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Charge-changing cross section and interaction cross section for 4 � Z � 9 isotopes
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The root-mean-square proton and neutron radii for 7,9–12,14Be, 10–15,17B, 12–19C, 14,15,17–22N, 16,18–24O, and
18–21,23–26F isotopes are deduced from a systematic analysis of experimental charge-changing and interaction
cross sections in the framework of the Glauber model. The calculations involve descriptions of nuclei based on
Slater determinants using harmonic-oscillator single-particle wave functions. The extracted proton and neutron
radii have been examined in the light of some important features such as neutron skin thickness, halo-like
structure, and subshell closure observed in exotic isotopes.
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I. INTRODUCTION

The production and study of unstable nuclei away from the
stability line has been a source of new impetus to the field of
both nuclear physics and nuclear astrophysics. The important
aspect of such nuclei is the existence of thick neutron skins
and halos in neutron-rich nuclei [1–3]. These exotic features
of unstable neutron-rich nuclei may result from the presence
of a neutron-dominated envelope in the nuclear surface region.
Here, it may be mentioned that a reliable information about
the proton radii of such nuclei is also a matter of concern be-
fore extracting the neutron skin thickness and understanding
the nuclear halo, which involves a large spatial separation of
one or two weakly bound valence neutrons, thereby forming a
low-density neutron halo around the core nucleus. It is well
known that electron scattering is an ideal tool for probing
the proton (charge) distribution in stable nuclei, but this very
approach has been utilized so far for limited unstable (short
lived) nuclei. However, isotope-shift measurements help us to
deduce the proton radii but they are also limited to only few
unstable nuclei. Alternately, the measurement of the charge-
changing cross sections (CCCSs) [4–10] may find its place
to get information about the proton radii of unstable nuclei.
One hopes that the combined study of charge-changing and
the corresponding reaction (interaction) cross sections could
be helpful in providing reliable estimates for the proton and
matter radii of unstable nuclei.

It has been demonstrated that the Glauber model has been
quite successful in extracting the matter radii of radioactive
nuclei [11] from the corresponding experimental data on the
reaction cross sections, with some reasonable adjustments in
proton and neutron radii. In the case of CCCS, it was thought
that these cross sections may involve only the proton density
of the projectile, and hence it was expected that the analysis of
CCCS may directly provide the information about the proton
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radii of unstable nuclei. However, calculations of CCCS using
the Glauber model [5,12–16] suggest that it is not only the
protons in the projectile, the presence of neutrons also matters
in explaining the charge-changing cross-section data. Due to
this, it becomes difficult to understand the reaction mechanism
for charge-changing cross sections. To accommodate CCCSs
within the framework of the Glauber model, it has, however,
been suggested that calculations of CCCSs may be possi-
ble by introducing a phenomenological correction parameter
[5,12,17] that takes care of the presence of neutrons in the pro-
jectile. To appreciate the motive of the present work, it is nec-
essary to comment on the correction parameter [5,12,17] used
in the study of CCCS. As noticed in Refs. [5,17], although
the correction parameter was parametrized as a function of
the incident energy, it shows weak energy dependence in the
energy range 200–600 MeV/nucleon, giving rise to almost a
constant value (≈1.107) for each of the isotopic chain. On the
other hand, in Ref. [12], the correction parameter is related to
the ratio Z/N (Z = atomic number, N = neutron number) of
the projectile without reference to the energy, thereby using
its different value for each of the isotopes of a given element.
Apart from the energy factor, the difference between the two
approaches is the involvement of density distributions in the
calculations of CCCS: the approach in Refs. [5,17] involves
only the proton density of the projectile, whereas the cal-
culations in Ref. [12] require both the proton and neutron
densities. In our opinion, since the proton radii are crucial for
obtaining the neutron skin (surface) thickness and understand-
ing the halos in neutron-rich unstable nuclei, the approach of
involving only the proton densities, along with a correction
parameter, seems to be a better choice for exploiting the
CCCS. Once the proton radius is obtained for a given nucleus,
the neutron radius is then obtained from the analysis of the
corresponding reaction (interaction) cross-section data. In this
way, one hopes to provide a better understanding of proton
(charge) and matter radii of neutron-rich unstable nuclei.

In this work, we propose a different prescription to
get the correction parameter, needed to incorporate the
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contribution due to the presence of projectile neutrons to
CCCS. Explicit calculations have been carried out for CCCS
for beryllium, boron, carbon, nitrogen, oxygen, and fluorine
isotopes within the framework of correlation expansion for
the Glauber model S matrix [18] by considering up to the
two-body correlation term. The basic input of the Glauber
model, the nucleon-nucleon (NN) amplitude, considers the
nuclear in-medium effects, and the nuclear densities are
obtained using the Slater determinants consisting of the
harmonic-oscillator single-particle wave functions (hereafter
referred to as SDHO densities) which involve oscillator
constant as their input parameter. The proton densities
obtained from the charge-changing cross section data are then
used to reproduce the corresponding reaction (interaction)
cross sections with the adjustment of the oscillator constant in
SDHO neutron density distributions. The extracted proton and
neutron radii have been examined in view of some important
features such as the neutron skin thickness, halo-like structure,
and subshell closure observed in neutron-rich unstable
nuclei.

Finally, we have performed parameter-free calculations to
test the reliability of the present method used to deduce the
proton and neutron radii (densities) in other situations. For
this we have analyzed the CCCS for 12–19C and 14,15,17–22N
isotopes on a proton target using the aforesaid information
about the proton and neutron radii (densities), and the results
are discussed in the light of some recent calculations [19].

The formulation of the problem is given in Sec. II. The
numerical results are presented and discussed in Sec. III. The
conclusions are presented in Sec. IV.

II. FORMULATION

A. Nucleus-nucleus reaction (interaction) cross section

According to the Glauber model, the reaction cross sec-
tion (σR) for the scattering of a projectile nucleus with a
ground-state wave function ψP on a target nucleus with a
ground-state wave function ψT is given by

σR = 2π

∫
[1 − |Sel (b)|2]bdb, (1)

Sel (b) = 〈ψT ψP|
A∏

i=1

B∏
j=1

[1 − �NN (�b − �si + �s′
j )]|ψPψT 〉,

(2)

where A (B) is the mass number of target (projectile) nucleus,
�b is the impact-parameter vector perpendicular to the incident
momentum, �si �(s′

j ) are the projections of the target (projec-
tile) nucleon coordinates on the impact-parameter plane, and
�NN (b) is the NN profile function, which is related to the NN
scattering amplitude fNN (q) as follows:

�NN (b) = 1

2π ik

∫
exp(−i �q · �b) fNN (q)d2q, (3)

where k is the incident nucleon momentum corresponding to
the projectile kinetic energy per nucleon, and �q is the momen-
tum transfer.

