effective propagators and vertices from the DQPM without
any further approximations. There the total and differential
radiative cross sections have been evaluated versus the colli-
sion invariant energy

√
s, temperature T , and baryon chemical

potential μB and compared to the corresponding elastic cross
sections. While in the limit of zero masses and widths of
quasiparticles, the DQPM reproduces the results of perturba-
tive QCD (pQCD) for 2 → 3 cross sections [46], the results
for the radiation of heavy gluons from quasiparticle scattering
may differ substantially from the pQCD calculations. Thus,
one expects an influence of the radiative process on the in-
teraction of fast partons propagated through the equilibrated
sQGP medium of quasiparticles.

In the present work, we aim to understand how important
gluon radiative reactions are for the jet transport coefficient in
the case of massive quarks and gluons and explore the temper-
ature and momentum dependence of the transport coefficients.
The latter can be of great interest in the case of jet quenching
models, such as JEWEL [47], JET [48], JETSCAPE [49],
etc. It is important to note that we do not use the assump-
tion of pQCD, which states that the interaction between an
energetic parton and the medium is dominated by small-angle
scattering and induced gluon radiation. In this work, we aim
to evaluate jet transport coefficients by properly taking into
account all diagrams and channels involved in 2 → 2 and
2 → 3 partonic scattering with massive medium partons as
described by DQPM, i.e., the in-medium modification of jet
partons occurs by sequences of independent elastic and inelas-
tic reactions with thermal partons from the medium at given
temperature T .

The framework of quasiparticle models facilitates its
implementation in the transport model for the dynamical
evolution of the QGP matter. In particular, the off-shell

quasiparticle model DQPM is implemented in the parton-
hadron-string dynamics (PHSD) transport approach [50,51],
whereas the on-shell QPM [52] is implemented in the Catania
transport approach [53].

In this study, we also investigate the dependence of elas-
tic and inelastic transport coefficients on the choice of the
strong coupling constant αs used in thermal, jet parton and
gluon radiative vertices, which could differ from the coupling
constant for the thermalized partons, since the jet parton is
not in equilibrium with the QGP medium [54–56]. For that
goal we select four models for αs—used in the literature—and
compare the results with the default DQPM αs(T ). Also we
explore the dependence of elastic and inelastic q̂ and dE/dx
on the mass of the emitted gluon. Some model cases we
compare to the results from the Boltzmann approach to multi-
parton scatterings (BAMPS) pQCD cascade, which explicitly
includes 2 → 2 and 2 → 3 (as well as backward) reactions
[57,58] as well as the LPM effect [37].

Furthermore, we investigate the relation of q̂/T 3 and the
specific shear viscosity η/s discussed in Ref. [59].

This paper is organized as follows. In Sec. II we recall
the main ideas of the DQPM, in Sec. III we describe the
framework for the calculation of transport coefficients and
present the scenarios for the coupling constant. In Secs. IV,
V, and VI we report on the results for the radiative differential
cross sections and transport coefficients. We summarize our
study in Sec. VII.

II. DYNAMICAL QUASIPARTICLE MODEL

The DQPM [51,60–64] is an effective model that describes
the QGP in terms of strongly interacting quarks and gluons.
This approach involves fitting the properties of these quasi-
particles to match the results of lattice QCD calculations in
thermal equilibrium and at vanishing chemical potential. Here
we briefly recall the basic ideas of the DQPM. The quasiparti-
cles in the DQPM are characterized by “dressed” propagators,
i.e., single-particle (two-point) Green’s functions, which have
the form

GR
j (ω, p) = 1

ω2 − p2 − M2
j + 2iγ jω

(1)

for quarks, antiquarks, and gluons ( j = q, q̄, g), using ω = p0

for energy, the widths γ j and the masses Mj , and the complex
self-energies for gluons � = M2

g − 2iωγg and for (anti)quarks
�q = M2

q − 2iωγq, where the real part of the self-energies is
associated with dynamically generated thermal masses, while
the imaginary part provides information about the lifetime and
reaction rates of the particles.

The spectral function of off-shell quasiparticles in the
DQPM are parametrized in Lorenzian form with a finite width
γ j [65]:

ρ j (ω, p) = γ j

Ẽ j

(
1

(ω − Ẽ j )2 + γ 2
j

− 1

(ω + Ẽ j )2 + γ 2
j

)

≡ 4ωγ j(
ω2 − p2 − M2

j

)2 + 4γ 2
j ω

2
, (2)
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with Ẽ2
j (p) = p2 + M2

j − γ 2
j . The spectral function is anti-

symmetric in ω and normalized as

∫ ∞

−∞

dω

2π
ω ρ j (ω, p) =

∫ ∞

0
dω

ω

π
ρ j (ω, p) = 1. (3)

The DQPM involves a model ansatz for the masses
Mj (T, μq ) and widths γ j (T, μq ) as functions of the temper-
ature T and the quark chemical potential μq. By compar-
ison of the entropy density—computed within the DQPM
framework—to the lQCD data, one can fix the few parameters
used in the ansatz for the quasiparticle masses and widths. The
following ansatz is used in the DQPM for the definition of the
quasiparticle properties (masses and widths) as functions of
T and μq. The dynamical quasiparticle pole masses are given
by the HTL thermal mass in the asymptotic high-temperature
regime—cf. Refs. [65,66],

M2
g (T, μq) = g2(T, μq)

6

⎛
⎝(

Nc + 1

2
Nf

)
T 2 + Nc

2

∑
q

μ2
q

π2

⎞
⎠,

(4)

and for quarks (antiquarks) by

M2
q(q̄)(T, μq) = N2

c − 1

8Nc
g2(T, μq)

(
T 2 + μ2

q

π2

)
, (5)

where Nc (= 3) stands for the number of colors and Nf (= 3)
denotes the number of light flavors. Equation (5) determines
the pole masses for the (u, d) quarks; the strange quark has
a larger bare mass for controlling the strangeness ratio in the
QGP. Empirically, we find Ms(T, μB) = Mu/d (T, μB) + 
M,
where 
M � 30 MeV has been fixed once in comparison to
experimental data [51].