Following Ahmad [18], the S-matrix element, Sel (b), up to
two-body correlation term takes the following form:

Sel (b) ≈ S0(b) + S2(b), (4)

where

S0(b) = [
1 − �NN

00 (b)
]AB

, (5)

and

S2(b) = 〈ψT ψP| 1

2!

[
1 − �NN

00 (b)
]AB−2

′∑
i1, j1

′∑
i2, j2

× γi1, j1γi2, j2 |ψPψT 〉, (6)

with

γi j = �NN
00 (�b) − �NN (�b − �si + �s′

j ), (7)

and

�NN
00 (b) =

∫
ρT (�r)ρP(�r′)�NN (�b − �s + �s′)d�rd �r′. (8)

The primes on the summation signs in Eq. (6) indicate the
restriction that two pairs of indices cannot be equal at the
same time (for example, if i1 = i2 then j1 �= j2 and vice
versa). The quantities ρT and ρP in Eq. (8) are the (one-body)
ground-state densities of the target and projectile, respec-
tively. Here, it is to be noted that the distinction between
protons and neutrons in both the projectile and target has
been included in the uncorrelated part (S0) of the S-matrix
element only. Such a distinction involves different values
of the parameters for pp and pn scattering amplitudes and
uses different density distributions for protons and neutrons
in the colliding nuclei. With this consideration, S0(b) takes
the form

S0(b) = [
1 − �

pp
00 (b)

]ZPZT
[
1 − �

np
00 (b)

]NPZT

× [
1 − �

pn
00 (b)

]ZPNT
[
1 − �nn

00 (b)
]NPNT

, (9)

with

�
i j
00(b) =

∫
ρ

j
T (�r j )ρ

i
P(�r′

i )�i j (�b − �s j + �s′
i )d�r jd �r′

i, (10)

where ZT (ZP ) and NT (NP ) are the target (projectile) atomic
and neutron number, respectively, and each of i and j stands
for a proton and a neutron.

Regarding the two-body correlation term S2(b), it should
be mentioned that the consideration of distinct features of
protons and neutrons in this term is not as straightforward
as it was for S0(b). Moreover, we may also add that (i)
the two-body correlation term provides only a correction
to the dominant part of the S-matrix element i.e., S0(b) and
(ii) the contribution of this term is expected to be small. Due
to this, we have used average values of the parameters for pp
and pn amplitudes, and involve matter density distributions
in the evaluation of S2(b). More explicitly, the evaluation of
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S2(b) gives the following form [18]:

S2(b) = − AB

8π2k2

[
1 − �NN

00 (b)
]AB−2{

(A − 1)(B − 1)

× [
G22(b) − G2

00(b)
] + (B − 1)

× [
G21(b) − G2

00(b)
] + (A − 1)

× [
G12(b) − G2

00(b)
]}

, (11)

with

G22(b) =
∫

exp[−i(�q1 + �q2) · �b]F (2)
T (�q1, �q2)F (2)

P (−�q1,−�q2)

× fNN (q1) fNN (q2)d2q1d2q2, (12)

G21(b) =
∫

exp[−i(�q1 + �q2) · �b]FT (�q1 + �q2)F (2)
P (−�q1,−�q2)

× fNN (q1) fNN (q2)d2q1d2q2, (13)

G12(b) =
∫

exp[−i(�q1 + �q2) · �b]F (2)
T (�q1, �q2)FP(−�q1 − �q2)

× fNN (q1) fNN (q2)d2q1d2q2, (14)

and

G00(b) =
∫

exp(−i �q · �b)FT (q)FP(q) fNN (q)d2q,

(15)
= (2π ik)�NN

00 (b).

The quantities FT (q) [FP(q)] and F (2)
T (�q1, �q2) [F (2)

P (�q1, �q2)] in
the above equations are the one- and two-body form factors of
the target (projectile) nucleus, respectively,

Fν (q) =
∫

ρν (r) exp(i �q · �r)d�r, (16)

F (2)
ν (�q1, �q2) =

∫
ρ (2)

ν (�r1, �r2) exp[i(�q1 · �r1 + �q2 · �r2)]d�r1d�r2,

(17)

where ν = T, P, and ρ (2)
ν (�r1, �r2) is the two-body density of the

nucleus. It is clear that the evaluation of Fν , which requires
(intrinsic) one-body density distribution of the nucleus, is
trivial. To evaluate F (2)

ν (�q1, �q2), we must know the intrinsic
two-body density of the nucleus. For this, one starts with
assuming a model wave function 	C and writes the intrinsic
one- and two-body form factors as follows [20]:

Fν (q) = θν (q)FC
ν (q), (18)

F (2)
ν (�q1, �q2) = θν (�q1 + �q2)FC(2)

ν (�q1, �q2). (19)

The quantities FC
ν and FC(2)

ν are the model one- and two-body
form factors which can be obtained from Eqs. (16) and (17)
by replacing the intrinsic densities by the model ones, and
θν is the c.m. correlation correction factor. Here it is worth
mentioning that the above relations are exact when 	C is
chosen to be the fully antisymmetric oscillator wave function.
In this situation θν has the form

θν (q) = exp
(
q2/4Mνα

2
ν

)
, (20)

where α2
ν is the oscillator constant and Mν is the mass number

of the nucleus. Moving further, it is assumed that the model

two-body density may be written in terms of the model one-
body density ρC

ν (r) as

ρC(2)
ν (�r1, �r2) = ρC

ν (�r1)ρC
ν (�r2)[1 − g(|�r1 − �r2|)], (21)

where g(|�r1 − �r2|) is the phenomenological correlation func-
tion, satisfying the following requirements. (i) It has to be
sufficiently short range, (ii) it should approach unity for r → 0
to account for the hard core in the NN interaction, and (iii) its
volume integral must be zero. The last condition ensures the
normalization of ρC(2)

ν (�r1, �r2) so that its integral with respect
to any one of its coordinates gives model one-body density.
For more details about g(r) and its possible expressions, we
refer the work of Ahmad [18].

Now using Eqs. (18), (19), and (21), the intrinsic two-body
form factor may be written as [18]

F (2)
ν (�q1, �q2) = θν (�q1 + �q2)

[
Fν (q1)Fν (q2)

θν (q1)θν (q2)

− g̃

( �q1 − �q2

2

)
DC

ν (�q1 + �q2)

]
, (22)

where g̃(q) and DC
ν (q) are the Fourier transform of g(r) and

[ρC
ν (r)]2, respectively:

g̃(q) =
∫

ei �q·�rg(r)d�r, (23)

DC
ν (q) =

∫
ei �q·�r[ρC

ν (r)
]2

d�r. (24)

The model one-body density in Eq. (24) may be obtained
from the inverse Fourier transform of Eq. (18) and takes the
following form:

ρC
ν (r) = (1/2π2)

∫
j0(qr)

Fν (q)

θν (q)
q2dq, (25)

where j0 is the zeroth-order spherical Bessel function.