The effective quarks, antiquarks, and gluons in the DQPM
acquire sizable widths γ j , which are taken in the form [65]

γ j (T, μB) = 1

3
Cj

g2(T, μB)T

8π
ln

(
2cm

g2(T, μB)
+ 1

)
. (6)

Here cm = 14.4 is related to a magnetic cutoff, which is an

additional parameter in the DQPM, while Cq = N2
c −1
2Nc

= 4/3
and Cg = Nc = 3 are the QCD color factors for quarks and
gluons, respectively. We also assume that all (anti)quarks have
the same T dependence for the width.

The coupling constant g2 = 4παs essentially defines the
masses and widths of quasiparticles—cf. Eqs. (5) and (6).
The thermal properties of quasiparticles and their interactions
(observed via transport coefficients) thus strongly depend on
the coupling constant g.

In the DQPM, g2 is extracted from lattice quantum chro-
modynamics (lQCD) data on the entropy density s by a
parametrization method introduced in Ref. [67]. There it
has been found that for a given value of g2, the ratio
s(T, g2)/T 3 is almost constant for different temperatures, i.e.,
∂

∂T (s(T, g2)/T 3) = 0. Therefore, the entropy density s and the

dimensionless equation of state in the DQPM is a function
of the effective coupling only, i.e., s(T, g2)/sSB(T ) = f (g2),
where sQCD

SB = 19/9π2T 3 is the Stefan-Boltzmann entropy
density. Thus, by inverting the f (g2) function, the coupling
constant g2 can be directly obtained from the parametrization
of lQCD data for the entropy density s(T, μB = 0) at zero
baryon chemical potential:

g2(T, μB = 0) = d
((

s(T, 0)/sQCD
SB

)e − 1
) f

. (7)

Here d = 169.934, e = −0.178434, and f = 1.14631 are the
dimensionless parameters obtained by adjusting the quasipar-
ticle entropy density s(T, μB = 0) to the lQCD data provided
by the BMW Collaboration [68,69].

The DQPM αs accounts for nonperturbative effects and is
larger compared to the analytical two- or one-loop running
constant [70] when approaching low temperatures.

The extension of the coupling constant to finite baryon
chemical potential μB is realized using a scaling hypothesis
[71], which works up to μB ≈ 500 MeV.

Thus, the DQPM provides the quasiparticle properties,
dressed propagators, and coupling constant, which can be
used to evaluate the scattering amplitudes as well as the cross
sections and the transport coefficients of quarks and gluons in
the QGP as a function of the temperature and the chemical
potential—cf. Refs. [46,51,72].

III. METHODOLOGY

The propagation of a fast jet parton through the thermalized
medium can be characterized by jet transport coefficients that
can be calculated within kinetic transport theory by account-
ing for the sequence of elastic and inelastic interactions of
the jet parton per unit length x (or time, using x = ct , where
c is the speed of light; we use the units c = 1 throughout
this work). We note that in this study we do not consider a
suppression of the radiation of soft gluons in finite medium
due to the LPM effects.

We start with the general expression for a transport
coefficient in kinetic theory [18,73–75] for elastic 2 → 2
reactions:

〈O〉el = 1

2Ejet

∑
i=q,q̄,g

∫
d3 pi

(2π )32Ei
di fi

∫
d3 p1

(2π )32E1

×
∫

d3 p2

(2π )32E2
(1 ± f1)(1 ± f2)

× O |M̄2→2|2jet+i (2π )4δ(4)(pjet + pi − p1 − p2),

(8)

where pi is the 4-momentum of the incoming medium parton,
p1 and p2 are the outgoing jet and medium parton 4-momenta,
respectively; di is the medium parton’s degeneracy factor for
spin and color (2Nc for quarks and 2(N2

c − 1) for gluons); fi =
fi(Ei, T, μq ) are the Fermi distribution functions for quarks,
and fi = fi(Ei, T ) are the Bose distribution functions for
gluons.
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FIG. 1. Feynman diagrams for the t channel of the q + q → q + q + g (left) and q + g → q + g + g (right) processes. The green dots
indicate the vertices corresponding to thermal partons. The blue dots indicate the vertices corresponding to the jet quark while the red dots
denote the vertices corresponding to the emitted gluon. For the case of the 4-gluon point interaction (diagram 6 in the right figure) the medium
parton vertex and the emitted gluon vertex are merged.

In case of the inelastic 2 → 3 reaction the expression for
the jet transport coefficients takes the following form:

〈O〉inel = 1

2Ejet

∑
i=q,q̄,g

∫
d3 pi

(2π )32Ei
di fi

∫
d3 p1

(2π )32E1

×
∫

d3 p2

(2π )32E2

∫
d3 p3

(2π )32E3
(1 ± f1)(1 ± f2)

× (1 ± f3)O |M̄2→3|2jet+i (2π )4δ(4)

× (pjet + pi − p1 − p2 − p3), (9)

where p3 denotes the momentum of the emitted gluon.
Various transport coefficients can be calculated by select-

ing different operators O in Eqs. (8) and (9):

(1) O = 1—scattering rate ,
(2) O = |pT − p′

T |2—jet transport coefficient q̂,
(3) O = E − E ′—energy loss dE/dx per unit length,
(4) O = pL − p′

L—drag coefficient A.

Here E , E ′, pT , p′
T , and pL, p′

L denote initial and final
energy, transverse and longitudinal momenta of the jet parton,
respectively.

In Eq. (9) the matrix elements squared, i.e., |M̄2→2|2jet+i

for elastic 2 → 2 parton scattering and |M̄2→3|2jet+i for inelas-
tic 2 → 3 reactions with gluon radiation from the off-shell
quark-quark (q + q) and quark-gluon (q + g) scatterings, are
calculated explicitly within the DQPM based on leading order
Feynman diagrams with the effective propagators and vertices
from the DQPM without any further approximations.