B. Nucleus-nucleus charge-changing cross section

As we know, the reaction cross section (σR) [charge-
changing cross section (σcc)] is defined as the total cross
section for change in the mass (charge) number of the projec-
tile. In a similar way, the neutron removal cross section (σ−xn)
can be defined as the cross section for the processes resulting
in a change of the neutron number of the projectile. Thus, the
total reaction cross section σR is the sum of σcc and σ−xn:

σR = σcc + σ−xn. (26)

In the above relation, if we take σ
p

cc as the contribution to
the charge-changing cross section due to the scattering of
only projectile protons and represent the contribution of the
rest of the reaction, that takes care of the projectile neutron
contribution to the charge-changing cross section (σ n

cc) and
the neutron removal cross section, by σ rest

cc , the reaction cross
section reads

σR = σ p
cc + σ rest

cc . (27)
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If η provides an estimate to how much fraction of σ rest
cc is the

projectile neutron contribution to the σcc, we may write

σcc = σ p
cc + ησ rest

cc , (28)

with

σ n
cc = ησ rest

cc . (29)

As mentioned earlier, the projectile neutron contribution
to the charge-changing cross section (σ n

cc), within the frame-
work of Glauber model, has been estimated following two
approaches: (i) The first approach is that of Bhagwat and
Gambhir [12] in which σ n

cc is written in the same form as
in Eq. (29). It is clear that the evaluation of σ n

cc involves a
parameter η and requires both the proton and neutron den-
sities of the projectile. Employing the relativistic mean field
(RMF) proton and neutron densities, and taking the parame-
ter η = 0.8(ZP/NP )2 for NP � ZP and η = 0.8 for NP � ZP,
the authors [12] are able to reproduce the charge-changing
cross-section data fairly well. (ii) Whereas, in the second
approach, Yamaguchi et al. [5] and Li et al. [17] introduce a
phenomenological correction parameter that is responsible for
including the effect of the presence of projectile neutrons to
the charge-changing cross section and modifies σ

p
cc as follows:

σcc = ε(E )σ p
cc, (30)

where ε(E ) is the correction parameter, which is defined as
the ratio of the experimental σcc to the calculated σ

p
cc val-

ues (σ expt
cc /σ

p
cc). Contrary to the approach of Bhagwat and

Gambhir [12], Yamaguchi et al. [5] and Li et al. [17] in-
volve only the projectile protons in the calculations of σcc.
Taking the correction parameter ε(E ) = 1.107 + 0.01191 ×
exp(1.444 − 0.004623E ) [17], where E (in MeV) is the
projectile energy/nucleon, and varying the projectile proton
density parameter, Li et al. [17] have analyzed the exper-
imental charge-changing cross sections and predicted the
root-mean-square proton radii for B, C, N, O, and F isotopes.

Comparison of the above-mentioned approaches reveals
that if we are interested to extract exclusively the projectile
proton radius, it is reasonable to follow the approach of Ya-
maguchi et al. [5] and Li et al. [17] as it involves only the
projectile proton density in the analysis of charge-changing
cross-section data. However, we adopt a different prescription
to get the value of the correction parameter ε(E ), described in
the next section. Keeping this in mind, let us now discuss the
calculation of σ

p
cc in the context of the present work. Following

Eq. (1), σ
p

cc is given by

σ p
cc = 2π

∫ [
1 − ∣∣Sp

el (b)
∣∣2]

bdb, (31)

where

Sp
el (b) ≈ Sp

0 (b) + Sp
2 (b). (32)

The quantities Sp
0 (b) and Sp

2 (b) that consider only the pro-
jectile protons can be obtained by setting NP = 0 in the
respective expressions for S0(b) [Eq. (9)] and S2(b) [Eq. (11)].
Such a consideration leads to the following expressions for
Sp

0 (b) and Sp
2 (b):

Sp
0 (b) = [

1 − �
pp
00 (b)

]ZPZT
[
1 − �

pn
00 (b)

]ZPNT
, (33)

and

Sp
2 (b) = − AZP

8π2k2

[
1 − �NN

00 (b)
]AZP−2{

(A − 1)(ZP − 1)

× [
G22(b) − G2

00(b)
] + (ZP − 1)

× [
G21(b) − G2

00(b)
] + (A − 1)

× [
G12(b) − G2

00(b)
]}

. (34)

The quantities G22, G21, G12, and G00 in the above equation,
assume similar expressions as (12)–(15), but now they involve
only the projectile proton density instead of projectile matter
density.

C. Nucleus-proton reaction and charge-changing cross sections

Finally, the expressions for S0(b) [Sp
0 (b)] and S2(b) [Sp

2 (b)]
can also be used to accommodate the scattering of a nucleus
from a proton target. For this, we further set ZT = 1 and
NT = 0. This simplification leads to the following expressions
for S0(b) [Sp

0 (b)] and S2(b), [Sp
2 (b)], which can be used for

calculating the reaction (charge-changing) cross section for
nucleus-proton scattering:

S0(b) = [
1 − �

pp
0 (b)

]ZP
[
1 − �

np
0 (b)

]NP
, (35)

S2(b) = −B(B − 1)

8π2k2

[
1 − �NN

0 (b)
]B−2[

G2(b) − G2
0(b)

]
,

(36)

Sp
0 (b) = [

1 − �
pp
0 (b)

]ZP
, (37)

Sp
2 (b) = −ZP(ZP − 1)

8π2k2

[
1 − �NN

0 (b)
]ZP−2[

G2(b) − G2
0(b)

]
,

(38)

with

�
i j
0 (b) =

∫
ρ i

P(�r )�i j (�b − �s)d�r, (39)

G2(b) =
∫

exp[−i(�q1 + �q2) · �b]F (2)
P (�q1, �q2)

× fNN (q1) fNN (q2)d2q1d2q2, (40)

and

G0(b) =
∫

e−i �q·�bFP(q) fNN (q)d2q,

(41)
= (2π ik)�NN

0 (b).

Moreover, it may be mentioned that G2(b) and G0(b) in
expression (36) involve the matter density of the projectile,
whereas G2(b) and G0(b) in expression (38) use only the
projectile proton density.

III. RESULTS AND DISCUSSION

Following the approach outlined in Sec. II, we have ana-
lyzed the (i) charge-changing and interaction cross sections
for beryllium, boron, carbon, nitrogen, oxygen, and fluorine
isotopes on a 12C target, (ii) charge-changing cross sec-
tions for carbon and nitrogen isotopes on a proton target,
and (iii) reaction cross sections for carbon isotopes on a
proton target at medium energies. The inputs required in the
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TABLE I. The oscillator constant, α2
p, gives the experimental projectile charge radius 〈r2

ch〉1/2 [25,26]. σ p
cc provides the contribution to

charge-changing cross section due to projectile protons at energy E , taking 12C as a target. The correction parameter ε(= σ
expt
cc /σ p

cc ) is the
ratio of the experimental charge-changing cross section (σ expt

cc ) and σ p
cc. The last column gives the average value of ε, εavg, for the considered

isotopes of a given element.

Projectile E/A(MeV) α2
p(fm−2)

〈
r2

ch

〉1/2
(fm) σ p

cc (mb) σ
expt
cc (mb) ε

( = σ
expt
cc

/
σ p

cc

)
εavg

7Be 772 0.2549 ± 0.0031 2.6468 ± 0.0161 [26] 658.2 ± 2.46 706 ± 8 [7] 1.073 ± 0.008 1.073 ± 0.013
9Be 921 0.2889 ± 0.0027 2.5190 ± 0.0120 [26] 640.3 ± 1.79 682 ± 30 [7] 1.065 ± 0.044
10Be 946 0.3318 ± 0.0046 2.3612 ± 0.0166 [26] 618.1 ± 2.49 670 ± 10 [7] 1.084 ± 0.011
11Be 962 0.3062 ± 0.0036 2.4669 ± 0.0147 [26] 636.7 ± 2.23 681 ± 3 [7] 1.069 ± 0.001
12Be 925 0.2993 ± 0.0037 2.5031 ± 0.0157 [26] 638.2 ± 2.38 686 ± 3 [7] 1.075 ± 0.001
10B 925 0.3309 ± 0.0132 2.4277 ± 0.0499 [25] 680.2 ± 8.7 685 ± 14 [6] 1.007 ± 0.008 1.023 ± 0.005
11B 932 0.3392 ± 0.0081 2.4060 ± 0.0294 [25] 676.0 ± 5.1 702 ± 6 [6] 1.038 ± 0.001
12C 937 0.3346 ± 0.0006 2.4702 ± 0.0022 [25] 731.4 ± 0.4 733 ± 7 [8] 1.002 ± 0.009 0.993 ± 0.008
13C 828 0.3386 ± 0.0009 2.4614 ± 0.0034 [25] 736.0 ± 0.7 726 ± 7 [8] 0.986 ± 0.009
14C 900 0.3289 ± 0.0023 2.5025 ± 0.0087 [25] 737.4 ± 1.7 731 ± 7 [8] 0.991 ± 0.007
14N 932 0.3219 ± 0.0017 2.5582 ± 0.0070 [25] 785.8 ± 1.5 793 ± 9 [9] 1.009 ± 0.009 1.014 ± 0.016
15N 776 0.3114 ± 0.0019 2.6058 ± 0.0080 [25] 801.8 ± 1.7 816 ± 20 [9] 1.018 ± 0.023
16O 857 0.2959 ± 0.0011 2.6991 ± 0.0052 [25] 854.4 ± 1.1 848 ± 4 [10] 0.992 ± 0.003 1.002 ± 0.004
18O 872 0.2819 ± 0.0011 2.7726 ± 0.0056 [25] 869.6 ± 1.3 879 ± 5 [10] 1.011 ± 0.004
19F 930 0.2751 ± 0.0005 2.8976 ± 0.0025 [25] 928.9 ± 0.7 1016 ± 10 [4] 1.094 ± 0.010 1.094 ± 0.010

calculation are (i) the NN scattering amplitude, and (ii) the
proton and neutron density distributions of the nuclei un-
der consideration. In connection with the interaction cross
section (σI ), one may note that, at energies under consider-
ation, the contribution from inelastic scattering is negligible
[21], σI can be assumed to be nearly equal to the reaction
cross section (σR). Hence, the Glauber model S-matrix Sel (b)
in Eq. (2) can be used to calculate both σI as well as σR

from Eq. (1).
The NN scattering amplitude takes care of the nuclear

in-medium effects, arising due to phase variation, higher
momentum transfer components, and Pauli blocking. For
this, we have parametrized the NN scattering amplitude as
follows [22]:

fNN (�q ) =
[

ikσNN

4π

∞∑
n=0

An+1

(
σNN

4πβNN

)n (1 − iρNN )n+1

(n + 1)

× exp

( −βNN q2

2(n + 1)

)]
exp

(−iγNN q2

2

)
, (42)

where

An+1 = A1

n(n + 1)
+ A2

(n − 1)n

+ A3

(n − 2)(n − 1)
+ · · · + An

1.2
, (43)

with A1 = 1.
The NN amplitude [Eq. (42)] consists of four adjustable

parameters; σNN , ρNN , βNN , and γNN . The values of these
parameters have been obtained in our earlier work [11] from
the simultaneous description of the in-medium NN total cross
section [23] and the proton-nucleus elastic differential cross-
section data at 650, 800, and 1000 MeV which cover the
required energy range in this work; the in-medium values
of the NN amplitude parameters at the desired energies are

obtained by a linear interpolation and extrapolation of their
values at 650, 800, and 1000 MeV.

The intrinsic proton and neutron densities of the projectile
are obtained from the Slater determinants consisting of the
harmonic-oscillator single-particle wave functions [11]. These
densities involve the oscillator constant as their basic input,
which assumes different values for different nuclei and are
obtained from the analysis of charge-changing and interaction
cross sections in the present work. The oscillator constants for
proton (α2

p ) and neutron (α2
n ) density distributions are related

to the corresponding rms proton [〈r2
p〉1/2] and neutron [〈r2

n〉1/2]
radii of a given nucleus. For the target 12C nucleus, we involve
the charge density as obtained from the electron-scattering
experiment [24] and assume the neutron and proton densities
to be the same. Here, it is important to note that the intrinsic
proton and neutron densities simulate the finite size of the nu-
cleon through free variation of the oscillator constant, whose
values, as pointed out above, are adjusted from the study of
experimental charge-changing and interaction cross sections.
As a result, the rms proton radius, obtained in this work,
gives directly the charge radius 〈r2

ch〉1/2 of the nucleus, and
the corresponding neutron radius also takes care of the finite
size of the nucleon. In the following, we refer our deduced rms
proton (neutron) radius as rp (rn), and the corresponding rms
point proton (neutron) radius will be referred to as rpt

p (rpt
n ).

A. Nucleus-nucleus charge-changing cross section

As mentioned in Sec. II B, the calculation of charge-
changing cross section (σcc) requires a phenomenological
correction parameter ε(E ) to account for the contribution
due to the presence of neutrons in the projectile. Also, it
has been pointed out that, in one calculation [17], ε(E ) as-
sumes energy-dependent parametrization but its value attains
almost a constant value beyond 600 MeV/nucleon, and was
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TABLE II. Revisit of the projectiles in Table I: The oscillator constant, α2
p, gives the projectile proton radius rp obtained by fitting the

experimental charge-changing cross section σ
expt
cc at energy E using the average value of the correction parameter, εavg, given in Table I.