The corresponding Feynman diagrams for the t channel
of the q + q → q + q + g and q + g → q + g + g processes

are illustrated in Fig. 1. Considering that the jet parton is a
u-quark, the following inelastic reactions and channels are
accounted for in this study:

(1) u + u → u + u + g (t + u channels),
(2) u + ū → u + ū + g (t + s channels),
(3) u + d → u + d + g (t channel),
(4) u + d̄ → u + d̄ + g (t channel),
(5) u + s → u + s + g (t channel),
(6) u + s̄ → u + s̄ + g (t channel),
(7) u + ū → d + d̄ + g (s channel),
(8) u + ū → s + s̄ + g (s channel),
(9) u + g → u + g + g (t + u + s channels).

We note that the u channel for the u + u → u + u + g re-
action gives practically identical contribution as the t channel
and is accounted for by doubling the t channel contribution
when evaluating the transport coefficient to simplify the cal-
culations. The s channels for all above reactions are strongly
suppressed relative to t channels and give only minor contri-
butions to the transport coefficients. In case of the u + g →
u + g + g reaction the u channel is also strongly suppressed
(cf. Ref. [46]). Therefore, only the t channels are considered
in the current study. For the details of the evaluation of the
2 → 2 transport coefficients and for the inelastic 2 → 3 cross
sections we refer the reader to Refs. [44,46].

A. Mass of the radiated gluon

An important feature of the DQPM, contrary to the pQCD-
based models, is the nonzero mass of the emitted gluon in
the 2 → 3 reactions. In a thermal DQPM medium the mass
of the radiated gluon in the on-shell case is assumed to be
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the gluon pole mass [obtained from Eq. (4)]. The jet parton,
however, is not part of the QGP medium and should have a
nonthermal mass. In turn, it is not clear whether the emitted
gluon mass should still be thermal since the gluon can be
emitted from a nonthermal jet parton. Therefore, in this work
we also investigate the dependence of transport coefficients on
the emitted gluon mass.

We note that the influence of the mass of the emitted gluon
on the radiative energy loss of heavy quarks scattering with
massless quarks and gluons from the QGP medium has been
studied within scalar pQCD in Refs. [76–78], where it has
been shown that the emission rate decreases with increasing
gluon mass.

Moreover, we indicate that all calculations below are pre-
sented for a quark jet with mass M = 0.01 GeV. As shown in
our previous study [46], at high collision energies the inelastic
cross sections only slightly depend on the mass of jet parton.

B. Effective coupling constants for jet elastic
and inelastic scattering

In this section, we consider five “scenarios” for different
strong couplings for every possible vertex. As illustrated in
Fig. 1, for every possible interaction channel for the 2 → 3
reaction in the t channel of the q + q → q + q + g (left) and
q + g → q + g + g (right) processes, one can define three
different strong couplings: one associated with the thermal
parton (green dot), one associated with the jet parton (blue
dot), and one associated with the emitted gluon (red dot). We
note that for the elastic 2 → 2 reactions the thermal (green)
and jet (blue) vertices are the same in the corresponding
Feynman diagrams as for the inelastic case.

Different scenarios (defined below) for the strong coupling
g are illustrated in Fig. 2 as a function of the temperature T
(upper plot) and jet energy E (lower plot).

1. Scenario 0: DQPM thermal g(T )

This scenario corresponds to the default version of the
DQPM where in all vertices the thermal DQPM coupling
constant is taken, i.e.,

gDQPM(T ) = gDQPM(T, μB = 0), (10)

which is defined by Eq. (7).
Since the DQPM coupling depends strongly on the

medium temperature T (cf. blue line in Fig. 2) and grows
rapidly in the vicinity of the critical temperature Tc, we expect
a large value and strong temperature dependence of the trans-
port coefficients for inelastic reactions similar to the elastic
one, as shown in our previous study [44]. The DQPM coupling
does not depend on the jet momentum or momentum transfer,
so we expect a strong dependence for the inelastic trans-
port coefficients on the initial jet energy E similar to elastic
case [44].

2. Scenario I: g = const.

In this scenario, we investigate the transport coefficients
without taking into account the direct influence of the cou-
pling constant. For this we consider a constant value of the

FIG. 2. Strong coupling g as a function of the temperature T
(upper) and jet energy E (lower). Blue lines correspond to the DQPM
coupling defined by Eq. (7), orange lines show the DREENA cou-
pling defined by Eq. (14), green lines display the QLBT coupling
defined by Eq. (13), and the gray dotted line shows g = √

4π · 0.3.

strong coupling g for all vertices in 2 → 2 and 2 → 3 dia-
grams. The parton masses, however, are kept with the same
temperature dependence as in the default DQPM.

The value of g is chosen to match the commonly taken
value αs = 0.3 (cf. the pQCD BAMPS model [58]), i.e.,

g =
√

4π · 0.3 ≈ 1.94. (11)

As one can see in Fig. 2, although this value of g (gray dotted
lines) is smaller than the thermal gDQPM(T ) for temperatures
up to T ≈ 0.6 GeV, it is still larger than 1, so it must give a
significant contribution to inelastic amplitudes, where it is ac-
counted in each vertex. For this scenario, we expect a smaller
value of q̂ compared to Scenario 0, as well as a different
form of the temperature dependence and energy dependence
of transport coefficients.

3. Scenario II: g(Q2 ) from the Zakharov model

Motivated by Refs. [31,79], in this scenario we con-
sider a momentum-dependent strong coupling frozen at low
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momenta at some value αfr
s :

g2(Q2) =
⎧⎨
⎩

4παfr
s if Q � Qfr,

48π2

(11Nc−2Nf ) ln (Q2/�2
QCD) if Q > Qfr,

(12)

with �QCD = 0.2 GeV, Qfr = �QCD exp(2π/9αfr
s ), and αfr

s is
a free parameter. In this work, we consider αfr

s = 1.05 (vac-
uum value) and αfr

s = 0.42 (in-medium value) taken from
Ref. [31]. It is important to note that here thermal effects
encompassed in Q2 dependence suppress the in-medium QCD
coupling.