(�rp)% gives the percentage difference between the experimental projectile charge radius 〈r2
ch〉1/2 and rp.

Projectile E/A(MeV) α2
p(fm−2) rp(fm)(this work) σ

expt
cc (mb) (�rp)%(fm)

7Be 772 0.2554 ± 0.0006 2.6444 ± 0.0029 706 ± 8 [7] 0.09
9Be 921 0.2965 ± 0.0293 2.4865 ± 0.1328 682 ± 30 [7] 1.29
10Be 946 0.3205 ± 0.0030 2.4025 ± 0.0113 670 ± 10 [7] 1.74
11Be 962 0.3097 ± 0.0083 2.4530 ± 0.0323 681 ± 3 [7] 0.56
12Be 925 0.2978 ± 0.0079 2.5094 ± 0.0326 686 ± 3 [7] 0.25
10B 925 0.3470 ± 0.0171 2.3704 ± 0.0606 685 ± 14 [6] 2.36
11B 932 0.3230 ± 0.0052 2.4655 ± 0.0201 702 ± 6 [6] 2.47
12C 937 0.3255 ± 0.0011 2.5045 ± 0.0041 733 ± 7 [8] 1.38
13C 828 0.3455 ± 0.0009 2.4367 ± 0.0033 726 ± 7 [8] 1.00
14C 900 0.3306 ± 0.0013 2.4961 ± 0.0047 731 ± 7 [8] 0.25
14N 932 0.3260 ± 0.0041 2.5424 ± 0.0159 793 ± 9 [9] 0.61
15N 776 0.3074 ± 0.0073 2.6227 ± 0.0318 816 ± 20 [9] 0.64
16O 857 0.3036 ± 0.0011 2.6651 ± 0.0049 848 ± 4 [10] 1.25
18O 872 0.2749 ± 0.0011 2.8077 ± 0.0058 879 ± 5 [10] 1.26

taken to be the same for all the isotopes of different ele-
ments. Whereas in some other calculation [12], ε(E ) assumes
isotopic-dependent parametrization without reference to the
energy of the projectile, giving rise to different values of the
correction parameter for all the isotopes of different elements.
In this work, we adopt the former approach [17] but proceed
to find ε(E ) in a different way. To start with, we involve only
those projectile nuclei for which the experimental charge radii
[25,26] as well as their experimental charge-changing cross
sections are available. For such nuclei, we adjust the oscillator
constant, α2

p, to get their proton densities that lead to the exper-
imentally known charge radii 〈r2

ch〉1/2. Then, with these proton
distributions, we compute the contribution to CCCS due to the
projectile protons, σ p

cc, using Eqs. (31)–(34), and find the value
of ε(E )(= σ

expt
cc /σ

p
cc) in each case. The results of such calcula-

tions with a 12C target are presented in Table I. It is found that
the correction parameter ε(E ) within the isotopic chain of a
given element is nearly the same and energy independent, and
its average value (given in the last column of Table I) shows
some variation as we move on to different elements. In the
case of fluorine, the experimental charge radius is available
for 19F only, the correction parameter obtained for it is thus
used for rest of its isotopes. Because of the energy indepen-
dence of correction parameter, we hereafter represent it as ε

instead of ε(E ).
To test the suitability of the present method used to ex-

tract the correction parameter ε, it is worthwhile to revisit
the nuclei, except for 19F, in Table I and obtain the required
oscillator constant for proton distribution (α2

p) and the cor-
responding proton radius rp that may now reproduce σ

expt
cc

using the respective (average) value of ε. In this way, the
difference between the extracted value of rp and the corre-
sponding experimental one [〈r2

ch〉1/2] will provide an estimate
of the uncertainty of the present approach. The results of such
calculations are presented in Table II. In this table, α2

p and
rp provide, respectively, the values of the oscillator constant
and the corresponding proton radius that now reproduces the

experimental CCCS using the average value of the correction
parameter ε. The last column in Table II gives the percent-
age difference between the extracted and experimental proton
radii. It is found that the maximum deviation is about 2%.
Thus, it seems that the present method for obtaining the cor-
rection parameter ε is quite reliable, and only about not more
than 2% uncertainty may be involved in predicting the proton
radii of those exotic isotopes whose experimental charge radii
are not known.

Having discussed the procedure for obtaining the correc-
tion parameter ε, needed to incorporate the effect of the
presence of projectile neutrons in calculating the CCCS, we
now proceed to reproduce the experimental CCCS data for
14Be, 12–15,17B, 15–19C, 17–22N, 19–24O, and 18,20,21,23–26F iso-
topes on a 12C target by adjusting the oscillator constant in
SDHO proton densities and using the respective average value
of ε. The results of these calculations are given in Table III.
Like in Table II, α2

p and rp in Table III give, respectively,
values of the oscillator constant and the corresponding proton
radius that can reproduce the experimental CCCS for the
above-mentioned isotopes. It is noticed that the gradual filling
of neutrons in the 1d5/2 orbital reflects a consistent decrease
in the proton radii up to N = 14 for both the nitrogen and
oxygen isotopes. At N = 14, we find a local minimum which
is an indication for this new subshell closure. Similar result
has also been reported by Bagchi et al. [9] and Kaur et al.
[10] for nitrogen and oxygen isotopes, respectively. Thus, our
findings further support the claim [9,10] that the possible ori-
gin of the subshell closure at N = 14 is the attractive isospin
(T ) = 0 tensor interaction between the protons in the 1p1/2

orbital and neutrons in the 1d5/2 orbital, which reduces the
gap between proton 1p1/2 and 1p3/2 orbitals. As a result, the
1p1/2 orbital gets lowered, leading to a dip in the proton radius
at N = 14. In Fig. 1, we compare our predicted point proton
radii rpt

p , obtained from the proton radii (Tables II and III) after
correcting for the finite size of the nucleon, with some of the
results available in the literature. For completeness, we have
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TABLE III. The oscillator constant, α2
p, gives the projectile proton radius rp obtained by fitting the experimental charge-changing cross

section σ
expt
cc at energy E with 12C as a target, using the average value of the correction parameter, εavg, given in Table I.

Projectile E/A (MeV) α2
p(fm−2) rp(fm)(this work) σ

expt
cc (mb)

14Be 833 0.2886 ± 0.0062 2.5612 ± 0.0271 697 ± 4 [7]
12B 991 0.3529 ± 0.0162 2.3657 ± 0.0561 691 ± 13 [6]
13B 897 0.2965 ± 0.0029 2.5872 ± 0.0127 723 ± 6 [6]
14B 926 0.2930 ± 0.0004 2.6080 ± 0.0018 727 ± 4 [6]
15B 920 0.2707 ± 0.0018 2.7181 ± 0.0091 747 ± 5 [6]
17B 862 0.2618 ± 0.0009 2.7721 ± 0.0051 759 ± 4 [6]
15C 907 0.3156 ± 0.0006 2.5589 ± 0.0024 743 ± 7 [8]
16C 907 0.3109 ± 0.0009 2.5821 ± 0.0038 748 ± 7 [8]
17C 979 0.3101 ± 0.0007 2.5889 ± 0.0029 754 ± 7 [8]
18C 895 0.3143 ± 0.0013 2.5746 ± 0.0053 747 ± 7 [8]
19C 895 0.3128 ± 0.0035 2.5833 ± 0.0147 749 ± 9 [8]
17N 938 0.2990 ± 0.0081 2.6664 ± 0.0354 819 ± 5 [9]
18N 927 0.3095 ± 0.0077 2.6238 ± 0.0321 810 ± 6 [9]
19N 896 0.3124 ± 0.0089 2.6143 ± 0.0363 809 ± 5 [9]
20N 891 0.3145 ± 0.0091 2.6080 ± 0.0370 808 ± 5 [9]
21N 876 0.3268 ± 0.0070 2.5606 ± 0.0271 799 ± 7 [9]
22N 851 0.3177 ± 0.0072 2.5993 ± 0.0290 810 ± 7 [9]
19O 956 0.2983 ± 0.0038 2.6977 ± 0.0174 852 ± 7 [10]
20O 880 0.3056 ± 0.0007 2.6677 ± 0.0032 846 ± 4 [10]
21O 937 0.3033 ± 0.0027 2.6800 ± 0.0121 847 ± 6 [10]
22O 937 0.3143 ± 0.0000 2.6346 ± 0.0000 837 ± 3 [10]
23O 871 0.2980 ± 0.0045 2.7076 ± 0.0205 857 ± 8 [10]
24O 866 0.3168 ± 0.0082 2.6278 ± 0.0344 839 ± 11 [10]
18F 930 0.2880 ± 0.0115 2.8294 ± 0.0582 998 ± 25 [4]
20F 930 0.3029 ± 0.0035 2.7639 ± 0.0161 980 ± 13 [4]
21F 930 0.2979 ± 0.0005 2.7891 ± 0.0024 986 ± 10 [4]
23F 930 0.3146 ± 0.0111 2.7177 ± 0.0493 967 ± 22 [4]
24F 930 0.3346 ± 0.0141 2.6368 ± 0.0574 946 ± 24 [4]
25F 930 0.3468 ± 0.0409 2.5914 ± 0.1678 934 ± 54 [4]
26F 930 0.3207 ± 0.0317 2.6961 ± 0.1440 962 ± 48 [4]

also included in Fig. 1 the experimental point proton radii
corresponding to charge radii of the nuclei [25,26] given in
Table I. It is found that our extracted point proton radii agree
fairly well in all cases. Thus, the present approach seems to
be quite justified for the study of CCCS, and the extracted
proton radii of exotic neutron-rich nuclei can be considered as
reliable estimates for onward calculations.

B. Nucleus-nucleus interaction cross section

Our next goal is to study the interaction cross sections and
extract the neutron (matter) radii of beryllium, boron, carbon,
nitrogen, oxygen, and fluorine isotopes. Keeping the similar
values of the oscillator constant for SDHO proton densities
(α2

p ) as obtained from the analysis of charge-changing cross
sections (Tables II and III) on a 12C target, we now adjust the
oscillator constant for SDHO neutron densities (α2

n ) to repro-
duce the corresponding interaction cross sections. Table IV
provides our extracted neutron radii rn of the nuclei under
consideration. In Fig. 2, the (point) matter radii (rpt

m ), obtained
using rp and rn of Tables II, III, and IV after correcting for
finite nucleon size, are compared with some earlier results. A
fairly good agreement is seen in all the cases. Moreover, it

may be added that the matter radii, as obtained in this work,
although supplement the results of our earlier work [11], the
results of the present calculations can be considered to be
more reliable possibly due to fairly good estimates of the pro-
ton and neutron radii obtained, respectively, by a systematic
analysis of charge-changing and interaction cross sections.

Next, we proceed to examine our extracted proton, neutron,
and matter radii in the light of getting information about
whether a given exotic neutron-rich nucleus has a thick neu-
tron skin or leads to a halo-like structure. As we know, the
one-neutron (Sn) or two-neutron (S2n) separation energy plays
an essential role in distinguishing between a thick neutron skin
and the existence of a halo structure in exotic neutron-rich
nuclei. Obviously, the smaller value of one- or two-neutron
separation energy indicates a significant probability to find
one neutron or two neutrons at large radius, and forms the
basis of halo-like structure in which the nucleon density is
extended to a large distance. Unfortunately, the SDHO den-
sities, as obtained in the present work, cannot be justified to
get the extended matter distribution in exotic nuclei, but we
still expect that the effect of extended part of the neutron
distribution may be simulated in our estimates of the matter
radii for such nuclei [28]. Keeping this in mind, we, therefore,
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TABLE IV. The oscillator constant, α2
n , gives the projectile neutron radius rn obtained by fitting the experimental interaction cross

section σ
expt
I at energy E with 12C as a target, keeping the value of oscillator constant in (SDHO) proton density distribution (α2

p ) the same as
obtained in Tables II and III. The values of σ

expt
I for 22,23O, with superscript a, are taken from Ref. [32].

Projectile E/A(MeV) α2
n (fm−2) rn(fm)(this work) σ

expt
I (mb)[27]