For the jet vertex for both elastic and radiative collisions
the Q in Eq. (12) is defined as the momentum transfer between
the jet and the medium parton. The coupling for the thermal
vertex remains to be gDQPM(T ). For the emitted gluon in
2 → 3 reaction the value of Q is suggested to be kT —the
transverse momentum of the emitted gluon.

Summing up, the choice of the couplings for the inelastic
processes for Scenario II is the following:

• thermal vertex—gDQPM(T ),

• jet vertex—g(Q2) with Q being the momentum transfer
between the jet and the medium parton,

• radiative vertex—g(k2
T ), where kT is the transverse mo-

mentum of the emitted gluon.

4. Scenario III: QLBT model

Another way to define strong couplings has been intro-
duced in the QLBT model [80,81], where the couplings
associated with the jet parton and the emitted gluon vertices
are assumed to have the following parametric form:

g2(E ) = 48π2

(11Nc − 2Nf ) ln [(AE/Tc + B)2]
, (13)

where E is the jet parton energy in the rest frame, Tc =
150 MeV is the critical temperature, and the parameters A, B
are determined from the heavy quark observables (such as
RAA and v2). The coupling for the thermal vertex remains to
be gDQPM(T ). The coupling g2(E ) is shown in Fig. 2 by the
green lines: dashed-dotted for E = 10 GeV and dashed for
E = 100 GeV on the upper plot, showing the temperature
dependence, and by the dash-dotted line in the lower plot,
showing the jet energy dependence.

The choice of the couplings for Scenario III is the
following:

• thermal vertex—gDQPM(T ).

• • jet/radiative vertices—g(E ), E is the jet energy.

5. Scenario IV: DREENA framework

The last scenario is motivated by the couplings used in the
DREENA framework [82,83], where the jet interaction with
the thermal QCD medium is computed within the two-loop
HTL model [84,85] and implies the following form of the

TABLE I. Scenarios for the effective coupling.

Vertex

Model • Medium parton • Jet parton • Emitted gluon

Scenario 0 gDQPM(T )

Scenario I g = √
4π · 0.3

Scenario II gDQPM(T ) g(Q2), Eq. (12) g(k2
T ), Eq. (12)

Scenario III gDQPM(T ) g(E ), Eq. (13) g(E ), Eq. (13)
Scenario IV gDQPM(T ) g(ET ), Eq. (14) g(Q2), Eq. (14)

coupling:

g2(t ) = 48π2

(11Nc − 2Nf )

1

ln
(

t
�2

) , (14)

with � = 0.2 GeV.
The choice of the couplings for Scenario IV is the

following:

• thermal vertex—gDQPM(T ).

• jet vertex—g(ET ) according to Eq. (14) with t = ET ,
where E is the jet energy.

• radiative vertex—g(Q2) according to Eq.(14) with t =
Q2, where Q is the virtuality of the intermediate parton
before(after) the gluon emission.

The orange lines in Fig. 2 show the coupling
g2(E ): dot-dashed for E = 10 GeV and dashed for
E = 100 GeV on the upped plot for the T dependence,
and dot-dashed for T = 0.2 GeV and dashed for
T = 0.4 GeV in the lower plot for the E dependence.

C. Summary table for Scenarios 0–IV

An overview of the presented scenarios is shown in Table I.

IV. RESULTS: RADIATIVE DIFFERENTIAL
CROSS SECTIONS

We recall that the 2 → 3 cross sections and interaction
rates for q + q → q + q + g and q + g → q + g + g scatter-
ing have been calculated within the DQPM in Ref. [46] and
compared to the elastic ones. It has been shown that the in-
elastic reactions contribute only little to the interaction rate 

of the QGP in thermal equilibrium. That is due to the fact that
partonic scatterings at larger

√
s are strongly suppressed in

the thermal QGP—cf. Fig. 17 of Ref. [46], thus, only low-
√

s
elastic and inelastic reactions dominantly contribute to the
interaction rates, where the elastic cross sections are much
larger than the inelastic ones. However, inelastic contribution
is expected to be important for the calculation of the energy
loss of the off-equilibrium fast jet parton propagating through
the thermal QGP medium, since the inelastic q + q and q + g
cross sections grow with increasing collision energy [46].

As mentioned above, while the DQPM considers the prop-
erties of all colliding partons to be in thermal equilibrium, a
fast equilibration of the emitted gluon after the first inelastic
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FIG. 3. DQPM differential cross sections: dσ/dkt as a function of the transverse momentum kt of the emitted gluon (upper left), dσ/dqt

as a function of the transverse momentum qt of the jet (upper right), dσ/dEg as a function of the energy Eg of the emitted gluon (lower left),
and x dσ/dx as a function of the longitudinal ratio x = pg

L/pj
L (lower right) for q + q → q + q + g scattering at

√
s = 10 GeV and T = 0.3

GeV in case of massive (thermal) emitted gluon (blue lines) and massless emitted gluon (orange lines). The green line on the upper left plot
shows dσ/dkt calculated with the pQCD BAMPS model for αs = 0.3 and massless partons without LPM cutoff.

collision is questionable. Thus, it is interesting to study how
the differential cross sections—related to the energy loss of
the jet parton—and the momentum distribution of the emitted
gluon are sensitive to the mass of the radiated gluon.

In Fig. 3 we present the different types of differential
DQPM cross sections for the case of thermal massive—with
the pole DQPM mass Mg(T ) defined by Eq. (4) (blue lines)
and massless (orange lines) emitted gluon for the q + q →
q + q + g scattering at

√
s = 10 GeV and T = 0.3 GeV. The

upper left plot shows the differential cross sections dσ/dkt

as a function of the transverse momentum kt of the emitted
gluon. The upper right plot indicates the differential cross
section dσ/dqt as a function of the transverse momentum qt

of the jet. The lower left plot displays the differential cross
section dσ/dEg as a function of the energy Eg of the emit-
ted gluon. The lower right plot demonstrates the distribution
x dσ/dx as a function of the longitudinal ratio x = pg

L/pj
L,

where pg
L and pj

L are the longitudinal momenta of gluon and
initial jet parton, respectively.

One can see from Fig. 3, all DQPM differential cross sec-
tions for radiation of massless gluons at small kt , qt , Eg, or x
are larger than for the massive cases. This is due to the fact that
the kinematically available phase space is strongly reduced for

the emission of massive heavy gluons compared to the mass-
less ones. Therefore, it is expected to obtain a similar increase
of transport coefficients for massless emitted gluons versus
massive ones. Our results are consistent with the findings in
Refs. [76–78] for the radiative energy loss of heavy quarks
in the QGP medium described by scalar pQCD, where it has
been shown that the gluon emission cross section decreases
with increasing gluon mass.

In the upper left plot we compare the DQPM dσ/dkt

to the pQCD differential cross section within the BAMPS
framework with αs = 0.3 and massless partons (green line),
which diverges at kt → 0 without LPM effect [37]. Thus,
the pQCD dσ/dkt is much larger at low kt and decreases
much faster with increasing kt relative to the DQPM cross
sections.

V. RESULTS: q̂ AND ENERGY LOSS dE/dx

Here we present the T and p dependence of the jet trans-
port coefficients—q̂ and energy loss dE/dx—for elastic and
inelastic reactions for different scenarios for the strong cou-
pling as presented in Sec. III B and compare our results with
previous estimations from the literature. Also we study the
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FIG. 4. Temperature dependence of q̂/T 3 (left plots) and the energy loss (1/T 2)dE/dx (right plots) for elastic (blue lines) and inelastic
(orange lines) scattering for different momenta of the jet parton: p = 10 GeV/c (upper plots) and 100 GeV/c (lower plots). The inelastic
transport coefficients for the emission of a massive gluon are shown by solid lines, while for a massless (Mg = 0) gluon by dashed lines.

dependence of transport coefficients on the mass of emitted
gluons within the DQPM.

We will show the results for the elastic and inelastic (or
radiative) q̂ coefficient as well as for the sum of both elastic
and inelastic contributions:

q̂ = q̂elastic + q̂inelastic;

similar holds for the energy loss:

dE/dx = (dE/dx)elastic + (dE/dx)inelastic.

A. Dependence of transport coefficients q̂ and dE/dx
on the mass of the emitted gluon

In this section we study the influence on the mass of
emitted gluons from inelastic scattering of the jet parton
with the thermal sQGP medium—described by the DQPM
quasiparticles—on the transport coefficients q̂ and energy loss
dE/dx. For this study we consider the pure DQPM model
(Scenario 0).

Figure 4 shows the temperature dependence of the scaled
q̂ coefficient (left plots) and the scaled energy loss dE/dx
(right plots) for elastic (blue lines), inelastic scattering (or-
ange lines) with radiation of a massive gluon (solid lines)
and massless (Mg = 0) gluon (dashed lines) for two quark jet

momenta: p = 10 GeV/c (upper plots) and p = 100 GeV/c
(lower plots). Similar to differential cross sections, the q̂ and
dE/dx increase as the gluon mass decreases. Moreover, for
the massless emitted gluon the inelastic q̂ and dE/dx become
significant even for small jet momenta of 10 GeV/c.

As follows from Fig. 4, the inelastic reactions contribute
dominantly to q̂ and dE/dx. As mentioned above, in a ther-
malized QGP the contribution of inelastic reactions to the
interaction rate is small due to predominantly low

√
s col-

lisions of thermal partons. However, this changes for the
scattering of a fast jet quark with a thermal parton at large√

s. Since the inelastic q + q and q + g cross sections grow
faster with increasing

√
s than the elastic ones, the inelastic

energy loss and transverse momentum broadening dominate
the elastic ones for high momentum jet partons propagating
through the thermalized sQGP. The available collision en-
ergy is sufficient for the emission of massless pQCD gluons
(dashed lines) as well as for the heavy DQPM gluons (solid
lines).

Figure 5 displays the inelastic q̂/T 3 coefficient (left plot)
and energy loss (1/T )2dE/dx (right plot) as functions of the
emitted gluon mass Mg. For all displayed temperatures and jet
momenta the values of q̂ and energy loss dE/dx monotoni-
cally decrease with increasing of the emitted gluon mass.
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FIG. 5. Scaled inelastic jet transport coefficient q̂/T 3 (left plot) and the energy loss (1/T 2)dE/dx (right plot) as functions of the emitted
gluon mass Mg for different momenta of jet p = 10 GeV/c (solid lines) and 100 GeV/c (dashed lines) for two temperatures T = 0.2 GeV
(blue lines) and T = 0.4 GeV (orange lines).

B. Comparison of jet transport coefficients with different
scenarios for the effective coupling constant

Here we investigate the influence of the effective coupling
g in thermal, jet, and radiative vertices on the temperature
and energy dependence of q̂ and dE/dx within the different
Scenarios 0-IV as described in Sec. III B. We stress that all
calculations of Feynman diagrams are presented within the
“standard” DQPM propagators, and masses of quasiparticles
are taken at the pole mass of the spectral function, i.e., only
the coupling constants in the vertices are varied—cf. Table I
and Fig. 2.

In Figs. 6 and 7 we show the temperature dependence of
the scaled q̂ and dE/dx, respectively, for Scenarios 0–IV
(from top to bottom) for two momenta of the jet parton of
p = 10 GeV/c (left plots) and p = 100 GeV/c (right plots).
The blue lines represent the scaled transport coefficients for
elastic processes only, while the orange lines stand for the
results of the sum of elastic and inelastic contributions.

(1) The upper rows in Figs. 6 and 7 show the standard
DQPM results (Scenario 0), where for all vertices
the thermal g(T ) is used. As seen from these plots,
accounting for the inelastic scattering substantially
increases q̂/T 3 and (1/T 2)dE/dx, especially at low
temperatures due to the strong T dependence of the
strong coupling g(T )—cf. Fig. 2.