7Be 790 0.4050 ± 0.0490 1.9994 ± 0.1332 738 ± 9
9Be 790 0.3340 ± 0.0138 2.4059 ± 0.0482 806 ± 9
10Be 790 0.3655 ± 0.0191 2.3489 ± 0.0639 813 ± 10
11Be 790 0.2391 ± 0.0087 2.9479 ± 0.0552 942 ± 8
12Be 790 0.2879 ± 0.0216 2.7168 ± 0.1080 927 ± 18
14Be 800 0.2346 ± 0.0193 3.1937 ± 0.1401 1082 ± 34
10B 960 0.3564 ± 0.0194 2.3391 ± 0.0664 789 ± 16
11B 950 0.4989 ± 0.0944 2.0174 ± 0.2230 778 ± 30
12B 790 0.3446 ± 0.0023 2.4623 ± 0.0083 866 ± 7
13B 790 0.4045 ± 0.0289 2.2972 ± 0.0867 883 ± 14
14B 790 0.3726 ± 0.0406 2.4746 ± 0.1470 929 ± 26
15B 740 0.3475 ± 0.0187 2.6280 ± 0.0737 965 ± 15
17B 800 0.2737 ± 0.0152 3.0693 ± 0.0890 1118 ± 22
12C 950 0.3487 ± 0.0110 2.4197 ± 0.0391 853 ± 6
13C 960 0.3525 ± 0.0204 2.4401 ± 0.0739 862 ± 12
14C 965 0.3672 ± 0.0323 2.4157 ± 0.1138 880 ± 19
15C 740 0.3345 ± 0.0133 2.6159 ± 0.0536 945 ± 10
16C 960 0.2666 ± 0.0082 3.0043 ± 0.0473 1036 ± 11
17C 965 0.2753 ± 0.0072 3.0151 ± 0.0402 1056 ± 10
18C 955 0.2608 ± 0.0090 3.1473 ± 0.0557 1104 ± 15
19C 960 0.2124 ± 0.0107 3.5334 ± 0.0925 1231 ± 28
14N 965 0.2874 ± 0.0134 2.7077 ± 0.0654 932 ± 9
15N 975 0.3362 ± 0.0376 2.5288 ± 0.1544 930 ± 30
17N 710 0.3778 ± 0.0450 2.5266 ± 0.1654 965 ± 24
18N 1020 0.3021 ± 0.0104 2.8809 ± 0.0509 1046 ± 8
19N 1005 0.2914 ± 0.0100 2.9800 ± 0.0525 1076 ± 9
20N 950 0.2732 ± 0.0127 3.1178 ± 0.0751 1121 ± 17
21N 1005 0.2926 ± 0.0080 3.0457 ± 0.0425 1114 ± 9
22N 965 0.2346 ± 0.0207 3.4332 ± 0.1618 1245 ± 49
16O 970 0.2898 ± 0.0068 2.7277 ± 0.0326 982 ± 6
18O 1050 0.3499 ± 0.0330 2.6281 ± 0.1334 1032 ± 26
19O 970 0.2927 ± 0.0060 2.9295 ± 0.0305 1066 ± 9
20O 950 0.2996 ± 0.0086 2.9412 ± 0.0431 1078 ± 10
21O 980 0.3015 ± 0.0077 2.9699 ± 0.0387 1098 ± 11
22O 965 0.2940 ± 0.0171 3.0403 ± 0.0925 1123 ± 24a

23O 960 0.2557 ± 0.0197 3.2900 ± 0.1347 1216 ± 41a

24O 965 0.2193 ± 0.0174 3.5813 ± 0.1511 1318 ± 52
18F 975 0.2412 ± 0.0300 3.0917 ± 0.2123 1100 ± 50
19F 985 0.3476 ± 0.0350 2.6391 ± 0.1439 1043 ± 24
20F 950 0.2686 ± 0.0073 3.0605 ± 0.0425 1113 ± 11
21F 1000 0.3056 ± 0.0110 2.9142 ± 0.0539 1099 ± 12
23F 1020 0.2928 ± 0.0075 3.0482 ± 0.0398 1148 ± 16
24F 1005 0.2385 ± 0.0083 3.4085 ± 0.0609 1253 ± 23
25F 1010 0.2304 ± 0.0075 3.4954 ± 0.0583 1298 ± 31
26F 950 0.2174 ± 0.0149 3.6233 ± 0.1309 1353 ± 54

consider the neutron skin thickness, (rpt
n − rpt

p ), and study
its behavior along with the values of one- and two-neutron
separation energies [29]. Figure 3 depicts our deduced neutron
skins for different isotopic chains as a function of the mass
number. From this figure, we observe that within the isotopic
chain of a given element, the nuclei 11Be, 19C, 22N, and 26F

correspond to the largest neutron skin thickness, but with the
minimum value of one-neutron separation energy, whereas the
nuclei 14Be and 17B also correspond to the largest neutron
skin thickness, but involve minimum value of two-neutron
separation energy. This shows that the nuclei 11Be, 19C, 22N,
and 26F exhibit one-neutron halo-like structure, whereas for
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FIG. 1. The point proton radii corresponding to our deduced
proton radii given in Tables II and III. The results of other works
are presented for comparison. The available experimental values of
point proton radii (filled squares) are obtained from Refs. [25] and
[26] after correcting for finite size of the nucleon. The values denoted
by Terashima et al., Estrade et al., Li et al., Kanungo et al., Bagchi
et al., and Kaur et al. are taken from Refs. [7], [6], [17], [8], [9], and
[10], respectively.

14Be and 17B two-neutron halo-like structure develop. To
strengthen our information relating the halo-like behavior of
the above-mentioned nuclei, we refer readers to see some
earlier works [8,9,30,31]. For rest of the neutron-rich isotopes,
having higher values of Sn/S2n, the order of the thickness of
neutron surface can be assessed directly from the measure
of (rpt

n − rpt
p ). For example, the data in Fig. 3 reveal a thick

neutron surface for 16–18C, 20,21N, 22–24O, and 24,25F isotopes.

FIG. 2. The point matter radii corresponding to our deduced
proton (Tables II and III) and neutron (Table IV) radii. The results
of other works are presented for comparison. The values denoted by
Ozawa et al., Estrade et al., Li et al., Kanungo et al., Bagchi et al.,
and Kaur et al. are taken from Refs. [27], [6], [17], [8], [9], and [10],
respectively.

C. Nucleus-proton charge-changing and reaction cross sections

To test how far the information about the proton and neu-
tron radii (densities), obtained in this work, suits in other
situations, we now consider the parameter-free calculations
of (i) charge-changing cross sections for 12–19C [33] and
14,15,17–22N [19] isotopes, and (ii) reaction cross sections for
12–19C isotopes on a proton target in the energy range 650–
1000 MeV/nucleon. The parameters of the NN amplitude are
obtained in a similar way as discussed earlier. To obtain the
value of the correction parameter ε, needed in connection with
the study of CCCS, we have followed the similar procedure
as already discussed in Sec. III A. The required average value
of the correction parameter ε is given in the last column of

TABLE V. σ p
cc is the contribution to the charge-changing cross section due to projectile protons with a proton target at energy E using

the values of oscillator constant, α2
p, obtained in Table I. The correction factor, ε (=σ

expt
cc /σ p

cc ), is the ratio of the experimental value of
charge-changing cross section σ

expt
cc and σ p

cc. The last column gives the average value of ε for the considered isotopes.