(2) The second row in Figs. 6 and 7 show the results
for the Scenario I, where all vertices (thermal, jet
parton, emitted gluon) have been taken as a constant
g = √

4π × 0.3, i.e., αs = 0.3. This scenario allows to
illustrate explicitly the influence of the choice of the
coupling g on q̂ and dE/dx. One can see that the scaled
q̂ decreases with decreasing T , so the strong rise of q̂
for Scenario 0 at low T comes from the increase of the
DQPM strong coupling g(T ) in the vicinity of Tc, as
illustrated in Fig. 2. The same holds for the energy loss
dE/dx, however, the relative contribution of inelastic
reactions is larger than that for q̂, and the p dependence
is stronger.

(3) The third row in Figs. 6 and 7 shows the Scenario
II, where the coupling constants in the jet parton and
emitted gluon vertices are taken from the Zakharov
model [31,79] and depend on the squared momenta in
the corresponding vertex—g(Q2) or g(k2

T ). The scaled
q̂ for this scenario shows a small rise with decreasing
T . The dashed lines show the dependence of q̂ on the
choice of the parameter αfr

s in Eq. (12): the solid lines
stand for αfr

s = 1.05 (vacuum value), while the dashed
line indicates the results for αfr

s = 0.42 (in-medium
value). One can see that the in-medium modification
of αfr

s only slightly reduces q̂. This reduction is more
prominent for inelastic reactions depicted by the green
lines. Again, similar observations are valid for dE/dx
with stronger T and p dependencies.

(4) The fourth row in Figs. 6 and 7 represent the Scenario
III with an energy dependent g(E )—in line with the
QLBT model [80,81]—in the jet and radiative vertices.
This leads to a quite flat q̂ of smaller value as well
as only a small increase of q̂ with jet energy (cf. left
and right plots) compared to the other scenarios due
to the fact the g(E ) is smaller than g from the other
scenarios; it does not depend on T and decrease with
E as demonstrated in Fig. 2 by the green lines. For
dE/dx we observe a similar trend, however, the rela-
tive contribution of inelastic reactions is smaller than
for the other scenarios.

(5) The fifth row in Figs. 6 and 7 displays the Scenario
IV with the couplings used in the DREENA model
[82–85], implying the HTL interaction of the jet quark
with the thermal QCD medium. Here the jet vertex
is replaced by the g(ET ) coupling, and the radiative
vertex by g(Q2), where Q2 stands for the virtuality of
the intermediate parton before (after) the gluon emis-
sion. In this scenario the behavior of q̂ and dE/dx is
similar to Scenario III and dominated by the energy
dependence of the coupling g(ET )—cf. orange lines
in Fig. 2.
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FIG. 6. Temperature dependence of the scaled q̂ coefficient for Scenarios 0–IV (from top to bottom) for the strong coupling for two
momenta of the jet parton of p = 10 GeV/c (left plots) and p = 100 GeV/c (right plots). Blue lines represent the results for elastic processes
only, while orange lines represent the results for the sum of elastic and inelastic contributions.

The results for the temperature dependence of the elastic
+ inelastic q̂/T 3 for Scenarios 0–IV (for the momentum of
a jet parton of p = 10 GeV/c) are combined now in Fig. 8
in terms of blue lines (cf. legend) and compared to the dif-
ferent models: the pink dash-dotted line represents the LBT
results for Nf = 3 and p = 10 GeV/c [86], while the red
(upper) and purple (lower) areas represent lQCD estimates

[87] for pure SU (3) gauge theory and (2 + 1) flavor QCD,
respectively, in the limit of an infinitely hard jet parton. The
gray area corresponds to the results from the JETSCAPE
Collaboration (p = 100 GeV/c) [49]. The black dots show
the phenomenological extraction by the JET Collaboration
presented for p = 10 GeV/c [48]. The yellow and red dots
represent results from the phenomenological extraction within
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FIG. 7. Temperature dependence of the scaled energy loss dE/dx for different Scenarios 0-IV for two momenta of the jet parton with
p = 10 GeV/c (left side) and p = 100 GeV/c (right side). Blue lines represent results for elastic processes only, while orange lines represent
results for the sum of elastic and inelastic contributions.

the BDMPS-Z quenching formalism using data of inclu-
sive particle suppression at RHIC and LHC energies for the
two distinct hydro frameworks from Ref. [88] for dynamical
evolution—“Hirano” and KLN. The vertical gray dashed line
indicates the critical temperature Tc = 0.158 GeV.

As follows from Fig. 8, the behavior of the scaled q̂ is dom-
inated by the choice of the strong coupling g and deviates very

strongly, especially at low temperatures T . While Scenario I
with a fixed αs = 0.3 shows a decrease of q̂ at low T , the
DQPM (Scenario 0) shows a strong rise due to the thermal
g(T ) for all vertices.

We stress that the difference between Scenario 0 and
Scenario I is related only to the ratio (g(T )/

√
4π × 0.3)6,

which changes the T dependence of q̂(T ) drastically. Other
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FIG. 8. Temperature dependence of the scaled jet transport coef-
ficient q̂/T 3. Blue lines describe the DQPM results for a quark jet
with mass M = 0.01 GeV and energy E = 10 GeV for the scenarios
described in Sec. III B. The pink dash-dotted line represents the LBT
results for Nf = 3 and p = 10 GeV/c [86], while the red (upper) and
purple (lower) areas show lQCD estimates [87] for pure SU (3) gauge
theory and (2 + 1) flavor QCD, respectively, in the limit of an in-
finitely hard jet parton. The gray area corresponds to the results from
the JETSCAPE Collaboration (p = 100 GeV/c) [49]. The black dots
represent the phenomenological extraction by the JET Collaboration
presented for p = 10 GeV/c [48]. The yellow and red dots display
results from Ref. [88]. The vertical gray dashed line indicates the
critical temperature Tc = 0.158 GeV.

Scenarios II-IV include the momentum/energy dependence
of the strong coupling in jet and radiative vertices, which
modifies T as well as E dependencies of q̂ and suppresses the
low T -rise of Scenario 0. We note that Scenario II (motivated
by the QLBT model) can not be associated directly with the
LBT calculations [86], since it is based on the DQPM, where
only jet and radiative vertices have been replaced in line with
the QLBT model. We recall that a similar finding of the strong
dependence of the drag coefficient A(T ) of a heavy quark on
the strong coupling g and the parton masses has been pointed
out in Ref. [89].

As seen from Fig. 8, the spread of the different model
results for q̂ is very large and strongly depends on the model
assumptions as well on the method used for the extraction
of q̂ from the heavy-ion data on the ratio RAA (the nuclear
modification factor of high pT transverse spectra of hadrons in
A + A collisions versus p + p collisions scaled with Ncoll—the
number of binary collisions in A + A) and flow coefficients vn.

In Figs. 9 and 10 we present the jet momentum depen-
dence of q̂/T 3 and (1/T 2)dE/dx, respectively, for different
scenarios for a jet parton at medium temperature T = 0.2
GeV (left side) and T = 0.4 GeV (right side). The blue lines
represent results for elastic processes only, and the orange
lines represent the results for the sum of elastic and inelas-
tic contributions. Here one can see that the scaled q̂ and
dE/dx for elastic and elastic + inelastic collisions grow with

increasing of jet momentum p for all scenarios for the cou-
pling constants. The p dependence of the elastic q̂ and dE/dx
is weaker than for the inelastic one.

As follows from Figs. 9 and 10, the absolute values of q̂/T 3

and dE/dx depend strongly on the choice of the strong cou-
pling in the interaction vertices. The default DQPM (Scenario
0) leads to a larger transverse momentum broadening (Fig. 9)
and a larger energy loss (Fig. 10) at low T compared to the
other scenarios. This is due to the fact that the DQPM strong
coupling g grows rapidly at T → Tc, and at low T it is much
larger than g for the other scenarios, where its value depends
on the energy/momentum transfer (cf. Fig. 2). In other words,
Scenario 0 corresponds to a fast “thermalization” of the jet
parton and emitted gluon in the sQGP, since the g of DQPM
is evaluated for the thermal medium.

The different scenarios for the jet parton interaction in the
sQPG can be tested in future studies with realistic calculations
of RAA and v2 based on the PHSD microscopic transport
approach [51,71] by incorporating the radiative processes and
accounting for the LPM effect. We note that the sensitivity of
the RAA and v2 to the choice of the strong coupling has been
addressed within the BAMPS model by comparing the results
for constant αs = 0.3 with those for a temperature dependent
αs(T ) [37]. This sensitivity might be larger within the DQPM
based description of jet attenuation in the sQGP medium due
to the additional temperature dependence of the DQPM parton
masses and widths.

VI. RELATION BETWEEN η/s AND T 3/q̂

Finally, we explore the relation of elastic q̂ to the ratio
of the specific shear viscosity to entropy density η/s. It is
important to recognize that the jet quenching parameter q̂/T 3

serves as a direct measure of the parton coupling strength
within the medium. Furthermore, generally one can anticipate
that a higher coupling strength will correspond to a lower
value of η/s [90].

In Ref. [59] it was proposed that in the weakly coupled
limit η/s is proportional to T 3/q̂:

η/s ≈ 1.25
T 3

q̂
. (15)

This approximation can be tested within more flexible quasi-
particle model frameworks, where we can explore properties
of the QGP beyond the weakly interacting limit and grasp
understanding towards the regime described by lQCD pre-
dictions for thermodynamic observables. The violation of the
limit and more rigorous description of the QGP medium is
especially relevant for moderate jet energies. It is generally
expected that the assertion from Ref. [59], which posits the
temperature dependence of η/s as a linearly growing func-
tion of T 3/q̂, holds predominantly in the high-temperature,
weak coupling regime. Conversely, for temperatures T � 2Tc,
the ratio T 3/q̂ is expected to decrease rapidly, significantly
deviating from the linear trajectory described by 1.25T 3/q̂
(for more details, see discussion in Ref. [83]). Thus, there
are two regimes of a weakly and strongly coupled medium
which lead to different jet attenuation in the medium. The
considered quasiparticle description differs from our model,
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FIG. 9. Momentum dependence of the scaled q̂ coefficient for different scenarios for a jet parton with medium temperature T = 0.2 GeV
(left side) and T = 0.4 GeV (right side). Blue lines represent results for elastic processes only and orange lines represent results for the sum
of elastic and inelastic contributions.

and therefore, here we aim to provide our findings employing
different coupling scenarios for the thermal and jet vertices for
the elastic scattering.

In Fig. 11 we show the specific shear viscosity η/s as a
function of the scaled temperature T/Tc (upper plot) and the
ratio of η/s to T 3/q̂ as a function of the scaled tempera-
ture T/Tc (lower plot). The red solid line in the upper plot

shows η/s computed by the RTA (relaxation-time approxima-
tion) approach within the DQPM [91] in comparison to the
lQCD data (symbols) for gluodynamics (Nf = 0). The blue
area indicates the DQPM results (Scenario 0) for 1.25 T 3/q̂
computed for the jet momentum range of 3–10 GeV/c (fol-
lowing the DREENA-A selection), which defines the width
of the spread results. The DQPM result is compared to the
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FIG. 10. Momentum dependence of the scaled energy loss dE/dx for different scenarios for a jet parton with medium temperature T =
0.2 GeV (left side) and T = 0.4 GeV (right side). Blue lines represent results for elastic processes only and orange lines represent results for
the sum of elastic and inelastic contributions.

estimates from the DREENA model [82,83] (green area). As
expected, the scaled results 1.25 T 3/q̂ and η/s agree only
at large T ≈ 2–3.5Tc, while at low T the ratio T 3/q̂ de-
creases with T stronger than η/s—similar to the DREENA
model.