Projectile E/A(MeV) σ p
cc(mb)(this work) σ

expt
cc (mb) ε

(
= σ

expt
cc
σ

p
cc

)
εavg

12C 926 172.06 ± 0.06 214 ± 7 [33] 1.244 ± 0.040 1.297 ± 0.044
13C 815 168.78 ± 0.07 227 ± 7 [33] 1.345 ± 0.041
14C 889 170.51 ± 0.21 222 ± 9 [33] 1.304 ± 0.051
14N 924 195.27 ± 0.23 280 ± 5 [19] 1.434 ± 0.024 1.455 ± 0.091
15N 762 187.59 ± 0.22 277 ± 30 [19] 1.477 ± 0.158
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FIG. 3. The neutron skin thickness as a function of mass number
for Be, B, C, N, O, and F isotopes, using the point proton and point
neutron radii corresponding to our deduced proton and neutron radii
given in Tables II, III, and IV.

Table V. Figure 4 displays the results for CCCS for 12–19C
and 14,15,17–22N isotopes on a proton target using the average
value of the correction parameter (Table V). A fairly good
agreement is seen in the case of carbon isotopes. However,
the situation of nitrogen isotopes is slightly disturbing. In this
case, although the results for isotopes 14,15,17,18N agree with
the experiment fairly well, the isotopes 19–22N show large
deviations between theory and experiment. In terms of the
radii (densities), we find that the proton radii (densities) of
12–19C, as obtained using the 12C target, suit also in the case
of a proton as a target. Unfortunately, this is not the case with
19–22N isotopes. It seems that one requires smaller values of
the projectile proton radii in order to account for the 19–22N
data on a proton target. At present, there seems no valid reason
in support of the expected deviations in the deduced proton
radii (densities) for neutron-rich nitrogen isotopes, 19–22N.
For if we take indications from the works of Aumann et al.
[34,35] on knock-out reactions that a proton as a target can
explore both the inner and surface regions of the projectile,
whereas a complex target is more sensitive to the surface, we
could only infer that the shape of the projectile proton density
distribution, which is not the subject of the present study, may
play a role in understanding the source of discrepancy in the
case of 19–22N isotopes. It might happen that the proton density
distribution in C isotopes, having even number of protons, is
better accommodated in the use of SDHO density as compared

FIG. 4. Charge changing cross sections for C and N isotopes on a
proton as a target. The filled squares show our theoretical predictions
with the proton radii (Tables II and III) obtained using the 12C target.
The experimental data (filled circles) are taken from Refs. [33] and
[19] for C and N isotopes, respectively.

with that in N isotopes having odd number of protons. A
similar discussion is given in Ref. [19].

Unfortunately, no experimental data are available for the
reaction cross sections σR of exotic neutron-rich isotopes on
a proton target at any incident energy, we have only predicted
σR for 12–19C-proton reaction at some specific energies, say
650 and 800 MeV/nucleon. The results of these calculations
are presented in Fig. 5. This figure also contains the results
of other calculations [36,37] for comparison. Due to lack of
experimental data, though no comments could be made on
overall merits or demerits of the results presented in Fig. 5,
the only result that needs attention in the present calculations
is the one- neutron halo structure of 19C, reflected through
large increase in its σR value not present in the other results.
However, it should be mentioned that the assessment of the
suitability of our extracted matter radii (densities) is a matter
of future experiments on charge-changing and reaction cross
sections involving different targets at different energies.

IV. SUMMARY AND CONCLUSIONS

In this work we have presented a theoretical study of the
charge-changing and interaction cross sections for beryllium,
boron, carbon, nitrogen, oxygen, and fluorine isotopes on
12C at medium energies (740–1050 MeV/nucleon), using the
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FIG. 5. The predicted reaction cross sections for C isotopes on a
proton target at 650 and 800 MeV/nucleon, using our deduced proton
(Tables II and III) and neutron (Table IV) radii. The values denoted
by Kaki and Abu-Ibrahim et al. are taken from Refs. [37] and [36],
respectively.

correlation expansion for the Glauber model S matrix. The
densities of the colliding nuclei are obtained using the Slater
determinants consisting of the harmonic-oscillator single-
particle wave functions, and the basic (input) of the Glauber
model, the NN amplitude, takes care of the nuclear in-medium
effects. Our main concern in this work is to extract the proton,
neutron, and matter radii of the nuclei under consideration.
In the first step, we have outlined the procedure for calculat-
ing the CCCS and predicted the proton radii of those exotic
isotopes whose experimental charge radii are not available.
From the trend of our deduced proton radii, we observe a
dip at N = 14 for both the nitrogen and oxygen isotopes,
reflecting this new subshell closure. Next, keeping the similar
values of the proton radii as obtained from the analysis of
CCCS, we have obtained the neutron radii that reproduce the
corresponding interaction cross sections. It is found that our
deduced matter radii agree fairly well with the results of other
studies available in the literature. The predicted proton and
neutron radii have also been used to calculate the neutron skin

thickness (rpt
n − rpt

p ), for all the isotopes of a given element
and studied its behavior with respect to the experimental val-
ues of one- and two-neutron separation energies. Our results
indicate that the nuclei 11Be, 19C, 22N, and 26F exhibit one-
neutron halo-like structure, whereas the nuclei 14Be and 17B
favor two-neutron halo-like structure. In rest of the isotopes,
our data reveal a thick neutron surface for 16–18C, 20,21N,
22–24O, and 24,25F.

To test the suitability of the proton and neutron radii,
obtained using the 12C as a target, we have performed
parameter-free calculations in other situations. For this, we
have considered the calculations of (i) charge-changing cross
sections for 12–19C and 14,15,17–22N isotopes, and (ii) reaction
cross sections for 12–19C isotopes on a proton as a target in the
energy range considered in this work. The results for CCCS
are found to agree fairly well with the experimental data for
carbon isotopes. In the case of CCCS for nitrogen isotopes, we
observe a fairly good agreement with the experimental data
for isotopes 14,15,17,18N, but the isotopes 19–22N show large
deviations between theory and experiment. This shows that
the proton radii (densities) of 12–19C, as obtained using the
12C target, suit also in the case of a proton as a target. Un-
fortunately, this is not true for 19–22N isotopes, and, at present,
we have no conclusive argument in support of large deviations
for the said neutron-rich nitrogen isotopes. However, keeping
in view of the knock-out reactions [34,35], which indicate
that a proton as a target can probe the entire region of the
projectile, whereas a complex target is more sensitive to the
surface, we should say that one needs to focus on the shape of
the projectile proton density distribution instead of projectile
proton radius in order to resolve the anomaly in the case of
neutron-rich nitrogen isotopes.

Unfortunately, no experimental data are available for the
reaction cross sections σR of neutron-rich isotopes for any
element on a proton target in the considered energy range,
we have only predicted σR for 12–19C on a proton target at
some specific energies, say 650 and 800 MeV/nucleon. The
results are simply compared with the results of other works. It
is, however, suggested that the assessment of the suitability of
our extracted matter radii requires future experiments on both
the charge-changing and reaction cross sections for similar
exotic nuclei involving different targets at different energies.
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