The deviation from the weak-coupling scaling (15) is
demonstrated in the lower part of Fig. 11, which shows the
ratio of (η/s)(T ) to T 3/q̂ as a function of the scaled tem-
perature T/Tc. The dashed gray line corresponds to the weak
interaction limit 1.25 from Ref. [59]. The blue area stands
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FIG. 11. Upper plot: specific shear viscosity η/s obtained from
Eq. (15) as a function of the scaled temperature T/Tc: the blue area
corresponds to the Scenario 0—the DQPM with thermal g(T ); the
red solid line shows η/s computed by the RTA approach within
the DQPM from Ref. [91]; the green area shows the estimates from
the DREENA model [83]. The widths of the areas correspond to the
jet momentum range of 3–10 GeV/c. The dashed gray line shows
the infinitely strong coupling limit or Kovtun-Son-Starinets bound
[92] (η/s)KSS = 1/4π . The symbols display lQCD data for pure
SU (3) gauge theory taken from Refs. [93] (blue circles), [94] (orange
circles), [95] (green circles), [96] (red circles). Lower plot: product
of η/s and q̂/T 3 as a function of the scaled temperature T/Tc. The
dashed gray line shows the weak interaction limit [59]. The blue
area corresponds to the Scenario 0 (from the upper plot)—DQPM
with thermal g(T ), the red area shows the Scenario I—the DQPM
with αs = 0.3; the orange area indicates the Scenario II (Zakharov
coupling in jet vertex).

for the DQPM results for Scenario 0, with thermal coupling
g(T ) for the thermal and jet vertices, which shows a strong
deviation from 1.25 for lower T . The red area illustrates the
Scenario I—the DQPM with αs = 0.3; the orange area stands
for Scenario II (Zakharov coupling in jet vertex). These sce-
narios show much flatter distributions.

Thus, our results demonstrate that the ratio η/s to T 3/q̂
has a strong dependence, especially when approaching Tc, on
the choice of the strong coupling g in the scattering vertices.
For the models with a temperature-dependent g(T ), as in the
DQPM, the ratio deviates from a constant at low T , which

corresponds to the strong interaction regime, and it ap-
proaches the scale of 1.25 at high T as predicted in Ref. [59],
where the strong coupling g(T ) decreases to a small value
of 0.3.

VII. CONCLUSIONS

We have studied the jet transport coefficients, such as q̂—
the squared average transverse momentum exchange between
the medium and the fast parton per unit length—as well as
dE/dx—the energy loss per unit length, including the elastic
and inelastic reactions of jet partons with the thermal sQGP
described by DQPM in terms of strongly interacting quasi-
particles whose properties are extracted from the comparison
to the lQCD equation of state. The transport coefficients have
been calculated within kinetic transport theory by accounting
for the independent elastic and inelastic collisions of a jet
parton with a thermal parton. The contributions of elastic
(q + q → q + q and q + g → q + g) and inelastic (q + q →
q + q + g and q + g → q + g + g) reactions have been cal-
culated by evaluating the leading-order Feynman diagrams
with effective propagators and vertices from the DQPM,
accounting for all channels and their interferences without
approximations [46].

We have studied different scenarios for elastic and inelastic
scattering of jet parton with a parton from the sQGP medium,
starting with the “default” DQPM calculations, where one
assumes that all scattered partons, as well as the emitted gluon
for inelastic reactions, are in thermal equilibrium. However,
since the scattered jet parton and the emitted gluon might
be out of equilibrium, we have additionally investigated the
influence of different choices for the strong coupling constant
αs in thermal, jet parton, and radiative vertices, as considered
in the literature.

Our findings can be summarized as following:

(1) We have found a strong dependence of transport co-
efficients on the choice of the strong coupling g used
in thermal, jet parton, and emitted gluon vertices (cf.
Table I). This dependence is stronger for the inelastic
reactions compared to elastic ones due to the extra g2

in the gluon emission vertex.
(2) A strong rise of q̂ for elastic and inelastic collisions

and an increase of dE/dx for inelastic reactions in the
vicinity of T → Tc for the default DQPM scenario is
related to the rapid rise of the DQPM coupling g(T ) at
low T —cf. Fig. 2. The scenario with constant αs = 0.3
shows a decrease of transport coefficients at low T ,
which is related to the structure of the squared matrix
element of the DQPM. Other scenarios with different
momentum-dependent jet parton and gluon emitted
vertices show a flatting of q̂ and a less steep decrease
of dE/dx at low T .

(3) We have found a rise of q̂ and dE/dx with jet mo-
mentum p, which is stronger for inelastic reactions
compared to the elastic ones.

(4) The contribution of inelastic reactions to the total q̂ is
the strongest for the default DQPM scenario due to the
larger value of the strong coupling g(T ) compared to
other scenarios.
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(5) We have observed a strong dependence of inelastic
q̂ on the mass of the emitted gluon—q̂ is larger for
the case with Mg = 0 compared to the case with ther-
mal mass of the emitted gluon Mg = Mg(T ) for all
jet momenta p; q̂ decreases with increasing mass of
the emitted gluon; similar observations also hold for
dE/dx.

(6) We have checked the validity of the scaling η/s ≈
1.25 T 3

q̂ , proposed in Ref. [59], for the DQPM model.

We have demonstrated that the ratio η/s to T 3/q̂
strongly depends on the choice of αs in the scattering
vertices. It rises steeply with a lowering of T for the
case of a temperature-dependent strong coupling g(T ),
only at large T the ratio falls to the predicted scaling
value of 1.25 [59], while for constant αs and trans-
verse momentum dependent g the ratio approaches a
constant already at T ≈ 1.5Tc. Thus, in line with the
findings in Ref. [83] for the HTL-based model, this
scaling is valid only in the weak coupling regime of
large T and violated for the strong coupling regime of
small T .

Our findings are relevant for the interpretation of exper-
imental observables on jet attenuation in the medium and
extraction of the transport coefficients q̂ and dE/dx as well
as their relation to η/s from heavy-ion data. This will be
addressed in future study within the PHSD transport approach.
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